Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2216942120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812698

RESUMEN

The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.


Asunto(s)
Lóbulo Parietal , Percepción Visual , Humanos , Percepción Visual/fisiología , Lóbulo Parietal/fisiología , Atención/fisiología , Encéfalo , Cognición
2.
Cereb Cortex ; 32(24): 5503-5511, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35165684

RESUMEN

The human brain can efficiently process action-related visual information, which supports our ability to quickly understand and learn others' actions. The visual information of goal-directed action is extensively represented in the parietal and frontal cortex, but how actions and goal-objects are represented within this neural network is not fully understood. Specifically, which part of this dorsal network represents the identity of goal-objects? Is such goal-object information encoded at an abstract level or highly interactive with action representations? Here, we used functional magnetic resonance imaging with a large number of participants (n = 94) to investigate the neural representation of goal-objects and actions when participants viewed goal-directed action videos. Our results showed that the goal-directed action information could be decoded across much of the dorsal pathway, but in contrast, the invariant goal-object information independent of action was mainly localized in the early stage of dorsal pathway in parietal cortex rather than the down-stream areas of the parieto-frontal cortex. These results help us to understand the relationship between action and goal-object representations in the dorsal pathway, and the evolution of interactive representation of goal-objects and actions along the dorsal pathway during goal-directed action observation.


Asunto(s)
Mapeo Encefálico , Lóbulo Parietal , Humanos , Mapeo Encefálico/métodos , Lóbulo Parietal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
3.
J Cogn Neurosci ; 30(7): 973-984, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29561239

RESUMEN

Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.


Asunto(s)
Mapeo Encefálico , Discriminación en Psicología/fisiología , Lateralidad Funcional , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Competencia Profesional , Lóbulo Temporal/diagnóstico por imagen , Adulto , Automóviles , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Oxígeno/sangre , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Adulto Joven
4.
J Neurosci ; 35(4): 1539-48, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632131

RESUMEN

Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing. This finding, together with evidence showing impairments downstream from the right FFA in DP individuals, has led some to argue that perhaps the right FFA is largely intact in DP individuals. Using fMRI multivoxel pattern analysis, here we report the discovery of a neural impairment in the right FFA of DP individuals that may play a critical role in mediating their face-processing deficits. In seven individuals with DP, we discovered that, despite the right FFA's preference for faces and it showing decoding for the different face parts, it exhibited impaired face configural decoding and did not contain distinct neural response patterns for the intact and the scrambled face configurations. This abnormality was not present throughout the ventral visual cortex, as normal neural decoding was found in an adjacent object-processing region. To our knowledge, this is the first direct neural evidence showing impaired face configural processing in the right FFA in individuals with DP. The discovery of this neural impairment provides a new clue to our understanding of the neural basis of DP.


Asunto(s)
Cara , Lateralidad Funcional , Reconocimiento Visual de Modelos/fisiología , Prosopagnosia/patología , Prosopagnosia/fisiopatología , Corteza Visual/patología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Corteza Visual/irrigación sanguínea
5.
J Exp Psychol Gen ; 153(1): 26-37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37707471

RESUMEN

Recent behavioral and neural imaging studies revealed a rhythmic sampling in the theta-band (3-8 Hz) of attention. Such observation indicates that visual attention sequentially visits attended locations rapidly and periodically to cover multiple spatial locations, which is believed driven by a general sampling mechanism with a sampling rate invariant to the number of targets. However, a general sampling mechanism with a fixed rate would lead to the consequence that it would take longer time for attention to revisit the same item when attention needs to cover more items, which could impair perceptual continuity. It is unclear whether and how the attentional sampling mechanism can flexibly adapt to varying task demand to balance between covering more items and maintaining stable perception. Here with five behavioral experiments, we investigated how the sequential sampling mechanism adapts to the need of attending to from one to four locations. With state-of-the-art analysis methods, results show clear evidence of sequential sampling in attending to multiple locations, that both theta-band oscillations and phase-shift among different locations were observed in the behavioral performance. At each location, the oscillation period increased when the attended locations increased from one to three, maintaining a relatively stable attention-dwelling time at each location. Critically, oscillation period remained essentially the same from three to four, suggesting a flexible task-driven acceleration of attentional sampling to keep the revisiting duration within a reasonable range. Thus, our results reveal that the generally stable rhythmic attention mechanism could flexibly adjust its sampling rate to accommodate increased attentional demands. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Percepción Visual , Humanos , Tiempo de Reacción
6.
Micromachines (Basel) ; 14(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677217

RESUMEN

Thermoelectric cells (TEC) directly convert heat into electricity via the Seebeck effect. Known as one TEC, thermogalvanic hydrogels are promising for harvesting low-grade thermal energy for sustainable energy production. In recent years, research on thermogalvanic hydrogels has increased dramatically due to their capacity to continuously convert heat into electricity with or without consuming the material. Until recently, the commercial viability of thermogalvanic hydrogels was limited by their low power output and the difficulty of packaging. In this review, we summarize the advances in electrode materials, redox pairs, polymer network integration approaches, and applications of thermogalvanic hydrogels. Then, we highlight the key challenges, that is, low-cost preparation, high thermoelectric power, long-time stable operation of thermogalvanic hydrogels, and broader applications in heat harvesting and thermoelectric sensing.

7.
J Neurosci ; 31(28): 10323-30, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21753009

RESUMEN

Interest has increased recently in correlations across brain regions in the resting-state fMRI blood oxygen level-dependent (BOLD) response, but little is known about the functional significance of these correlations. Here we directly test the behavioral relevance of the resting-state correlation between two face-selective regions in human brain, the occipital face area (OFA) and the fusiform face area (FFA). We found that the magnitude of the resting-state correlation, henceforth called functional connectivity (FC), between OFA and FFA correlates with an individual's performance on a number of face-processing tasks, not non-face tasks. Further, we found that the behavioral significance of the OFA/FFA FC is independent of the functional activation and the anatomical size of either the OFA or FFA, suggesting that face processing depends not only on the functionality of individual face-selective regions, but also on the synchronized spontaneous neural activity between them. Together, these findings provide strong evidence that the functional correlations in the BOLD response observed at rest reveal functionally significant properties of cortical processing.


Asunto(s)
Neuronas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adolescente , Mapeo Encefálico , Cara , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Adulto Joven
8.
Elife ; 102021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964711

RESUMEN

Regions sensitive to specific object categories as well as organized spatial patterns sensitive to different features have been found across the whole ventral temporal cortex (VTC). However, it is unclear that within each object category region, how specific feature representations are organized to support object identification. Would object features, such as object parts, be represented in fine-scale spatial tuning within object category-specific regions? Here, we used high-field 7T fMRI to examine the spatial tuning to different face parts within each face-selective region. Our results show consistent spatial tuning of face parts across individuals that within right posterior fusiform face area (pFFA) and right occipital face area (OFA), the posterior portion of each region was biased to eyes, while the anterior portion was biased to mouth and chin stimuli. Our results demonstrate that within the occipital and fusiform face processing regions, there exist systematic spatial tuning to different face parts that support further computation combining them.


Asunto(s)
Mapeo Encefálico , Reconocimiento Facial/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Lóbulo Temporal/fisiología
9.
Med Oncol ; 31(11): 245, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25304007

RESUMEN

XRCC2 is an essential part of the homologous recombination repair pathway. However, relatively little is known about the effect of XRCC2 gene C41657T and G4234C polymorphisms on the individual susceptibility to colorectal cancer (CRC). The purpose of this study was to investigate the association between XRCC2 gene C41657T and G4234C polymorphisms and CRC and to explore the relationship among the polymorphisms and clinicopathologic parameters and protein expression levels of XRCC2. A hospital-based case-control study was conducted with 246 CRC cases and 262 healthy controls. The genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. XRCC2 protein was analyzed by immunohistochemistry for the paraffin sections of 120 CRC cases. The study data showed that the C41657T genotypes were associated with the risk of CRC. The CT/TT genotypes and T allele were overrepresented among the CRC cases. Compared with CC, CT/TT enhanced the risk of CRC (odds ratio = 1.646, 95 % confidence interval = 1.127-2.404, P = 0.010). XRCC2 protein expression of CRC patients with CT/TT genotypes was significantly higher than that of the patients with CC genotype (χ (2) = 4.887, P = 0.027). XRCC2 gene G4234C polymorphisms have no relevance to the risk of CRC. Our findings suggest that XRCC2 C41657T polymorphism may adjust the XRCC2 expression and might influence susceptibility of CRC.


Asunto(s)
Pueblo Asiatico/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
PLoS One ; 7(7): e40390, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792301

RESUMEN

Numerous studies with functional magnetic resonance imaging have shown that the fusiform face area (FFA) in the human brain plays a key role in face perception. Recent studies have found that both the featural information of faces (e.g., eyes, nose, and mouth) and the configural information of faces (i.e., spatial relation among features) are encoded in the FFA. However, little is known about whether the featural information is encoded independent of or combined with the configural information in the FFA. Here we used multi-voxel pattern analysis to examine holistic representation of faces in the FFA by correlating spatial patterns of activation with behavioral performance in discriminating face parts with face configurations either present or absent. Behaviorally, the absence of face configurations (versus presence) impaired discrimination of face parts, suggesting a holistic representation in the brain. Neurally, spatial patterns of activation in the FFA were more similar among correct than incorrect trials only when face parts were presented in a veridical face configuration. In contrast, spatial patterns of activation in the occipital face area, as well as the object-selective lateral occipital complex, were more similar among correct than incorrect trials regardless of the presence of veridical face configurations. This finding suggests that in the FFA faces are represented not on the basis of individual parts but in terms of the whole that emerges from the parts.


Asunto(s)
Encéfalo/fisiología , Reconocimiento Visual de Modelos , Adulto , Análisis de Varianza , Mapeo Encefálico/métodos , Cara/anatomía & histología , Cara/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA