Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 115(6): 1564-1582, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37265000

RESUMEN

Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.


Asunto(s)
Translocación Genética , Triticum , Triticum/genética , Translocación Genética/genética , Fitomejoramiento , Fenotipo , Poliploidía , Poaceae/genética , Expresión Génica , Metaboloma
2.
Proc Natl Acad Sci U S A ; 117(16): 8980-8988, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32273390

RESUMEN

Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.


Asunto(s)
Arabidopsis/genética , Productos Agrícolas/genética , Genoma de Planta , Meiosis/genética , Tetraploidía , Alelos , Proteínas de Arabidopsis/genética , Segregación Cromosómica , Producción de Cultivos , Proteínas de Unión al ADN/genética , Evolución Molecular , Sitios Genéticos , Técnicas de Genotipaje , Familia de Multigenes
3.
Zhonghua Nan Ke Xue ; 28(5): 408-414, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-37477479

RESUMEN

OBJECTIVE: To investigate the value of single-sperm sequencing technology in preimplantation genetic testing. METHODS: Haplotypes were constructed by single-sperm isolation combined with single-sperm sequencing for a patient with autosomal dominant polycystic kidney disease (ADPKD) caused by de novo mutation of the PKD1 gene c.3815T>G. 50. Single-sperm samples were isolated by mechanical braking, whole-genome amplification was performed, and mutation loci and their 187 upstream and downstream single nucleotide polymorphisms (SNP) were designed. The amplified products were verified for determination of the chromosome haplotypes carrying or not carrying pathogenic mutations. The embryos carrying pathogenic mutations were identified in 7 embryonic trophectoderm cell biopsy samples by high-throughput sequencing after whole-genome amplification. Available blastocysts were selected for embryo transfer, and amniotic fluid samples were collected at 18 weeks of gestation to determine whether the fetuses carried pathogenic mutations. RESULTS: A total of 30 SNPs were identified by single-sperm sequencing, and haplotypes were successfully constructed. Preimplantation haplotype analysis indicated that 5 embryos carried pathogenic mutations and 2 did not. mid-gestation amniotic fluid genetic testing revealed no PKD1 gene c.3815T>G mutation in the fetuses. CONCLUSION: SNPs can be identified by single-sperm sequencing in males carrying de novo pathogenic mutation, and haplotypes can be constructed by linkage analysis for preimplantation genetic testing of embryos.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Masculino , Riñón Poliquístico Autosómico Dominante/genética , Semen , Pruebas Genéticas , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Espermatozoides , Tecnología
4.
Biochem Soc Trans ; 49(4): 1829-1839, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34436520

RESUMEN

RNA folding is an intrinsic property of RNA that serves a key role in every step of post-transcriptional regulation of gene expression, from RNA maturation to translation in plants. Recent developments of genome-wide RNA structure profiling methods have transformed research in this area enabling focus to shift from individual molecules to the study of tens of thousands of RNAs. Here, we provide a comprehensive review of recent advances in the field. We discuss these new insights of RNA structure functionality within the context of post-transcriptional regulation including mRNA maturation, translation, and RNA degradation in plants. Notably, we also provide an overview of how plants exhibit different RNA structures in response to environmental changes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Conformación de Ácido Nucleico , Plantas/química , ARN de Planta/genética , Transcripción Genética , Plantas/genética , ARN de Planta/química
5.
Opt Express ; 29(8): 11793-11818, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984954

RESUMEN

Together, the number of waves, wave vectors, amplitudes, and additional phases constitute the coherent wave group configuration and determine the pattern of the interference field. Identifying an appropriate wave group configuration is key to generating vortex lattices via interferometry. Previous studies have approached this task by first assigning the four elements, then calibrating the vortex state of the interference field. However, this method has failed to progress beyond generating third-order vortex lattices, which are insufficient for some practical applications. Therefore, this study proposes a method for determining the proper wave group configurations corresponding to arbitrary-order vortex lattices. We adopt a goal-driven approach: First, we set a vortex lattice as the target field and model it, before decomposing the target field into a sum of multiple harmonics using Fourier transforms. These harmonics constitute the wave group required to generate the target vortex lattice. As vortex lattices of any order can be set as the target field, the proposed method is compatible with any mode order. Simulations and experiments were conducted for fourth- and fifth-order vortex lattices, thus demonstrating the effectiveness of the proposed method.

6.
Nucleic Acids Res ; 47(22): 11746-11754, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31722410

RESUMEN

Liquid-liquid phase separation plays an important role in a variety of cellular processes, including the formation of membrane-less organelles, the cytoskeleton, signalling complexes, and many other biological supramolecular assemblies. Studies on the molecular basis of phase separation in cells have focused on protein-driven phase separation. In contrast, there is limited understanding on how RNA specifically contributes to phase separation. Here, we described a phase-separation-like phenomenon that SHORT ROOT (SHR) RNA undergoes in cells. We found that an RNA G-quadruplex (GQ) forms in SHR mRNA and is capable of triggering RNA phase separation under physiological conditions, suggesting that GQs might be responsible for the formation of the SHR phase-separation-like phenomenon in vivo. We also found the extent of GQ-triggered-phase-separation increases on exposure to conditions which promote GQ. Furthermore, GQs with more G-quartets and longer loops are more likely to form phase separation. Our studies provide the first evidence that RNA can adopt structural motifs to trigger and/or maintain the specificity of RNA-driven phase separation.


Asunto(s)
G-Cuádruplex , Transición de Fase , ARN/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Extracción Líquido-Líquido , Conformación de Ácido Nucleico , Raíces de Plantas/química , ARN/aislamiento & purificación , ARN/fisiología , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación , Factores de Transcripción/química , Factores de Transcripción/genética
7.
Mol Biol Evol ; 35(5): 1078-1091, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365173

RESUMEN

Although a distinct karyotype with defined chromosome number and structure characterizes each biological species, it is intrinsically labile. Polyploidy or whole-genome duplication has played a pervasive and ongoing role in the evolution of all eukaryotes, and is the most dramatic force known to cause rapid karyotypic reconfiguration, especially at the initial stage. However, issues concerning transgenerational propagation of karyotypic heterogeneity and its translation to phenotypic diversity in nascent allopolyploidy, at the population level, have yet to be studied in detail. Here, we report a large-scale examination of transgenerationally propagated karyotypic heterogeneity and its phenotypic manifestation in an artificially constructed allotetraploid with a genome composition of AADD, that is, involving two of the three progenitor genomes of polyploid wheat. Specifically, we show that 1) massive organismal karyotypic heterogeneity is precipitated after 12 consecutive generations of selfing from a single euploid founder individual, 2) there exist dramatic differences in aptitudes between subgenomes and among chromosomes for whole-chromosome gain and/or loss and structural variations, 3) majority of the numerical and structural chromosomal variations are concurrent due to mutual contingency and possible functional constraint, 4) purposed and continuous selection and propagation for euploidy over generations did not result in enhanced karyotype stabilization, and 5) extent of karyotypic variation correlates with variability of phenotypic manifestation. Together, our results document that allopolyploidization catalyzes rampant and transgenerationally heritable organismal karyotypic heterogeneity that drives population-level phenotypic diversification, which lends fresh empirical support to the still contentious notion that whole-genome duplication enhances organismal evolvability.


Asunto(s)
Evolución Biológica , Inestabilidad Cromosómica , Cariotipo , Poliploidía , Triticum/genética , Cromosomas de las Plantas , Genoma de Planta , Meiosis
8.
New Phytol ; 220(1): 262-277, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29916206

RESUMEN

Polyploidy is a prominent route to speciation in plants; however, this entails resolving the challenges of meiotic instability facing abrupt doubling of chromosome complement. This issue remains poorly understood. We subjected progenies of a synthetic hexaploid wheat, analogous to natural common wheat, but exhibiting extensive meiotic chromosome instability, to heat or salt stress. We selected stress-tolerant cohorts and generated their progenies under normal condition. We conducted fluorescent in situ hybridization/genomic in situ hybridization-based meiotic/mitotic analysis, RNA-Seq and virus-induced gene silencing (VIGS)-mediated assay of meiosis candidate genes. We show that heritability of stress tolerance concurred with increased euploidy frequency due to enhanced meiosis stability. We identified a set of candidate meiosis genes with altered expression in the stress-tolerant plants vs control, but the expression was similar to that of common wheat (cv Chinese Spring, CS). We demonstrate VIGS-mediated downregulation of individual candidate meiosis genes in CS is sufficient to confer an unstable meiosis phenotype mimicking the synthetic wheat. Our results suggest that heritable regulatory changes of preexisting meiosis genes may be hitchhiked as a spandrel of stress tolerance, which significantly improves meiosis stability in the synthetic wheat. Our findings implicate a plausible scenario that the meiosis machinery in hexaploid wheat may have already started to evolve at its onset stage.


Asunto(s)
Inestabilidad Cromosómica/genética , Meiosis/genética , Poliploidía , Estrés Fisiológico/genética , Triticum/genética , Triticum/fisiología , Cromosomas de las Plantas/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Calor , Patrón de Herencia/genética , Cariotipo , Anotación de Secuencia Molecular , Fenotipo , Tolerancia a la Sal/genética
9.
Plant Physiol ; 175(2): 828-847, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28821592

RESUMEN

Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.


Asunto(s)
Aneuploidia , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Transcriptoma , Triticum/genética , Compensación de Dosificación (Genética) , Regulación de la Expresión Génica de las Plantas , Cariotipo , Fenotipo , Poliploidía
10.
Plant J ; 85(3): 424-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718755

RESUMEN

Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation.


Asunto(s)
Cromosomas de las Plantas/genética , Endospermo/genética , Epigenómica , Genoma de Planta/genética , Impresión Genómica , Sorghum/genética , Alelos , Secuencia de Bases , Citosina/metabolismo , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Análisis de Secuencia de ARN
11.
Plant Cell ; 26(7): 2761-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24989045

RESUMEN

Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Genoma de Planta/genética , Inestabilidad Genómica , Triticum/genética , ADN Complementario/química , ADN Complementario/genética , Perfilación de la Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Inflorescencia/genética , Cariotipo , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN de Planta/genética , Semillas/genética , Análisis de Secuencia de ADN , Tetraploidía , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 111(32): 11882-7, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074914

RESUMEN

Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.


Asunto(s)
Evolución Molecular , Poliploidía , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Triticum/genética , Triticum/fisiología , Cromosomas de las Plantas/genética , Diploidia , Aptitud Genética , Genoma de Planta , Nitrógeno/metabolismo , Presión Osmótica , Fotosíntesis/genética , Salinidad , Sodio/metabolismo , Tetraploidía
13.
New Phytol ; 209(3): 1264-77, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26436593

RESUMEN

Allopolyploidization has occurred frequently within the Triticum-Aegilops complex which provides a suitable system to investigate how allopolyploidization shapes the expression patterns of duplicated homeologs. We have conducted transcriptome-profiling of leaves and young inflorescences in wild and domesticated tetraploid wheats, Triticum turgidum ssp. dicoccoides (BBAA) and ssp. durum (BBAA), an extracted tetraploid (BBAA), and a synthetic tetraploid (S(l) S(l) AA) wheat together with its diploid parents, Aegilops longissima (S(l) S(l) ) and Triticum urartu (AA). The two diploid species showed tissue-specific differences in genome-wide ortholog expression, which plays an important role in transcriptome shock-mediated homeolog expression rewiring and hence transcriptome asymmetry in the synthetic tetraploid. Further changes of homeolog expression apparently occurred in natural tetraploid wheats, which led to novel transcriptome asymmetry between the two subgenomes. In particular, our results showed that extremely biased homeolog expression can occur rapidly upon the allotetraploidzation and this trend is further enhanced in the course of domestication and evolution of polyploid wheats. Our results suggest that allopolyploidization is accompanied by distinct phases of homeolog expression changes, with parental legacy playing major roles in the immediate rewiring of homeolog expression upon allopolyploidization, while evolution and domestication under allotetraploidy drive further homeolog-expression changes toward re-established subgenome expression asymmetry.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Tetraploidía , Transcriptoma/genética , Triticum/genética , Evolución Biológica , Diploidia , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Inflorescencia/genética , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética
14.
New Phytol ; 209(1): 364-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26295562

RESUMEN

Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution.


Asunto(s)
Aneuploidia , Cromosomas de las Plantas/genética , Epigenómica , Genoma de Planta/genética , Triticum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Citosina/metabolismo , Metilación de ADN , ADN de Plantas/genética , Epigénesis Genética , Fenotipo , Poliploidía
15.
Proc Natl Acad Sci U S A ; 110(9): 3447-52, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401544

RESUMEN

Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that whole-chromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S(1) to >S(20)) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.


Asunto(s)
Aneuploidia , Cromosomas de las Plantas/genética , Poliploidía , Triticum/genética , Cruzamientos Genéticos , Cariotipificación , Polen/fisiología , Reproducibilidad de los Resultados , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Supervivencia Tisular
16.
Proc Natl Acad Sci U S A ; 110(48): 19466-71, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218593

RESUMEN

Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.


Asunto(s)
Inestabilidad Cromosómica/genética , Dosificación de Gen/genética , Variación Genética , Tetraploidía , Triticum/genética , Secuencia de Bases , Cartilla de ADN/genética , Etiquetas de Secuencia Expresada , Hibridación Fluorescente in Situ , Cariotipo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
17.
Plant Mol Biol ; 88(1-2): 53-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25809554

RESUMEN

The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Genoma de Planta , Tetraploidía , Triticum/genética , 5-Metilcitosina/metabolismo , Metilación de ADN/genética , Técnica del Anticuerpo Fluorescente , Interfase , Cariotipificación , Metafase , Fenotipo , Polimorfismo Genético , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Sulfitos , Triticum/citología
18.
Artículo en Inglés | MEDLINE | ID: mdl-37976965

RESUMEN

Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Takifugu/genética , Takifugu/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
19.
Nat Commun ; 15(1): 3253, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627396

RESUMEN

Plants, as sessile organisms, deploy transcriptional dynamics for adapting to extreme growth conditions such as cold stress. Emerging evidence suggests that chromatin architecture contributes to transcriptional regulation. However, the relationship between chromatin architectural dynamics and transcriptional reprogramming in response to cold stress remains unclear. Here, we apply a chemical-crosslinking assisted proximity capture (CAP-C) method to elucidate the fine-scale chromatin landscape, revealing chromatin interactions within gene bodies closely associated with RNA polymerase II (Pol II) densities across initiation, pausing, and termination sites. We observe dynamic changes in chromatin interactions alongside Pol II activity alterations during cold stress, suggesting local chromatin dynamics may regulate Pol II activity. Notably, cold stress does not affect large-scale chromatin conformations. We further identify a comprehensive promoter-promoter interaction (PPI) network across the genome, potentially facilitating co-regulation of gene expression in response to cold stress. Our study deepens the understanding of chromatin conformation-associated gene regulation in plant response to cold.


Asunto(s)
Arabidopsis , Cromatina , Cromatina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética
20.
BMC Biol ; 10: 3, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22277161

RESUMEN

BACKGROUND: Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. RESULTS: Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n=4x=28; genome BBAA) and Aegilops tauschii (2n=2x=14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n=6x=42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. CONCLUSIONS: Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Triticum/genética , Expresión Génica , Variación Genética , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Poliploidía , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triticum/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA