Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(9): e23650, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696238

RESUMEN

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Asunto(s)
Corteza Suprarrenal , Células Intersticiales del Testículo , Ratones Noqueados , Animales , Masculino , Ratones , Células Intersticiales del Testículo/metabolismo , Corteza Suprarrenal/metabolismo , Andrógenos/metabolismo , Testosterona/sangre , Testosterona/metabolismo , Conducta Animal , Ratones Endogámicos C57BL
2.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125068

RESUMEN

The addition of two-dimensional inorganic nanomaterials can effectively enhance the properties of polyethylene (PE). In the present study, a series of high-performance PE/oleic acid (OA)-siloxene nanocomposites were prepared by in situ polymerization using OA-siloxene-supported Ziegler-Natta catalysts. Compared with the conventional Ziegler-Natta catalyst, the polymerization activity of the OA-siloxene-supported Ziegler-Natta catalyst was enhanced to 100 kg/mol-Ti•h, an increase of 56%. The OA-siloxene fillers exhibited excellent dispersion within the PE matrix through the in situ polymerization technique. Compared to pure PE, PE/OA-siloxene nanocomposites containing 1.13 wt% content of OA-siloxene showed 68.3 °C, 126%, 37%, and 46% enhancements in Tdmax, breaking strength, modulus, and elongation at break, respectively.

3.
Food Microbiol ; 114: 104288, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290871

RESUMEN

Although high gravity brewing technology has been widely used for beer industries due to its economic benefits, yeast cells are subjected to multiple environmental stresses throughout the fermentation process. Eleven bioactive dipeptides (LH, HH, AY, LY, IY, AH, PW, TY, HL, VY, FC) were selected to evaluate their effects on cell proliferation, cell membrane defense system, antioxidant defense system and intracellular protective agents of lager yeast against ethanol-oxidation cross-stress. Results showed that the multiple stresses tolerance and fermentation performance of lager yeast were enhanced by bioactive dipeptides. Cell membrane integrity was improved by bioactive dipeptides through altering the structure of macromolecular compounds of the cell membrane. Intracellular reactive oxygen species (ROS) accumulation was significantly decreased by bioactive dipeptides, especially for FC, decreasing by 33.1%, compared with the control. The decrease of ROS was closely related to the increase of mitochondrial membrane potential, intracellular antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and glycerol level. In addition, bioactive dipeptides could regulate the expression of key genes (GPD1, OLE1, SOD2, PEX11, CTT1, HSP12) to enhance the multilevel defense systems under ethanol-oxidation cross-stress. Therefore, bioactive dipeptides should be potentially efficient and feasible bioactive ingredients to improve the multiple stresses tolerance of lager yeast during high gravity fermentation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Fermentación , Etanol/metabolismo , Cerveza , Peroxinas/metabolismo , Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Phys Chem Chem Phys ; 23(41): 23933-23944, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34657940

RESUMEN

A simple microwave-assisted method was applied to synthesize zinc oxide (ZnO) with controllable hierarchical structures. In a surfactant-free solvent system, the hierarchical structure of the ZnO precursor can be regulated by the concentration of urea at normal temperature and pressure. Upon annealing, ZnO with different morphologies shows its unique response towards six kinds of gases. The response data were clustered and analyzed by principal component analysis (PCA) to provide a basis for feature extraction. The classification to six kinds of gases was conducted through a model based on linear ridge classification (LRC), support vector machine (SVM). The prediction of ethanol concentration was achieved using backpropagation (BP) neural network and extreme learning machine (ELM). The results indicate that the six confusing gases can be distinguished clearly using SVM with an accuracy more than 0.99. Furthermore, the prediction of ethanol concentration shows a prominent performance (R2 > 0.98) by the ELM-based regressor, despite the nearly saturated response of the sensor array. This study explores the possibility of pattern recognition analysis based on machine learning to further improve the detection performance of the gas sensor array with different response characteristics regulated by the morphology.

5.
J Nanosci Nanotechnol ; 18(4): 2643-2649, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442938

RESUMEN

A facile coagglomeration method for preparing a long alkyl chain modified graphene oxide (MGO)/MgCl2-supported Ti-based Ziegler-Natta catalyst was reported. The effects of MGO on the catalyst morphology and activity for ethylene polymerization were examined. The resultant polyethylene (PE)/MGO nanocomposites exhibited a layered morphology, with the MGO fillers being well dispersed and exhibiting strong interfacial adhesion to the PE matrix. The thermal stability and mechanical properties of the PE were significantly enhanced with the introduction of a small amount of the MGO filler. Thus, this work provides a facile approach to the production of high-performance PE.

6.
J Nanosci Nanotechnol ; 17(1): 676-80, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29630813

RESUMEN

In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

7.
J Nanosci Nanotechnol ; 15(5): 3909-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26505022

RESUMEN

Catalytic nanofibers are prepared by the immobilization of Au nanoparticles (AuNPs) onto the surface of cross-linked electrospun poly(4-vinylpyridine) (P4VP) nanofibers. The crosslinking of the P4VP nanofibers by 1,4-diiodobutane via quaternization reaction greatly enhances the stability of the nanofibers against the solvent dissolution, which can then be used as promising platform for the immobilization of catalytic metal nanoparticles. The AuNPs immobilized cross-linked P4VP nanofibers have shown a good catalytic activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanofibras/química , Nitrofenoles/química , Polivinilos/química , Reactivos de Enlaces Cruzados/química , Técnicas Electroquímicas , Nanotecnología , Nitrofenoles/análisis , Oxidación-Reducción
8.
Int J Surg Case Rep ; 114: 109201, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38171270

RESUMEN

INTRODUCTION AND IMPORTANCE: Spontaneous spinal epidural hematoma (SSEH) is a rare surgical emergency, often with acute onset, causing severe spinal cord injury. This report presents a case of SSEH treated by surgery to enhance understanding of this disease. CASE PRESENTATION: A 76-year-old male patient sought medical care for unexplained sudden chest and back pain and paralysis of both lower extremities. Magnetic resonance imaging (MRI) confirmed the occupation of thoracolumbar spinal canal. The blood clot was completely removed by emergency surgery, and then the neurological function recovered. CLINICAL DISCUSSION: Spontaneous spinal epidural hematoma is an uncommon disease, its acute onset, resulting in difficult to recover spinal cord injury, or even permanent paralysis. Therefore, early diagnosis and early operation are the key to the protection of neurological function. CONCLUSIONS: Surgical intervention is the first choice for treatment, especially in acute and subacute spontaneous spinal epidural hematoma. Once diagnosed, and there are no contraindications, it is recommended to remove and decompress the hematoma as soon as possible.

9.
Heliyon ; 10(4): e26776, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440293

RESUMEN

Concrete often suffers cracks due to its low tensile strength. The repair process can vary ranging from surface coating, grouting, and strengthening. Microbial induced calcium carbonate sedimentation process (MICP) is a process of utilizing non-pathogenic bacteria to produce calcium carbonate through its urease activity in crack repair (filling). It is known as an alternative crack repair method that does not utilize Portland cement. In general, the bacteria used in MICP are alkali tolerant bacteria that have a higher chance of surviving the high alkalinity environment in concrete. However, in some regions, alkali tolerant bacteria are difficult to acquire and unavailable locally. This study introduced a technique to utilize non-alkali tolerant bacteria in MICP using buffer treatment. Instead of injecting bacteria directly onto the crack surface, the buffer solution was applied onto the crack surface prior to the bacteria injection. Results from the laboratory indicated a higher bacteria survival rate when the buffer treatment was applied to the medium. For the crack filling, with the buffer treatment, the crack was completely filled within 21-28 days. The microstructure results also showed that the crystal deposits from both laboratory and crack surface were similar in both physical appearance and phase composition.

10.
J Colloid Interface Sci ; 677(Pt A): 264-272, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094487

RESUMEN

The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH3. However, the difficulty of N2 activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N2 activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe2(MoO4)3 (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe2+-O2--Fe3+ and oxygen vacancies, achieving an equal molar ratio of Fe2+/Fe3+. This strategy enables the super-exchange in Fe2+-O2--Fe3+, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe2+/Fe3+ cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH3 yield rate: 29.6 µg h-1 mgcat-1, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.

11.
Neuroscience ; 538: 1-10, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37913862

RESUMEN

With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Sustancia Blanca , Humanos , Demencia Vascular/patología , Sustancia Blanca/patología , Oligodendroglía/patología , Enfermedad de Alzheimer/patología , Vaina de Mielina/patología
12.
Heliyon ; 10(15): e35169, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166084

RESUMEN

Novel silicone-modified biochar adsorbents (BPS-MBCs) were prepared by utilizing waste black peanut shell (BPS) as a raw biochar and gamma-amino-propyl triethoxysilane (silicone) as an inorganic modifier. The novelty of this work is that the incorporation of silicone into BPS can rise the specific surface area and porosity of BPS-MBCs and elevate their adsorptions for copper (II). Sorption kinetics data for copper (II) were molded using five kinetic equations [i.e. Lagergren 1st-order and 2nd-order, intraparticle diffusion (IN-D), Elovich, and Diffusion-chemisorption]. The equilibrium adsorption data for copper (II) were analyzed using two-parameter isotherm equations [i.e. Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin] and three-parameter Sips, Redlich-Peterson and Toth isotherm models. It was validated that copper (II) sorption on BPS-MBCs matched better with pseudo-2nd-order kinetic, Diffusion-chemisorption and Langmuir isotherm models. The maximal qmLan of BPS-MBC-400 was near 284 mg/g at 45 °C. By multi-phase fitting of IN-D modelling, intra-particle diffusion coefficient (kin-d) and diffusion coefficient of external mass-transfer (DEx-Di) for copper (II) were calculated. The low sorption energy from Temkin and mean free energy from D-R modellings implied that copper (II) sorption was initiated by weak non-covalent bond interactions. Thermodynamic parameters indicated that copper (II) on BPS-MBCs was an endothermic and spontaneous process. Recycling of BPS-MBC-400 for copper (II) suggested it has excellent reusability. The major mechanism of copper (II) on BPS-MBCs is possibly comprised of multiple processes, such as physical adsorption (electrostatic attraction), chemical adsorption (adsorption from functional groups, chelation, and ion exchange) and diffusion-chemisorption. Based on these findings, it is expects that BPS-MBCs are promising sorbents for copper (II) eradication from Cu(II)-including wastewater.

13.
Food Chem ; 451: 139497, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692240

RESUMEN

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.


Asunto(s)
Actinidia , Antioxidantes , Desecación , Frutas , Valor Nutritivo , Antioxidantes/química , Antioxidantes/análisis , Actinidia/química , Frutas/química , Desecación/métodos , Desecación/instrumentación , Liofilización , Manipulación de Alimentos/instrumentación , Manipulación de Alimentos/métodos , Vacio , Fibras de la Dieta/análisis
14.
J Agric Food Chem ; 72(8): 4339-4347, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38351620

RESUMEN

This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Presión Osmótica , Pared Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quitina Sintasa/metabolismo
15.
ChemSusChem ; 17(3): e202301148, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37814172

RESUMEN

The achievement of the outstanding theoretical capacitance of nickel sulfide (NiS2 ) is challenging due to its low conductivity, slow electrochemical kinetics, and poor structural stability. In this study, we utilize polyaniline (PANI) as a linker to anchor the NiS2 with a hollow bowl-like structure, uniformly dispersed at the surface of graphene oxide (GO)(NiS2 @15PG). The presence of PANI provides growth sites, resulting in a uniform and dense arrangement of NiS2 . This morphological modulation of NiS2 increases the contact area between the active material to electrolyte. Additionally, PANI effectively connects NiS2 with the conductive network of GO, which advances the electrical conductivity and ion diffusion properties. As a result, the Rct (charge transfer resistance) and Zw (Warburg impedance) of NiS2 @15PG decrease by 82.61 % and 66.76 % respectively. This unique structure confers NiS2 @15PG with high specific capacitance (536.13 C g-1 at 1 A g-1 ) and excellent multiplicative property of 60.93 % at 20 A g-1 . The assembled NiS2 @15PG//YP-50 supercapacitors (HSC) demonstrates an energy density (13.09 Wh kg-1 ) at a high-power density (16 kW kg-1 ). The capacity retention after 10,000 cycles at 5 A g-1 is 86.59 %, indicating its significant potential for practical applications.

16.
Int J Surg Case Rep ; 107: 108321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196476

RESUMEN

INTRODUCTION AND IMPORTANCE: Scapulothoracic separation is an infrequent ailment marked by the detachment of the upper limb bones from the chest wall, resulting in a range of symptoms. In this report, we present a collection of instances of Scapulothoracic separation. CASE PRESENTATION: A female patient, aged 35, was referred to our emergency department from a primary healthcare center for treatment following a high-energy motor vehicle accident that occurred two days prior. Upon examination, no vascular damage was detected. Following the critical period, the patient underwent surgery to repair a clavicle fracture. Despite the passage of three months since the surgery, the patient continues to experience functional limitations in the affected limb. CLINICAL DISCUSSION: The incidence of Scapulothoracic separation.is uncommon and stems from forceful injuries, predominantly resulting from vehicular mishaps. In managing this condition, it is imperative to prioritize the individual's safety and prioritize targeted treatment thereafter. CONCLUSIONS: The presence or absence of vascular injury determines the need for emergency surgical treatment, while the presence or absence of neurological injury affects the recovery of limb function.

17.
Int J Surg Case Rep ; 110: 108737, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37647756

RESUMEN

INTRODUCTION AND IMPORTANCE: Knee joint synovial hemangioma is an uncommon condition primarily characterized by knee pain, often accompanied by other symptoms. This report presents a case of knee joint synovial hemangioma to enhance understanding of this condition. CASE PRESENTATION: An 18-year-old male patient sought medical attention due to unexplained knee pain. Physical examination revealed noticeable tenderness points in the knee joint. Magnetic resonance imaging (MRI) confirmed the presence of an internal knee bump. Arthroscopic surgery resulted in the complete resolution of symptoms. CLINICAL DISCUSSION: Knee joint synovial hemangioma is a rare ailment, and its relatively inconspicuous symptoms can lead to misdiagnosis, delayed treatment, or even overlooked cases. Therefore, it is crucial for healthcare professionals, especially young doctors, to be familiar with the distinctive attributes of this infrequent disorder in order to aid patients in regaining their normal lives. CONCLUSIONS: When encountering patients with unexplained knee pain, medical practitioners should consider the possibility of knee joint synovial hemangioma. Early identification and treatment are essential for prompt recovery and optimal outcomes for patients.

18.
Nanomicro Lett ; 16(1): 31, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994969

RESUMEN

The utilization of eco-friendly, lightweight, high-efficiency and high-absorbing electromagnetic interference (EMI) shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing. In this work, magnetic poly (butyleneadipate-co-terephthalate) (PBAT) microspheres were firstly synthesized via phase separation method, then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques. The merits of integrating ferroferric oxide-loaded multi-walled carbon nanotubes (Fe3O4@MWCNTs) nanoparticles, a microcellular framework, and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration. Microwaves are consumed throughout the process of "absorption-reflection-reabsorption" as much as possible, which greatly declines the secondary radiation pollution. The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%, and authenticated favorable stabilization after the tape adhesion experiment.

19.
Food Chem ; 400: 134060, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36108444

RESUMEN

The published literature has shown that there are various evaluation methods for the process of carotenoids digestion and absorption. However, it was found that many concepts are ambiguous in the evaluation process, and the selection of evaluation methods is inappropriate and inaccurate. These deficiencies trouble readers, hamper comparisons among different studies, and generate controversy in different literature. Therefore, it is imperative to establish a complete and standardized system for evaluating the digestion and absorption process of carotenoids. This review begins by clarifying confusing concepts during the process of carotenoids digestion and absorption, including the release rate, micellization rate, bioaccessibility, relative bioavailability and absolute bioavailability. Then this review discusses relevant factors affecting the key process of the digestion and absorption of carotenoids. Finally, a more specific and standardized system for evaluating carotenoids bioavailability was suggested based on four dimensions: intake, digestion, absorption and metabolic process. Clarifying concepts such as digestion and absorption and standardizing corresponding research methods will help to obtain reliable data and support interoperability and comparisons across studies.


Asunto(s)
Carotenoides , Digestión , Disponibilidad Biológica , Fenómenos Químicos
20.
J Alzheimers Dis ; 94(s1): S227-S239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36336932

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-ß (Aß) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aß in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aß on the gut flora.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas Amiloidogénicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA