Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.479
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38552623

RESUMEN

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Retículo Endoplásmico , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Ratas , Transporte Biológico , Terminales Presinápticos/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas del Citoesqueleto/metabolismo , Separación de Fases
2.
Cell ; 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35777355

RESUMEN

The host-seeking activity of hematophagous arthropods is essential for arboviral transmission. Here, we demonstrate that mosquito-transmitted flaviviruses can manipulate host skin microbiota to produce a scent that attracts mosquitoes. We observed that Aedes mosquitoes preferred to seek and feed on mice infected by dengue and Zika viruses. Acetophenone, a volatile compound that is predominantly produced by the skin microbiota, was enriched in the volatiles from the infected hosts to potently stimulate mosquito olfaction for attractiveness. Of note, acetophenone emission was higher in dengue patients than in healthy people. Mechanistically, flaviviruses infection suppressed the expression of RELMα, an essential antimicrobial protein on host skin, thereby leading to the expansion of acetophenone-producing commensal bacteria and, consequently, a high acetophenone level. Given that RELMα can be specifically induced by a vitamin A derivative, the dietary administration of isotretinoin to flavivirus-infected animals interrupted flavivirus life cycle by reducing mosquito host-seeking activity, thus providing a strategy of arboviral control.

3.
Cell ; 185(22): 4082-4098.e22, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36198318

RESUMEN

The mechanism that initiates autophagosome formation on the ER in multicellular organisms is elusive. Here, we showed that autophagy stimuli trigger Ca2+ transients on the outer surface of the ER membrane, whose amplitude, frequency, and duration are controlled by the metazoan-specific ER transmembrane autophagy protein EPG-4/EI24. Persistent Ca2+ transients/oscillations on the cytosolic ER surface in EI24-depleted cells cause accumulation of FIP200 autophagosome initiation complexes on the ER. This defect is suppressed by attenuating ER Ca2+ transients. Multi-modal SIM analysis revealed that Ca2+ transients on the ER trigger the formation of dynamic and fusion-prone liquid-like FIP200 puncta. Starvation-induced Ca2+ transients on lysosomes also induce FIP200 puncta that further move to the ER. Multiple FIP200 puncta on the ER, whose association depends on the ER proteins VAPA/B and ATL2/3, assemble into autophagosome formation sites. Thus, Ca2+ transients are crucial for triggering phase separation of FIP200 to specify autophagosome initiation sites in metazoans.


Asunto(s)
Autofagosomas , Calcio , Animales , Autofagosomas/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo
4.
Nat Immunol ; 25(9): 1565-1579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103576

RESUMEN

Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC). NPM1 expression was reduced in patients with IBD. Npm1+/- mice were more susceptible to acute colitis and experimentally induced CAC than littermate controls. Npm1 deficiency impaired the function of interleukin-22 (IL-22)-producing group three innate lymphoid cells (ILC3s). Mice lacking Npm1 in ILC3s exhibited decreased IL-22 production and accelerated development of colitis. NPM1 was important for mitochondrial biogenesis and metabolism by oxidative phosphorylation in ILC3s. Further experiments revealed that NPM1 cooperates with p65 to promote mitochondrial transcription factor A (TFAM) transcription in ILC3s. Overexpression of Npm1 in mice enhanced ILC3 function and reduced the severity of dextran sulfate sodium-induced colitis. Thus, our findings indicate that NPM1 in ILC3s protects against IBD by regulating mitochondrial metabolism through a p65-TFAM axis.


Asunto(s)
Colitis , Inmunidad Mucosa , Ratones Noqueados , Mitocondrias , Proteínas Nucleares , Nucleofosmina , Fosforilación Oxidativa , Animales , Mitocondrias/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Humanos , Colitis/inmunología , Colitis/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Interleucina-22 , Inmunidad Innata , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Sulfato de Dextran , Masculino , Interleucinas/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Femenino
5.
Nat Rev Mol Cell Biol ; 22(11): 733-750, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302147

RESUMEN

Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.


Asunto(s)
Autofagosomas/genética , Autofagia/genética , Enfermedades Neurodegenerativas/genética , Vesículas Transportadoras/genética , Endosomas/genética , Humanos , Lisosomas/genética , Enfermedades Neurodegenerativas/patología , Fagosomas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas SNARE/genética , Proteínas de Unión al GTP rab/genética
6.
Cell ; 174(6): 1492-1506.e22, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30173914

RESUMEN

The assembly of phase-separated structures is thought to play an important role in development and disease, but little is known about the regulation and function of phase separation under physiological conditions. We showed that during C. elegans embryogenesis, PGL granules assemble via liquid-liquid phase separation (LLPS), and their size and biophysical properties determine their susceptibility to autophagic degradation. The receptor SEPA-1 promotes LLPS of PGL-1/-3, while the scaffold protein EPG-2 controls the size of PGL-1/-3 compartments and converts them into less dynamic gel-like structures. Under heat-stress conditions, mTORC1-mediated phosphorylation of PGL-1/-3 is elevated and PGL-1/-3 undergo accelerated phase separation, forming PGL granules that are resistant to autophagic degradation. Significantly, accumulation of PGL granules is an adaptive response to maintain embryonic viability during heat stress. We revealed that mTORC1-mediated LLPS of PGL-1/-3 acts as a switch-like stress sensor, coupling phase separation to autophagic degradation and adaptation to stress during development.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Arginina/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Larva/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Metilación , Mutagénesis Sitio-Dirigida , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Temperatura
7.
Immunity ; 55(1): 56-64.e4, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34986342

RESUMEN

We evaluated the impact of class I and class II human leukocyte antigen (HLA) genotypes, heterozygosity, and diversity on the efficacy of pembrolizumab. Seventeen pembrolizumab clinical trials across eight tumor types and one basket trial in patients with advanced solid tumors were included (n > 3,500 analyzed). Germline DNA was genotyped using a custom genotyping array. HLA diversity (measured by heterozygosity and evolutionary divergence) across class I loci was not associated with improved response to pembrolizumab, either within each tumor type evaluated or across all patients. Similarly, HLA heterozygosity at each class I and class II gene was not associated with response to pembrolizumab after accounting for the number of tests conducted. No conclusive association between HLA genotype and response to pembrolizumab was identified in this dataset. Germline HLA genotype or diversity alone is not an important independent determinant of response to pembrolizumab and should not be used for clinical decision-making in patients treated with pembrolizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Genotipo , Mutación de Línea Germinal/genética , Antígenos HLA/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Factores de Edad , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/mortalidad , Polimorfismo Genético , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factores Sexuales , Análisis de Supervivencia , Resultado del Tratamiento
8.
Annu Rev Genet ; 56: 17-39, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35679620

RESUMEN

Autophagy, a lysosome-mediated degradation process evolutionarily conserved from yeast to mammals, is essential for maintaining cellular homeostasis and combating diverse cellular stresses. Autophagy involves de novo synthesis of a double-membrane autophagosome, sequestration of selected cellular contents, and subsequent delivery of sequestrated contents to the vacuole (in yeasts and plants) or to lysosomes (in animal cells) for degradation and recycling. Genetic studies in unicellular and multicellular model organisms have systematically revealed the molecular machinery, regulation, and function of autophagy in physiological settings. I review genetic studies in model organisms-from yeast to worm to fly-that enable us to not only identify autophagy genes, including ATG genes and the metazoan-specific EPG genes, but also uncover variants of autophagy in developmental contexts, novel regulatory mechanisms, and signaling events involved in mediating systemic autophagy response. Genetic analysis also helps us understand the liquid-liquid phase separation and transition that control autophagic degradation of protein aggregates. The emerging role of autophagy in zebrafish tissue regeneration is also discussed.


Asunto(s)
Saccharomyces cerevisiae , Pez Cebra , Animales , Autofagia/genética , Lisosomas , Transducción de Señal/genética , Mamíferos
9.
Nature ; 628(8009): 887-893, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538796

RESUMEN

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Asunto(s)
Microscopía por Crioelectrón , Exorribonucleasas , ARN Polimerasa II , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exorribonucleasas/ultraestructura , Modelos Moleculares , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , ARN Mensajero/biosíntesis , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/ultraestructura , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Dominios Proteicos , ARN de Hongos/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/ultraestructura
10.
Nature ; 629(8013): 945-950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720069

RESUMEN

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Asunto(s)
Descubrimiento de Drogas , Lipoproteína(a) , Macaca fascicularis , Animales , Femenino , Humanos , Masculino , Ratones , Administración Oral , Kringles , Lipoproteína(a)/antagonistas & inhibidores , Lipoproteína(a)/sangre , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Ratones Transgénicos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Plasminógeno/química , Plasminógeno/metabolismo , Especificidad de la Especie , Ensayos Clínicos Fase II como Asunto , Apolipoproteínas A/química , Apolipoproteínas A/metabolismo
11.
Mol Cell ; 77(3): 618-632.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806350

RESUMEN

TMEM39A, encoding an ER-localized transmembrane protein, is a susceptibility locus for multiple autoimmune diseases. The molecular function of TMEM39A remains completely unknown. Here we demonstrated that TMEM39A, also called SUSR2, modulates autophagy activity by regulating the spatial distribution and levels of PtdIns(4)P. Depletion of SUSR2 elevates late endosomal/lysosomal PtdIns(4)P levels, facilitating recruitment of the HOPS complex to promote assembly of the SNARE complex for autophagosome maturation. SUSR2 knockdown also increases the degradative capability of lysosomes. Mechanistically, SUSR2 interacts with the ER-localized PtdIns(4)P phosphatase SAC1 and also the COPII SEC23/SEC24 subunits to promote the ER-to-Golgi transport of SAC1. Retention of SAC1 on the ER in SUSR2 knockdown cells increases the level of PtdIns(3)P produced by the VPS34 complex, promoting autophagosome formation. Our study reveals that TMEM39A/SUSR2 acts as an adaptor protein for efficient export of SAC1 from the ER and provides insights into the pathogenesis of diseases associated with TMEM39A mutations.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Transporte de Proteínas/fisiología
12.
Plant Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916914

RESUMEN

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

13.
Nat Rev Mol Cell Biol ; 21(3): 121, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31942066
14.
Cell ; 150(3): 521-32, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863006

RESUMEN

To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.


Asunto(s)
Embrión no Mamífero/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Blastómeros/metabolismo , Ciclo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Femenino , Humanos , Insectos/citología , Insectos/embriología , Insectos/metabolismo , Masculino , Mamíferos/embriología , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Huso Acromático/metabolismo , Pez Cebra/metabolismo , Cigoto/citología , Cigoto/metabolismo
15.
Cell ; 151(6): 1308-18, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217712

RESUMEN

In budding yeast, the essential functions of Hsp70 chaperones Ssa1-4 are regulated through expression level, isoform specificity, and cochaperone activity. Suggesting a novel regulatory paradigm, we find that phosphorylation of Ssa1 T36 within a cyclin-dependent kinase (CDK) consensus site conserved among Hsp70 proteins alters cochaperone and client interactions. T36 phosphorylation triggers displacement of Ydj1, allowing Ssa1 to bind the G1 cyclin Cln3 and promote its degradation. The stress CDK Pho85 phosphorylates T36 upon nitrogen starvation or pheromone stimulation, destabilizing Cln3 to delay onset of S phase. In turn, the mitotic CDK Cdk1 phosphorylates T36 to block Cln3 accumulation in G2/M. Suggesting broad conservation from yeast to human, CDK-dependent phosphorylation of Hsc70 T38 similarly regulates Cyclin D1 binding and stability. These results establish an active role for Hsp70 chaperones as signal transducers mediating growth control of G1 cyclin abundance and activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proliferación Celular , Ciclina D1/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Fosforilación , Saccharomyces cerevisiae/citología
16.
PLoS Genet ; 20(7): e1011343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052672

RESUMEN

Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.


Asunto(s)
Oocitos , Oogénesis , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Femenino , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Regulación del Desarrollo de la Expresión Génica , Herencia Materna/genética , Mutación , Embrión no Mamífero , Desarrollo Embrionario/genética
17.
Trends Genet ; 39(6): 451-461, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36872184

RESUMEN

A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.


Asunto(s)
Microbioma Gastrointestinal , Hominidae , Microbiota , Animales , Humanos , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Hominidae/genética , Pan troglodytes/genética , Evolución Molecular
18.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37884341

RESUMEN

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Asunto(s)
Metagenoma , Microbiota , Ovinos/genética , Animales , Transcriptoma , Rumen , Rumiantes/genética
19.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711371

RESUMEN

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Humanos , Epítopos/química , Epítopos/inmunología , Biología Computacional/métodos , Redes Neurales de la Computación , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Antígenos/química , Antígenos/inmunología , Secuencia de Aminoácidos
20.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738159

RESUMEN

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA