Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37160118

RESUMEN

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Asunto(s)
Antígenos CD28 , Linfocitos T CD8-positivos , Ratones , Animales , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligandos , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adhesión Celular , Activación de Linfocitos
2.
Nano Lett ; 24(12): 3719-3726, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484387

RESUMEN

Mixed-halide CsPb(Br/I)3 perovskite quantum dots (QDs) are regarded as one of the most promising candidates for pure-red perovskite light-emitting diodes (PeLEDs) due to their precise spectral tuning property. However, the lead-rich surface of these QDs usually results in halide ion migration and nonradiative recombination loss, which remains a great challenge for high-performance PeLEDs. To solve the above issues, we employ a chelating agent of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid hydrate (DOTA) to polish the lead-rich surface of the QDs and meanwhile introduce a new ligand of 2,3-dimercaptosuccinic acid (DMSA) to passivate surface defects of the QDs. This synchronous post-treatment strategy results in high-quality CsPb(Br/I)3 QDs with suppressed halide ion migration and an improved photoluminescence quantum yield, which enables us to fabricate spectrally stable pure-red PeLEDs with a peak external quantum efficiency of 23.2%, representing one of the best performance pure-red PeLEDs based on mixed-halide CsPb(Br/I)3 QDs reported to date.

3.
Eur Radiol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730032

RESUMEN

OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lateral ventricle alterations in FVs. METHODS: Between January 2014 and August 2023, 141 NFs and 101 FVs underwent 1.5 T balanced steady-state free precession (BSSFP), including 68 FVs with resolved lateral ventricles (FVM-resolved) and 33 FVs with stable lateral ventricles (FVM-stable). Demographic data and intracranial structures were analyzed. To predict the enlarged ventricle alterations of FVs postnatally, logistic regression models with 5-fold cross-validation were developed based on lateral ventricle morphology, blended-cortical or/and subcortical radiomics characteristics. Validation of the models' performance was conducted using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: Significant alterations in cerebral structures were observed between NFs and FVs (p < 0.05), excluding the maximum frontal horn diameter (FD). However, there was no notable distinction between the FVM-resolved and FVM-stable groups (all p > 0.05). Based on subcortical-radiomics on the aberrant sides of FVs, this approach exhibited high efficacy in distinguishing NFs from FVs in the training/validation set, yielding an impressive AUC of 1/0.992. With an AUC value of 0.822/0.743 in the training/validation set, the Subcortical-radiomics model demonstrated its ability to predict lateral ventricle alterations in FVs, which had the greatest predictive advantages indicated by DCA. CONCLUSIONS: Microstructural alterations in subcortical parenchyma associated with ventriculomegaly can serve as predictive indicators for postnatal lateral ventricle variations in FVs. CLINICAL RELEVANCE STATEMENT: It is critical to gain pertinent information from a solitary fetal MRI to anticipate postnatal lateral ventricle alterations in fetuses with ventriculomegaly. This approach holds the potential to diminish the necessity for recurrent prenatal ultrasound or MRI examinations. KEY POINTS: Fetal ventriculomegaly is a dynamic condition that affects postnatal neurodevelopment. Machine learning and subcortical-radiomics can predict postnatal alterations in the lateral ventricle. Machine learning, applied to single-fetal MRI, might reduce required antenatal testing.

4.
Neuroradiology ; 66(5): 797-807, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383677

RESUMEN

PURPOSE: We aimed to determine the feasibility of using DKI to characterize pathological changes in nonarteritic anterior ischemic optic neuropathy (NAION) and to differentiate it from acute optic neuritis (ON). METHODS: Orbital DKI was performed with a 3.0 T scanner on 75 patients (51 with NAION and 24 with acute ON) and 15 healthy controls. NAION patients were further divided into early and late groups. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were calculated to perform quantitative analyses among groups; and receiver operating characteristic curve analyses were also performed to determine their effectiveness of differential diagnosis. In addition, correlation coefficients were calculated to explore the correlations of the DKI-derived data with duration of disease. RESULTS: The MK, RK, and AK in the affected nerves with NAION were significantly higher than those in the controls, while the trend of FA, RD, and AD was a decline; in acute ON patients, except for RD, which increased, all DKI-derived kurtosis and diffusion parameters were significantly lower than controls (all P < 0.008). Only AK and MD had statistical differences between the early and late groups. Except for MD (early group) and FA, all other DKI-derived parameters were higher in NAION than in acute ON; and parameters in the early group showed better diagnostic efficacy in differentiating NAION from acute ON. Correlation analysis showed that time was negatively correlated with MK, RK, AK, and FA and positively correlated with MD, RD, and AD (all P < 0.05). CONCLUSION: DKI is helpful for assessing the specific pathologic abnormalities resulting from ischemia in NAION by comparison with acute ON. Early DKI should be performed to aid in the diagnosis and evaluation of NAION.


Asunto(s)
Neuritis Óptica , Neuropatía Óptica Isquémica , Humanos , Neuropatía Óptica Isquémica/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neuritis Óptica/diagnóstico por imagen , Curva ROC
5.
BMC Med Imaging ; 24(1): 146, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872133

RESUMEN

BACKGROUND: The incidence of placenta accreta spectrum (PAS) increases in women with placenta previa (PP). Many radiologists sometimes cannot completely and accurately diagnose PAS through the simple visual feature analysis of images, which can affect later treatment decisions. The study is to develop a T2WI MRI-based radiomics-clinical nomogram and evaluate its performance for non-invasive prediction of suspicious PAS in patients with PP. METHODS: The preoperative MR images and related clinical data of 371 patients with PP were retrospectively collected from our hospital, and the intraoperative examination results were used as the reference standard of the PAS. Radiomics features were extracted from sagittal T2WI MR images and further selected by LASSO regression analysis. The radiomics score (Radscore) was calculated with logistic regression (LR) classifier. A nomogram integrating Radscore and selected clinical factors was also developed. The model performance was assessed with respect to discrimination, calibration and clinical usefulness. RESULTS: A total of 6 radiomics features and 1 clinical factor were selected for model construction. The Radscore was significantly associated with suspicious PAS in both the training (p < 0.001) and validation (p < 0.001) datasets. The AUC of the nomogram was also higher than that of the Radscore in the training dataset (0.891 vs. 0.803, p < 0.001) and validation dataset (0.897 vs. 0.780, p < 0.001), respectively. The calibration was good, and the decision curve analysis demonstrated the nomogram had higher net benefit than the Radscore. CONCLUSIONS: The T2WI MRI-based radiomics-clinical nomogram showed favorable diagnostic performance for predicting PAS in patients with PP, which could potentially facilitate the obstetricians for making clinical decisions.


Asunto(s)
Imagen por Resonancia Magnética , Nomogramas , Placenta Accreta , Placenta Previa , Humanos , Femenino , Placenta Accreta/diagnóstico por imagen , Embarazo , Placenta Previa/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Estudios Retrospectivos , Radiómica
6.
Ecotoxicol Environ Saf ; 270: 115861, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154153

RESUMEN

As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.


Asunto(s)
Clortetraciclina , Dípteros , Microbioma Gastrointestinal , Animales , Dípteros/fisiología , Larva , Antibacterianos/farmacología , Norfloxacino , Tilosina , Bacterias , Sulfametoxazol , Gentamicinas
7.
Biochem Genet ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667096

RESUMEN

Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.

8.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832484

RESUMEN

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Asunto(s)
Dípteros , Estiércol , Animales , Larva/genética , Estiércol/análisis , Pollos/genética , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Dípteros/genética , Bacterias , Farmacorresistencia Microbiana , Genes Bacterianos , Antibacterianos/farmacología
9.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108419

RESUMEN

The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Porcinos , Animales , Transcriptoma , ARN Largo no Codificante/genética , Condrocitos , MicroARNs/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica
10.
J Environ Manage ; 346: 118945, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717394

RESUMEN

Most fermentation waste filtrates can be used as raw materials for producing bio-fertilizers to reduce wastewater emissions and environmental pollution, but their bio-fertilizer utilization depends on the nutrients contained and their metabolized by functional microorganism. To achieve bio-fertilizer utilization of Acremonium terricola fermented waste filtrate, this study systematically explored the functional microbial species for making good use of waste liquid, optimized material process parameters for bio-fertilizer production based on D-optimal mixture design method, and analyzed the composition of the waste filtrate and its metabolism by functional microorganisms using a non-targeted LC-MS metagenomics technique. The results showed that Bacillus cereus was the functional microbial candidate for producing bio-fertilizer because of its more efficiently utilize the waste filtrate than other Bacillus sp. The optimal material process parameters of the liquid bio-fertilizer were the inoculum dose of 5% (v:v, %), 80% of waste filtrate, 0.25% of N, 3.5% of P2O5, 3.25% of K2O of mass percentage. Under these conditions, the colony forming unit (CFU) of Bacillus cereus could reach (1.59 ± 0.01) × 108 CFU/mL, which met the bio-fertilizer standard requirements of the People's Republic of China (NY/T798). Furthermore, the potential functions of bio-fertilizer were studied based on comparison of raw materials and production components: on the one hand, waste filtrate contained abundant of nitrogen and carbon sources, and bioactive substances secreted by Acremonium terricola, such as ß-alanyl-L-lysine, anserine, UMP, L-lactic acid and etc., which could meet the nutrient requirements of the growth of Bacillus cereus; On the other hand, some compounds of waste filtrate with the potential to benefit the plant growth and defense, such as betaine aldehyde, (2E,6E)-farnesol, homogentisic acid and etc., were significantly up regulated by Bacillus cereus utilization of the filtrate. To sum up, this work highlighted that the waste filtrate could be efficiently developed into liquid bio-fertilizer by Bacillus cereus.

11.
J Environ Manage ; 348: 119156, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37837764

RESUMEN

Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.


Asunto(s)
Celulasas , Dípteros , Animales , Larva , Estiércol , Pollos , Celulosa , Bacillus subtilis , Digestión
12.
Waste Manag Res ; 41(1): 81-97, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35730793

RESUMEN

The application of black soldier fly (BSF), Hermetia illucens based technology to process organic wastes presents a practical option for organic waste management by producing feed materials (protein, fat), biodiesel, chitin and biofertilizer. Therefore, BSF organic wastes recycling is a sustainable and cost-effective process that promotes resource recovery, and generates valuable products, thereby creating new economic opportunities for the industrial sector and entrepreneurs. Specifically, we discussed the significance of BSF larvae (BSFL) in the recycling of biowaste. Despite the fact that BSFL may consume a variety of wastes materials, whereas, certain lignocellulosic wastes, such as dairy manure, are deficient in nutrients, which might slow BSFL development. The nutritional value of larval feeding substrates may be improved by mixing in nutrient-rich substrates like chicken manure or soybean curd residue, for instance. Similarly, microbial fermentation may be used to digest lignocellulosic waste, releasing nutrients that are needed for the BSFL. In this mini-review, a thorough discussion has been conducted on the various waste biodegraded by the BSFL, their co-digestion and microbial fermentation of BSFL substrate, as well as the prospective applications and safety of the possible by-products that may be generated at the completion of the treatment process. Furthermore, this study examines the present gaps and challenges on the direction to the efficient application of BSF for waste management and the commercialization of its by-products.


Asunto(s)
Dípteros , Administración de Residuos , Animales , Estiércol , Larva , Residuos
13.
Small ; 18(49): e2204638, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310146

RESUMEN

Although tremendous progress has recently been made in quasi-2D perovskite light-emitting diodes (PeLEDs), the performance of red PeLEDs emitting at ≈650-660 nm, which have wide prospects for application in photodynamic therapy, is still limited by an inefficient energy transfer process between the quasi-2D perovskite layers. Herein, a symmetric molecule of 3,3'-(9H-fluorene-9,9-diyl)dipropanamide (FDPA) is designed and developed with two functional acylamino groups and incorporated into the quasi-2D perovskites as the additive for achieving high-performance red PeLEDs. It is demonstrated that the agent can simultaneously diminish the van der Waals gaps between individual perovskite layers and passivate uncoordinated Pb2+ related defects at the surface and grain boundaries of the quasi-2D perovskites, which truly results in an efficient energy transfer in the quasi-2D perovskite films. Consequently, the red PeLEDs emitting at 653 nm with a peak external quantum efficiency of 18.5% and a maximum luminance of 2545 cd m-2 are achieved, which is among the best performing red quasi-2D PeLEDs emitting at ≈650-660 nm. This work opens a way to further improve the electroluminescence performance of red PeLEDs.

14.
Protein Expr Purif ; 192: 106032, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34922007

RESUMEN

Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and ß-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Defensinas/química , Defensinas/farmacología , Dípteros/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Antibacterianos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Dípteros/química , Dípteros/clasificación , Dípteros/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Filogenia , Alineación de Secuencia
15.
Circ Res ; 127(4): e108-e125, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32392088

RESUMEN

RATIONALE: Doxorubicin is one of the most potent antitumor agents available; however, its clinical use is restricted because it poses a risk of severe cardiotoxicity. Previous work has established that CircITCH (circular RNA ITCH [E3 ubiquitin-protein ligase]) is a broad-spectrum tumor-suppressive circular RNA and that its host gene, ITCH (E3 ubiquitin protein ligase), is involved in doxorubicin-induced cardiotoxicity (DOXIC). Whether CircITCH plays a role in DOXIC remains unknown. OBJECTIVE: We aimed to dissect the role of CircITCH in DOXIC and further decipher its potential mechanisms. METHODS AND RESULTS: Circular RNA sequencing was performed to screen the potentially involved circRNAs in DOXI pathogenesis. Quantitative polymerase chain reaction and RNA in situ hybridization revealed that CircITCH was downregulated in doxorubicin-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in the autopsy specimens from cancer patients who suffered from doxorubicin-induced cardiomyopathy. Cell death/viability assays, detection of cardiomyocyte necrosis markers, microelectrode array, and cardiomyocyte functional assays revealed that CircITCH ameliorated doxorubicin-induced cardiomyocyte injury and dysfunction. Detection of cellular/mitochondrial oxidative stress and DNA damage markers verified that CircITCH alleviated cellular/mitochondrial oxidative stress and DNA damage induced by doxorubicin. RNA pull-down assays, Ago2 immunoprecipitation and double fluorescent in situ hybridization identified miR-330-5p as a direct target of CircITCH. Moreover, CircITCH was found to function by acting as an endogenous sponge that sequestered miR-330-5p. Bioinformatic analysis, luciferase reporter assays, and quantitative polymerase chain reaction showed that SIRT6 (sirtuin 6), BIRC5 (baculoviral IAP repeat containing 5, Survivin), and ATP2A2 (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, SERCA2a [SR Ca2+-ATPase 2]) were direct targets of miR-330-5p and that they were regulated by the CircITCH/miR-330-5p axis in DOXIC. Further experiments demonstrated that CircITCH-mediated alleviation of DOXIC was dependent on the interactions between miR-330-5p and the 3'-UTRs of SIRT6, BIRC5, and ATP2A2 mRNA. Finally, AAV9 (adeno-associated virus serotype 9) vector-based overexpression of the well-conserved CircITCH partly prevented DOXIC in mice. CONCLUSIONS: CircITCH represents a novel therapeutic target for DOXIC because it acts as a natural sponge of miR-330-5p, thereby upregulating SIRT6, Survivin and SERCA2a to alleviate doxorubicin-induced cardiomyocyte injury and dysfunction.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , MicroARNs/metabolismo , ARN Circular/fisiología , Proteínas Represoras/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sirtuinas/metabolismo , Survivin/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regiones no Traducidas 3'/genética , Adenovirus Humanos , Animales , Proteínas Argonautas/análisis , Sitios de Unión , Biomarcadores , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Cardiotoxicidad/terapia , Muerte Celular , Supervivencia Celular , Daño del ADN , Regulación hacia Abajo , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Inmunoprecipitación/métodos , Hibridación Fluorescente in Situ/métodos , Ratones , MicroARNs/genética , Mitocondrias Cardíacas/metabolismo , Mutación , Contracción Miocárdica/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necrosis , Estrés Oxidativo , ARN Circular/efectos de los fármacos , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Survivin/genética , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
16.
BMC Med Imaging ; 22(1): 221, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528577

RESUMEN

BACKGROUND: It is difficult to predict normal-sized lymph node metastasis (LNM) in cervical cancer clinically. We aimed to investigate the feasibility of using deep learning (DL) nomogram based on readout segmentation of long variable echo-trains diffusion weighted imaging (RESOLVE-DWI) and related patient information to preoperatively predict normal-sized LNM in patients with cervical cancer. METHODS: A dataset of MR images [RESOLVE-DWI and apparent diffusion coefficient (ADC)] and patient information (age, tumor size, International Federation of Gynecology and Obstetrics stage, ADC value and squamous cell carcinoma antigen level) of 169 patients with cervical cancer between November 2013 and January 2022 were retrospectively collected. The LNM status was determined by final histopathology. The collected studies were randomly divided into a development cohort (n = 126) and a test cohort (n = 43). A single-channel convolutional neural network (CNN) and a multi-channel CNN based on ResNeSt architectures were proposed for predicting normal-sized LNM from single or multi modalities of MR images, respectively. A DL nomogram was constructed by incorporating the clinical information and the multi-channel CNN. These models' performance was analyzed by the receiver operating characteristic analysis in the test cohort. RESULTS: Compared to the single-channel CNN model using RESOLVE-DWI and ADC respectively, the multi-channel CNN model that integrating both two MR modalities showed improved performance in development cohort [AUC 0.848; 95% confidence interval (CI) 0.774-0.906] and test cohort (AUC 0.767; 95% CI 0.613-0.882). The DL nomogram showed the best performance in development cohort (AUC 0.890; 95% CI 0.821-0.938) and test cohort (AUC 0.844; 95% CI 0.701-0.936). CONCLUSION: The DL nomogram incorporating RESOLVE-DWI and clinical information has the potential to preoperatively predict normal-sized LNM of cervical cancer.


Asunto(s)
Aprendizaje Profundo , Neoplasias del Cuello Uterino , Femenino , Humanos , Metástasis Linfática/diagnóstico por imagen , Nomogramas , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Estudios Retrospectivos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología
17.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409172

RESUMEN

Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from -2300 bp to -1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.


Asunto(s)
Escherichia coli , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Escherichia coli/metabolismo , Humanos , Inflamación/genética , Inflamación/patología , FN-kappa B/metabolismo , Factores de Transcripción NFI/metabolismo , Transducción de Señal/fisiología
18.
FASEB J ; 34(8): 10835-10849, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592441

RESUMEN

Exposure to microgravity results in vascular remodeling and cardiovascular dysfunction. To elucidate the mechanism involved in this condition, we investigated whether endoplasmic reticulum (ER) stress during simulated microgravity induced endothelial inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs). Microgravity was simulated by clinorotation in the current study. We examined markers of ER stress, inducible nitric oxide (NO) synthase (iNOS)/NO content, proinflammatory cytokine production, nuclear factor kappa B (NF-κB)/IκB signaling, NLRP3 inflammasome, and detected apoptosis in HUVECs. We found that the levels of C/EBP homologous protein and glucose-regulated protein 78, pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1ß), and iNOS/NO content were upregulated by clinorotation. ER stress inhibition with tauroursodeoxycholic acid or 4-phenylbutyric acid and iNOS inhibition with 1400 W dramatically suppressed activation of the NF-κB/IκB pathway and the NLRP3 inflammasome, and decreased the production of pro-inflammatory cytokines. The increase of apoptosis in HUVECs during clinorotation was significantly suppressed by inhibiting ER stress, iNOS activity, NF-κB/IκB, and the NLRP3 inflammasome signaling pathway. Therefore, simulated microgravity causes ER stress in HUVECs, and subsequently activates iNOS/NO-NF-κB/IκB and the NLRP3 inflammasome signaling pathway, which have key roles in the induction of endothelial inflammation and apoptosis.


Asunto(s)
Apoptosis/fisiología , Estrés del Retículo Endoplásmico/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/fisiología , Línea Celular , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/patología , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ingravidez
19.
Plant Dis ; 105(8): 2169-2176, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33258435

RESUMEN

Meloidogyne incognita causes large-scale losses of agricultural crops worldwide. The natural metabolite furfural acetone has been reported to attract and kill M. incognita, but whether the attractant and nematicidal activities of furfural acetone on M. incognita function simultaneously in the same system, especially in three-dimensional spaces or in soil, is still unknown. Here, we used 23% Pluronic F-127 gel and a soil simulation device to demonstrate that furfural acetone has a significant attract-and-kill effect on M. incognita in both three-dimensional model systems. At 24 h, the chemotaxis index and the corrected mortality of nematodes exposed to 60 mg/ml of furfural acetone in 23% Pluronic F-127 gel were as high as 0.82 and 74.44%, respectively. Soil simulation experiments in moist sand showed that at 48 h, the chemotaxis index and the corrected mortality of the nematode toward furfural acetone reached 0.63 and 82.12%, respectively, and the effect persisted in the presence of tomato plants. In choice experiments, nematodes selected furfural acetone over plant roots and were subsequently killed. In pot studies, furfural acetone had a control rate of 82.80% against M. incognita. Collectively, these results provide compelling evidence for further investigation of furfural acetone as a novel nematode control agent.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Acetona , Animales , Antinematodos/farmacología , Furaldehído
20.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011333

RESUMEN

Plant-parasitic nematodes cause severe losses to crop production and economies all over the world. Bacillus aryabhattai MCCC 1K02966, a deep-sea bacterium, was obtained from the Southwest Indian Ocean and showed nematicidal and fumigant activities against Meloidogyne incognita in vitro. The nematicidal volatile organic compounds (VOCs) from the fermentation broth of B. aryabhattai MCCC 1K02966 were investigated further using solid-phase microextraction gas chromatography-mass spectrometry. Four VOCs, namely, pentane, 1-butanol, methyl thioacetate, and dimethyl disulfide, were identified in the fermentation broth. Among these VOCs, methyl thioacetate exhibited multiple nematicidal activities, including contact nematicidal, fumigant, and repellent activities against M. incognita. Methyl thioacetate showed a significant contact nematicidal activity with 87.90% mortality at 0.01 mg/mL by 72 h, fumigant activity in mortality 91.10% at 1 mg/mL by 48 h, and repellent activity at 0.01-10 mg/mL. In addition, methyl thioacetate exhibited 80-100% egg-hatching inhibition on the 7th day over the range of 0.5 mg/mL to 5 mg/mL. These results showed that methyl thioacetate from MCCC 1K02966 control M. incognita with multiple nematicidal modes and can be used as a potential biological control agent.


Asunto(s)
Bacillus/metabolismo , Tylenchoidea/efectos de los fármacos , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología , Animales , Antinematodos/química , Antinematodos/farmacología , Organismos Acuáticos , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Parasitaria , Compuestos Orgánicos Volátiles/análisis , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA