Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581688

RESUMEN

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Asunto(s)
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiología , Glycine max/genética , Glycine max/crecimiento & desarrollo , Zea mays/fisiología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Flores/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Productos Agrícolas/crecimiento & desarrollo
2.
Am J Pathol ; 193(4): 442-455, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681189

RESUMEN

Breast cancer is the leading cause of cancer death in women. The physiological functions of N6-methyladenosine methylation in cancer have been the focus of studies in recent years. Herein, four data sets (GSE70947, GSE45827, GSE42586, and The Cancer Genome Atlas Breast Cancer) were analyzed to confirm the differentially expressed N6-methyladenosine genes. YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2) was found to be highly expressed in breast cancer tissues and cells. In vitro, YTHDF2 affects cell proliferation, cell cycle, and invasive ability. Tumorigenesis in xenograft nude mice confirmed that YTHDF2 interference reduced the tumor formation ability of cancer cells. Pearson correlation analysis demonstrated a positive correlation between YTHDF2 and lysine-specific histone demethylase 1A (KDM1A) expression. An online tool, Sequence-based RNA Adenosine Methylation Site Predictor (SRAMP), predicted eight methylation sites in the KDM1A mRNA sequence. The expression of KDM1A was dramatically increased in breast cancer tissues and cells. Down-regulation of YTHDF2 reduced KDM1A expression and the methylation level of KDM1A mRNA. YTHDF2 interference promoted the degradation of KDM1A mRNA, which suggested an interaction between YTHDF2 and KDM1A. KDM1A interference altered cell proliferation, cell cycle, and invasive ability, whereas YTHDF2 overexpression rescued KDM1A interference-induced cell phenotypic changes. In conclusion, YTHDF2 promotes breast cancer cell growth and cell cycle progression by facilitating KDM1A mRNA stability. This study provides new therapeutic targets for breast cancer treatment in the future.


Asunto(s)
Neoplasias de la Mama , Factores de Transcripción , Animales , Ratones , Humanos , Femenino , Ratones Desnudos , Proliferación Celular , Factores de Transcripción/metabolismo , Ciclo Celular/genética , Neoplasias de la Mama/genética , ARN Mensajero/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Biochem Biophys Res Commun ; 665: 55-63, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37148745

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype with poor prognoses and limited therapeutic options. The TATA-box binding protein associated factor 1 (TAF1) is an essential protein involved in the transcriptional regulation of cancer development and progress. However, the therapeutic potential and underlying mechanism of targeting TAF1 in TNBC remain unknown. Here, using chemical probe BAY-299, we identify that TAF1 inhibition leads to the induction of endogenous retrovirus (ERVs) expression and double-stranded RNA (dsRNA) formation, resulting in the activation of interferon responses and cell growth suppression in a subset of TNBC, resembling anti-viral mimicry effect. This correlation between TAF1 and interferon signature was validated in three independent breast cancer patient datasets. Furthermore, we observe heterogeneous responses to TAF1 inhibition across a set of TNBC cell lines. By integrating transcriptome and proteome data, we demonstrate that high levels of proliferating cell nuclear antigen (PCNA) protein serve as a predictive biomarker associated with suppressive tumor immune responses in various cancers, which may limit the efficiency of TAF1 inhibition.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Interferones/farmacología , Transcriptoma , Neoplasias de la Mama Triple Negativas/patología
4.
Hum Mol Genet ; 29(11): 1784-1796, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31261376

RESUMEN

The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Acetylcholine receptors (AChRs) are restricted at the synaptic region for proper neurotransmission. Mutations in the mitochondrial CHCHD10 protein have been identified in multiple neuromuscular disorders; however, the physiological roles of CHCHD10 at NMJs remain elusive. Here, we report that CHCHD10 is highly expressed at the postsynapse of NMJs in skeletal muscles. Muscle conditional knockout CHCHD10 mice showed motor defects, abnormal neuromuscular transmission and NMJ structure. Mechanistically, we found that mitochondrial CHCHD10 is required for ATP production, which facilitates AChR expression and promotes agrin-induced AChR clustering. Importantly, ATP could effectively rescue the reduction of AChR clusters in the CHCHD10-ablated muscles. Our study elucidates a novel physiological role of CHCHD10 at the peripheral synapse. It suggests that mitochondria dysfunction contributes to neuromuscular pathogenesis.


Asunto(s)
Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Enfermedades de la Unión Neuromuscular/genética , Receptores Colinérgicos/genética , Agrina/farmacología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/genética , Sinapsis/genética , Transmisión Sináptica/genética
5.
J Appl Microbiol ; 133(2): 1014-1026, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543360

RESUMEN

AIMS: The altered faecal metabolites and microbiota might be involved in the development of breast cancer. We aimed to investigate the effect of differential metabolites on the proliferative activity of breast cancer cells. METHODS AND RESULTS: We collected faecal samples from 14 breast cancer patients and 14 healthy subjects. Untargeted metabolomics analysis, short-chain fatty acid (SCFA) targeted analysis, and 16S rDNA sequencing was performed. The gut metabolite composition of patients changed significantly. Levels of norvaline, glucuronate and galacturonate were lower in the cancer group than in the Control (p < 0.05). 4-Methylcatechol and guaiacol increased (p < 0.05). Acetic acid and butyric acid were lower in the cancer group than in the control group (p < 0.05). Isobutyric acid and pentanoic acid were higher in the cancer group than in the control (p < 0.05). In the genus, the abundance of Rothia and Actinomyces increased in the cancer group, compared with the control group (p < 0.05). The differential microbiotas were clearly associated with differential metabolites but weakly with SCFAs. The abundance of Rothia and Actinomyces was markedly positively correlated with 4-methylcatechol and guaiacol (p < 0.05) and negatively correlated with norvaline (p < 0.05). L-norvaline inhibited the content of Arg-1 in a concentration-dependent manner. Compared with the L-norvaline or doxorubicin hydrochloride (DOX) group, the proliferation abilities of 4 T1 cells were the lowest in the L-norvaline combined with DOX (p < 0.05). The apoptosis rate increased (p < 0.05). CONCLUSIONS: Faecal metabolites and microbiota were significantly altered in breast cancer. Levels of differential metabolites (i.e. Norvaline) were significantly correlated with the abundance of differential microbiota. L-norvaline combined with DOX could clearly inhibit the proliferation activity of breast cancer cells. SIGNIFICANCE AND IMPACT OF STUDY: This might provide clues to uncover potential biomarkers for breast cancer diagnosis and treatment.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Microbiota , Ácido Butírico/farmacología , Proliferación Celular , Heces , Femenino , Guayacol/farmacología , Humanos , Metaboloma , Valina/análogos & derivados
6.
Anim Biotechnol ; : 1-8, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448652

RESUMEN

The biological clock (also known as circadian clock) is closely related to growth and development, metabolism, and diseases in animals. As a part of the circadian clock, the cryptochrome circadian regulator 1 (CRY1) gene is involved in the regulation of biological processes such as osteogenesis, energy metabolism and cell proliferation, however, few studies have been reported on the relationship between this gene and animal carcass traits. Herein, a total of four insertion/deletion (InDel) loci within the CRY1 gene were detected in Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 433). Among them, the P1-6-bp-del locus was polymorphic in population of interest. Moreover, the P1-6-bp-del locus showed two genotypes, with a higher insertion/insertion (II) genotype frequency (0.751) than insertion/deletion (ID) genotype frequency (0.249). Correlation analysis showed that the P1-6-bp-del locus polymorphisms were significantly associated with twenty carcass traits (e.g., slaughter weight, limb weight, and belly meat weight). Individuals with II genotype were significantly better than those with ID genotype for eighteen carcass traits. Therefore, the P1-6-bp-del locus of the CRY1 gene can be used as a molecular marker for beef cattle breeding.

7.
Genomics ; 113(1 Pt 1): 398-410, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301895

RESUMEN

Breast cancer is the most frequently diagnosed and the leading cause of cancer-related deaths in women worldwide. However, the role of circSLC8A1 in breast cancer remains elusive. Herein, a cohort of 77 breast tumors and paired adjacent normal mammary tissues were collected. We demonstrated that circSLC8A1 was significantly down-regulated in breast cancer tissues and cell lines, of which expression was negatively correlated with clinical severity and dismal prognosis. Overexpression of circSLC8A1 suppressed cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. CircSLC8A1 directly targeted miR-671 to execute tumor suppressive activities via regulating PI3k/Akt signaling. Krüppel-like factor 16 (KLF16), a transcriptional activator of PTEN, was identified as a target of miR-671. Furthermore, circSLC8A1 could sponge miR-671 to suppress breast tumor growth via PTEN/PI3k/Akt signaling in vivo. In summary, circSLC8A1/miR-671 regulates breast cancer progression through PTEN/PI3k/Akt signaling, which may provide efficient therapeutic target for this devastating cancer.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Circular/genética , Intercambiador de Sodio-Calcio/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Línea Celular , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Células MCF-7 , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/metabolismo , Transducción de Señal
8.
FASEB J ; 34(9): 12009-12023, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687671

RESUMEN

Neuromuscular junctions (NMJs) are peripheral synapses between motoneurons and skeletal muscle fibers that are critical for the control of muscle contraction. Dysfunction of these synapses has been implicated in congenital myasthenic syndrome (CMS). In vertebrates, agrin-LRP4-MuSK signaling plays a critical role in acetylcholine receptor (AChR) clustering and NMJ formation. The adaptor protein DOK7 is the downstream substrate of MuSK and also a cytoplasmic activator of MuSK. The role of DOK7 in the promotion of AChR clustering and the mechanisms involved have been well studied; however, the negative regulation of DOK7 after MuSK activation remains unknown. Anaphase-promoting complex 2 (APC2), the core subunit of APC/C E3 ligase complex, was originally believed to regulate cell-cycle transitions. Here, we show that APC2 is enriched at post-synapse of NMJs in postmitotic myotubes. In response to agrin stimulation, APC2 negatively regulates AChR clustering by promoting the ubiquitination of DOK7 at lysine 243 for its proteolytic degradation, which relies on MuSK kinase activity and the phosphorylation of tyrosine 106 in DOK7. Thus, this study provides a mechanism whereby agrin signaling is negatively regulated as part of vertebrate NMJ homeostasis.


Asunto(s)
Agrina/metabolismo , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteolisis , Transducción de Señal , Ubiquitinación , Agrina/genética , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclo Celular , Línea Celular , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/genética
9.
J Cell Biochem ; 121(10): 4176-4187, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31922280

RESUMEN

Triple-negative breast cancer (TNBC) is one of the malignant type of breast cancer. Previous study indicated that long noncoding RNA (lncRNA) ZEB1-AS1 was associated with the progression of several cancers. However, its underlying molecular mechanism in TNBC remains to be elucidated. In this study, ZEB1-AS1 expression was boosted in TNBC tissues and cell lines according to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Inhibition of ZEB1-AS1 suppressed cell proliferation, migration, invasion, and promoted cell apoptosis in TNBC. Moreover, ZEB1-AS1 positively regulated ZEB1 expression. RT-qPCR disclosed ZEB1 expression was elevated in TNBC tissues and ZEB1 silence blocked TNBC progression. RNA pull-down and RNA immunoprecipitation assays revealed ZEB1-AS1 and ZEB1 both could bind with ELAVL1. ZEB1-AS1 maintained ZEB1 messenger RNA (mRNA) stability by binding with ELAVL1. In addition chromatin, immunoprecipitation and luciferase reporter assays confirmed that ZEB1 could bind with ZEB1-AS1 promoter and promoted ZEB1-AS1 expression. Rescue assays manifested ZEB1 overexpression could abolish the inhibitory effect caused by ZEB1-AS1 inhibition on TNBC progression. To sum up, ZEB1 induced-upregulation of ZEB1-AS1 maintained the stability of ZEB1 mRNA by binding with ELAVL1, which formed a feedback loop to facilitate TNBC progression. These findings might provide a new target for TNBC treatment.


Asunto(s)
Progresión de la Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Estabilidad del ARN/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/química , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Proteína 1 Similar a ELAV/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Transducción de Señal/genética , Transfección , Neoplasias de la Mama Triple Negativas/cirugía , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
10.
Cancer Cell Int ; 20: 508, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088216

RESUMEN

BACKGROUND: As an aggressive subtype of breast cancer with a high risk of recurrence, triple-negative breast cancer (TNBC) lacks available treatment targets. LncRNA MIR100HG promotes cell proliferation in TNBC. However, few studies have investigated the molecular mechanism of MIR100HG in TNBC. Thus, additional in-depth investigations are needed to unravel its associated regulatory mechanism. METHODS: MIR100HG and miR-5590-3p expression in TNBC tissue samples and cell lines was detected by RT-qPCR. Flow cytometry, transwell, wound-healing, CCK8 and colony formation assays were performed to analyse cell apoptosis, cell cycle, invasion, migration and proliferation. The protein expression of orthodenticle homeobox 1 (OTX1) and proteins in the ERK/MAPK signalling pathway were assessed by western blot analysis. Bioinformatics and luciferase assay were performed to predict and validate the interaction between MIR100HG and miR-5590-3p as well as OTX1 and miR-5590-3p. RNA immunoprecipitation (RIP) was used to detect the interaction between MIR100HG and miR-5590-3p. Subcutaneous tumour growth was observed in nude mice. Immunohistochemistry (IHC) analysis was used to assess OTX1 expression in tumour tissues. RESULTS: MIR100HG expression was upregulated, whereas that of miR-5590-3p was downregulated in TNBC. MIR100HG was shown to directly interact with miR-5590-3p. Furthermore, MIR100HG knockdown could promote TNBC cell apoptosis and cell cycle arrest in G0/G1 phase while inhibiting migration, invasion and proliferation. Furthermore, miR-5590-3p inhibition showed the opposite results and could reverse the effect of MIR100HG knockdown in TNBC cells. MiR-5590-3p downregulated the ERK/MAPK signalling pathway, suppressed the migration, invasion and proliferation of TNBC cells and promoted their apoptosis and cell cycle arrest in G0/G1 phase by targeting OTX1. In addition, MIR100HG knockdown inhibited OTX1 expression by upregulating miR-5590-3p in vivo, thereby inhibiting tumour growth. CONCLUSIONS: MIR100HG promotes the progression of TNBC by sponging miR-5590-3p, thereby upregulating OTX1, suggesting a new potential treatment target for TNBC.

11.
J Cell Biochem ; 119(1): 896-908, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28671278

RESUMEN

Chemotherapy is one of the standard strategies for treatment of breast cancer. Adriamycin (Dox) is a first-line chemotherapy agent for breast cancer. However, the gastrointestinal reactions, myocardial toxicity and other side effects caused by Dox due to its un-specific cytotoxicity limit the clinical treatment effect. To address this need, aptamer has been regarded as an ideal target molecular carrier. In the present study, we selected an aptamer 5TR1 that can specifically bind to the MUC1 protein which has been regarded as an important tumor biomarker, as well as a potential target in anticancer therapies. Dox was loaded on the modified 5TR1-GC, which specifically targets breast cancer cell MDA-MB-231. Cell viability and apoptosis assays demonstrated that the 5TR1-GC-Dox exhibited target specificity of cytotoxicity in MDA-MB-231. Moreover, in vivo xenograft study also confirmed that 5TR1-GC-Dox had a more effective effect on tumor growth inhibition and induced the apoptosis of malignant tumor cells compared to Dox. We provided a novel experimental and theoretical basis for developing an aptamer targeted drug system, thus to promote the killing effect of drugs on breast cells and to reduce the damage to normal cells and tissues for breast cancer.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Doxorrubicina/administración & dosificación , Mucina-1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Physiol Biochem ; 47(5): 2147-2158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975921

RESUMEN

BACKGROUND/AIMS: Triple negative breast cancer (TNBC) is resistant to conventional chemotherapy due to high proportions of cancer stem cells (CSCs). The aim of this study is to unravel the miR-137-mediated regulatory mechanism of B-cell lymphoma/leukemia 11A (BCL11A) in TNBC. METHODS: A corhort of 34 TNBC tumor tissues and paired adjacent normal tissues, as well as 25 non-TNBC tumor tissues and paired adjacent normal tissues were collected post-operatively from patients with breast cancer. Q-PCR was performed to determine the mRNA levels of miR-137 and BCL11A in breast tissues and cell lines. Bioinformatics analysis and dual luciferase reporter assay were used to verify the direct interaction between miR-137 and BCL11A. After up-/down-regulation of BCL11A, miR-137, or DNMT1 via lentiviral transduction in TNBC cell lines SUM149 and MDA-MB-231 cells, Q-PCR and Western blot assays were used to detect the expression levels of BCL11A, DNA methyltransferases 1 (DNMT1), and Islet-1 (ISL1). Mammosphere assay was conducted to assess tumorosphere formation ability of cells, coupled with flow cytometry to determine the percentage of breast cancer stem cells. Co-immunoprecipitation assay was used to determine the interaction between BCL11A and DNMT1. Xenograft tumorigenesis assay was performed to monitor tumor formation in vivo. RESULTS: BCL11A was highly expressed in TNBC, whereas miR-137 was significantly lower in both TNBC tissues and cell lines. miR-137 suppressed BCL11A expression at both mRNA and protein levels by directly targeting its 3'UTR. In both SUM149 and MDA-MB-231 cells, overexpression of miR-137 or knockdown of BCL11A reduced the number of tumoroshperes and the percentage of cancer stem cells in vitro, and inhibited tumor development in vivo. Furthermore, BCL11A interacted with DNMT1 in TNBC cells. Silencing of either BCL11A or DNMT1 impaired cancer stemness and tumorigenesis of TNBC via suppressing ISL1 expression both in vitro, and in vivo. CONCLUSIONS: By perturbing BCL11A-DNMT1 interaction, miR-137 impairs cancer stemness and suppresses tumor development in TNBC.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , ARN Neoplásico/metabolismo , Proteínas Portadoras/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Femenino , Humanos , Células MCF-7 , MicroARNs/genética , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Proteínas Nucleares/genética , ARN Neoplásico/genética , Proteínas Represoras , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
13.
Arch Environ Contam Toxicol ; 73(4): 593-606, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28756463

RESUMEN

To evaluate intensively the quality of the sediments contaminated by heavy metals and metalloids in the Xiangjiang River, 52 surface sediment samples were collected at 13 sites and different combinations of empirical and theoretical sediment quality indexes, the consensus-based sediment quality guidelines, sediment toxicity degree, and equilibrium partitioning method were applied. The average contents of Cd, Pb, Cu, Zn, Hg, Cr, and As in the sampled surface sediments were significantly higher than the background values of trace elements in soils of Hunan Province, China. Moreover, speciation fraction analyses revealed that Cd, Hg, and Pb in the sediments were dominated by the more bioavailable organic or exchangeable fractions, whereas the major species of As and Cr were the less bioavailable residual fractions after strong acid treatment. In addition, all indexes showed that these metals posed a median-high degree of toxic risk to benthic organisms in sediments from nearly all of the sampling sites along the Xiangjiang River. Cd, followed by Cu and Pb, erected the most severe ecological risk. Pearson correlation and linear regression analyses between the mean PEC quotients, sediment toxicity degree, interstitial water criteria toxic units, and sediment pollution index showed that these indexes were relatively consistent to assess the quality of sediments contaminated by heavy metals and metalloids in the Xiangjiang River. Our results will facilitate the proposal of proper sediment quality guidelines for the Xiangjiang River.


Asunto(s)
Monitoreo del Ambiente , Metaloides/análisis , Metales/análisis , Contaminantes Químicos del Agua/análisis , China , Ríos
14.
Proc Natl Acad Sci U S A ; 110(20): 7998-8003, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630258

RESUMEN

Nanotechnology has allowed the construction of various nanostructures for applications, including biomedicine. However, a simple target-specific, economical, and biocompatible drug delivery platform with high maximum tolerated doses is still in demand. Here, we report aptamer-tethered DNA nanotrains (aptNTrs) as carriers for targeted drug transport in cancer therapy. Long aptNTrs were self-assembled from only two short DNA upon initiation by modified aptamers, which worked like locomotives guiding nanotrains toward target cancer cells. Meanwhile, tandem "boxcars" served as carriers with high payload capacity of drugs that were transported to target cells and induced selective cytotoxicity. aptNTrs enhanced maximum tolerated dose in nontarget cells. Potent antitumor efficacy and reduced side effects of drugs delivered by biocompatible aptNTrs were demonstrated in a mouse xenograft tumor model. Moreover, fluorophores on nanotrains and drug fluorescence dequenching upon release allowed intracellular signaling of nanotrains and drugs. These results make aptNTrs a promising targeted drug transport platform for cancer theranostics.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/química , Nanomedicina/métodos , Neoplasias/terapia , Animales , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Citometría de Flujo/métodos , Humanos , Ratones , Ratones SCID , Nanocompuestos/química , Neoplasias/metabolismo , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Breast Cancer Res Treat ; 151(2): 405-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25956059

RESUMEN

To investigate the relationship between chemotherapy dose intensity and therapy efficacy of different molecular subtypes. Clinical and pathological features of the patients with breast cancer were retreived from the hospital records. 315 patients were analyzed (251 showed clinical response, 38 acquired pCR). Patients with positive ER status, negative PR status, higher Ki67 level and higher RTDI had better therapy response. 13.5 and 84.5 % were identified the benchmark of Ki67 and RTDI, respectively. As the result of interior-subgroup comparison, luminal subgroups acquired better response rate when RTDI ≥ 84.5 %. In patients of luminal breast cancer, tumor size change arose from increasing of dose intensity and finally showed reached a plateau after RTDI ≥ 95 % (r (2) = 0.303, p < 0.001). As the result of intersubgroup comparison, TNBC patients were more likely to acquired better clinical and pathology response when RDTI < 84.5 %. Ki67 change arose sharply from increasing of dose intensity when RDTI < 84.5 % (r (2) = 0.656, p < 0.001), whereas the regression curve showed a terminal plateau in patients of RDTI ≥ 84.5 % (r (2) = 0.427, p < 0.001). Given lower RTDI, luminal patients are less likely to achieve response, and TNBC patients are associated with higher response rate. Dissimilar of therapy efficacy between luminal subtype and TNBC becomes inconspicuous as RTDI rises. Chemosensitivity may associate with dose intensity, especially in luminal subtypes, and tailored therapeutic strategies should be considered.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Adulto , Antineoplásicos/administración & dosificación , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Metástasis Linfática , Persona de Mediana Edad , Terapia Neoadyuvante , Estadificación de Neoplasias , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento , Carga Tumoral
16.
Mol Biol Rep ; 41(7): 4253-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24584519

RESUMEN

Acute respiratory distress syndrome (ARDS) is a contemporary term incorporating the historic 'acute lung injury' and the colloquial term 'shock lung'. ARDS remains a serious and enigmatic human disease, causing significant mortality. The mechanisms involved at the alveolar cell/capillary endothelial interface have been explored but to date we lack clarity on the role of intracellular calcium ([Ca(2+)]i) fluxes across this interface. To explore the mechanisms of Ca(2+) induced inflammatory reaction in epithelial cells and pulmonary microvascular endothelial cells (HMVEC) located at the two sides of blood-air barrier, lung epithelial A549 and HMVEC cells were treated with LPS. Our results demonstrated that LPS evoked the increase of [Ca(2+)]i, TNF-α and IL-8 in both cells types. The [Ca(2+)]i increases involved intracellular but not extracellular Ca(2+) sources in A549, but both intracellular and extracellular Ca(2+) sources in HMVEC cells. The effects of LPS on both cells types were completely inhibited by the combination of LPS and CaSR-targeted siRNA. Furthermore, LPS-inhibited cell proliferations were significantly reversed by the combined treatment. Therefore, LPS induced different mechanisms of [Ca(2+)]i increase during the activation of CaSR in A549 and HMVEC cells, which translates into functional outputs related to ARDS.


Asunto(s)
Calcio/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Células Epiteliales/metabolismo , Lipopolisacáridos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Expresión Génica , Humanos , Interleucina-8/biosíntesis , Interleucina-8/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Modelos Biológicos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Transducción de Señal , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
17.
Sci Total Environ ; 920: 170951, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38367722

RESUMEN

Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.

18.
J Adv Res ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615741

RESUMEN

INTRODUCTION: Breast cancer (BC) is the most common malignancy in women with unfavorite prognosis. OBJECTIVES: Tanshinone IIA (Tan IIA) inhibits BC progression, however, the underlying mechanism remains largely undefined. METHODS: The cytotoxicity of Tan IIA was assessed by CCK-8 and LDH assays. Ferroptosis was monitored by the level of MDA, Fe2+, lipid ROS and GSH. IHC and western blot were employed to detect the localization and expression of SLC7A11, PIAS4, KDM1A and other key molecules. The SUMOylation of SLC7A11 was detected by Ni-beads pull-down assay and Co-IP. Luciferase and ChIP assays were employed to detect the direct association between KDM1A and PIAS4 promoter. The proliferative and metastatic properties of BC cells were assessed by colony formation, CCK-8 and Transwell assays, respectively. The in vitro findings were verified in xenograft and lung metastasis models. RESULTS: Tan IIA promoted ferroptosis by suppressing SLC7A11 in BC cells. Silencing of PIAS4 or KDM1A inhibited cell growth and metastasis in BC. Mechanistically, PIAS4 facilitated the SUMOylation of SLC7A11 via direct binding to SLC7A11, and KDM1A acted as a transcriptional activator of PIAS4. Functional studies further revealed that Tan IIA decreased KDM1A expression, thus suppressing PIAS4 expression transcriptionally. The inhibition of PIAS4-dependent SUMOylation of SLC7A11 further induced ferroptosis, thereby inhibiting proliferation and metastasis in BC. CONCLUSION: Tan IIA promoted ferroptosis and inhibited tumor growth and metastasis via suppressing KDM1A/PIAS4/SLC7A11 axis.

19.
Adv Sci (Weinh) ; 11(17): e2308924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38425146

RESUMEN

Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.


Asunto(s)
Aptámeros de Nucleótidos , Lisosomas , Proteolisis , Lisosomas/metabolismo , Aptámeros de Nucleótidos/metabolismo , Humanos
20.
Development ; 137(13): 2095-105, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20504958

RESUMEN

Bone morphogenetic protein (BMP) signaling plays a crucial role in maintaining the pluripotency of mouse embryonic stem cells (ESCs) and has negative effects on ESC neural differentiation. However, it remains unclear when and how BMP signaling executes those different functions during neural commitment. Here, we show that a BMP4-sensitive window exists during ESC neural differentiation. Cells at this specific period correspond to the egg cylinder stage epiblast and can be maintained as ESC-derived epiblast stem cells (ESD-EpiSCs), which have the same characteristics as EpiSCs derived from mouse embryos. We propose that ESC neural differentiation occurs in two stages: first from ESCs to ESD-EpiSCs and then from ESD-EpiSCs to neural precursor cells (NPCs). We further show that BMP4 inhibits the conversion of ESCs into ESD-EpiSCs during the first stage, and suppresses ESD-EpiSC neural commitment and promotes non-neural lineage differentiation during the second stage. Mechanistic studies show that BMP4 inhibits FGF/ERK activity at the first stage but not at the second stage; and IDs, as important downstream genes of BMP signaling, partially substitute for BMP4 functions at both stages. We conclude that BMP signaling has distinct functions during different stages of ESC neural commitment.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Neurogénesis , Animales , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA