Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 61, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225545

RESUMEN

BACKGROUND: Sweetpotato is a typical ''potassium (K+) favoring'' food crop, which root differentiation process needs a large supply of potassium fertilizer and determine the final root yield. To further understand the regulatory network of the response to low potassium stress, here we analyze physiological and biochemical characteristics, and investigated root transcriptional changes in two sweetpotato genotypes, namely, - K tolerant "Xu32" and - K susceptible"NZ1". RESULT: We found Xu32 had the higher capability of K+ absorption than NZ1 with better growth performance, higher net photosynthetic rate and higher chlorophyll contents under low potassium stress, and identified 889 differentially expressed genes (DEGs) in Xu32, 634 DEGs in NZ1, 256 common DEGs in both Xu32 and NZ1. The Gene Ontology (GO) term in molecular function enrichment analysis revealed that the DEGs under low K+ stress are predominately involved in catalytic activity, binding, transporter activity and antioxidant activity. Moreover, the more numbers of identified DEGs in Xu32 than that in NZ1 responded to K+-deficiency belong to the process of photosynthesis, carbohydrate metabolism, ion transport, hormone signaling, stress-related and antioxidant system may result in different ability to K+-deficiency tolerance. The unique genes in Xu32 may make a great contribution to enhance low K+ tolerance, and provide useful information for the molecular regulation mechanism of K+-deficiency tolerance in sweetpotato. CONCLUSIONS: The common and distinct expression pattern between the two sweetpotato genotypes illuminate a complex mechanism response to low potassium exist in sweetpotato. The study provides some candidate genes, which can be used in sweetpotato breeding program for improving low potassium stress tolerance.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Potasio/metabolismo , Fotosíntesis/genética , Transcriptoma , Estrés Fisiológico/genética
2.
Physiol Plant ; 176(5): e14518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39284792

RESUMEN

Water-saving and drought-resistant rice (WDR) coupled with alternate wetting and drying irrigation (AWDI) possesses a high photosynthetic potential due to higher mesophyll conductance (gm) under drought conditions. However, the physiological and structural contributions to the gm of leaves and their mechanisms in WDR under AWDI are still unclear. In this study, WDR (Hanyou 73) and drought-sensitive rice (Huiliangyou 898) were selected as materials. Three irrigation patterns were established from transplanting to the heading stage, including conventional flooding irrigation (W1), moderate AWDI (W2), and severe AWDI (W3). A severe drought with a soil water potential of -50 kPa was applied for a week at the heading stage across all treatments and cultivars. The results revealed that severe drought reduced gas exchange parameters and gm but enhanced antioxidant enzyme activities and malondialdehyde content in the three treatments and both cultivars. The maximal photosynthetic rate (Amax) of HY73 in the W2 treatment was greater than that in the other combinations of cultivars and irrigation patterns. The contribution of leaf structure (54%) to gm (gm-S, structural gm) was higher than that of leaf physiology (46%) to gm (gm-P, physiological gm) in the W2 treatment of Hanyou 73. Additionally, gm-S was significantly and linearly positively correlated with gm under severe drought. Moreover, both the initial and apparent quantum efficiencies were significantly and positively with gm in rice plants (p < 0.05). These results suggest that the improvements in photosynthesis and yield in the WDR combined with moderate AWDI can mainly be attributed to the enhancement of gm-S under severe drought conditions. Quantum efficiency may be a potential factor in regulating photosynthesis by cooperating with the gm of rice plants under severe drought conditions.


Asunto(s)
Riego Agrícola , Sequías , Células del Mesófilo , Oryza , Fotosíntesis , Hojas de la Planta , Agua , Oryza/fisiología , Agua/metabolismo , Riego Agrícola/métodos , Fotosíntesis/fisiología , Células del Mesófilo/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Desecación/métodos
3.
Mycoses ; 67(9): e13785, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245647

RESUMEN

Antifungal-resistant dermatophytes (ARD) infection is a hotspot issue in clinical microbiology and the dermatology field. Trichophyton indotineae as the dominant species of dermatophyte with terbinafine-resistance or multidrug resistance, is easy to be missed detection clinically, which brings severe challenges to diagnosis and treatment. ARD infection cases have emerged in China, and it predicts a risk of transmission among human. Based on the existing medical evidence and research data, the Mycology Group of Combination of Traditional and Western Medicine Dermatology and Chinese Antifungal⁃Resistant Dermatophytoses Expert Consensus Group organized experts to make consensus on the management of the infection. Here, the consensus formulated diagnosis and treatment recommendations, to raise attention to dermatophytes drug resistance problem, and expect to provide reference information for the clinical diagnosis, treatment, prevention and control.


Asunto(s)
Antifúngicos , Consenso , Farmacorresistencia Fúngica , Tiña , Humanos , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , China , Tiña/tratamiento farmacológico , Tiña/microbiología , Tiña/diagnóstico , Trichophyton/efectos de los fármacos , Trichophyton/aislamiento & purificación
4.
Angew Chem Int Ed Engl ; : e202413369, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162070

RESUMEN

The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N5) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N4 sites. This strategy ensures that Co-N5 sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s-1) is 47.4 times higher than that of 20% Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm-2), large specific capacity (784.2 mA h g-1), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.

5.
Plant J ; 109(1): 77-91, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704647

RESUMEN

Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.


Asunto(s)
Nitrógeno/metabolismo , Oryza/genética , Fotosíntesis , Grano Comestible , Nitrógeno/análisis , Oryza/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estomas de Plantas/genética , Estomas de Plantas/fisiología
6.
Plant J ; 112(1): 221-234, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962704

RESUMEN

Although mesophyll conductance (gm ) is known to be sensitive to temperature (T), the mechanisms underlying the temperature response of gm are not fully understood. In particular, it has yet to be established whether interspecific variation in gm -T relationships is associated with mesophyll anatomy and vein traits. In the present study, we measured the short-term response of gm in eight crop species, and leaf water potential (Ψleaf ) in five crop species over a temperature range of 15-35°C. The considered structural parameters are surface areas of mesophyll cells and chloroplasts facing intercellular airspaces per unit leaf area (Sm and Sc ), cell wall thickness (Tcw ), and vein length per area (VLA). We detected large interspecific variations in the temperature responses of gm and Ψleaf . The activation energy for gm (Ea,gm ) was found to be positively correlated with Sc , although it showed no correlation with Tcw . In contrast, VLA was positively correlated with the slope of the linear model of Ψleaf -T (a), whereas Ea,gm was marginally correlated with VLA and a. A two-component model was subsequently used to model gm -T relationships, and the mechanisms underlying the temperature response of gm are discussed. The data presented here indicate that leaf anatomy is a major determinant of the interspecific variation in gm -T relationships.


Asunto(s)
Células del Mesófilo , Fotosíntesis , Dióxido de Carbono , Células del Mesófilo/fisiología , Hojas de la Planta/fisiología , Temperatura , Agua
7.
Emerg Infect Dis ; 29(3): 576-584, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823029

RESUMEN

Candida haemulonii, a relative of C. auris, frequently shows antifungal resistance and is transmissible. However, molecular tools for genotyping and investigating outbreaks are not yet established. We performed genome-based population analysis on 94 C. haemulonii strains, including 58 isolates from China and 36 other published strains. Phylogenetic analysis revealed that C. haemulonii can be divided into 4 clades. Clade 1 comprised strains from China and other global strains; clades 2-4 contained only isolates from China, were more recently evolved, and showed higher antifungal resistance. Four regional epidemic clusters (A, B, C, and D) were identified in China, each comprising ≥5 cases (largest intracluster pairwise single-nucleotide polymorphism differences <50 bp). Cluster A was identified in 2 hospitals located in the same city, suggesting potential intracity transmissions. Cluster D was resistant to 3 classes of antifungals. The emergence of more resistant phylogenetic clades and regional dissemination of antifungal-resistant C. haemulonii warrants further monitoring.


Asunto(s)
Antifúngicos , Candida , Candidiasis , Farmacorresistencia Fúngica , Antifúngicos/uso terapéutico , Candida/efectos de los fármacos , Candida/genética , Candidiasis/tratamiento farmacológico , Candidiasis/genética , Candidiasis/microbiología , China , Pruebas de Sensibilidad Microbiana , Filogenia , Células Clonales , Farmacorresistencia Fúngica/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-33685896

RESUMEN

Triazole resistance in A. fumigatus is an increasing worldwide problem that causes major challenges in the management of aspergillosis. New antifungal drugs are needed with novel targets, that are effective in triazole-resistant infection. In this study, we retrospectively evaluated potency of the novel drug olorofim compared to contemporary antifungal agents against 111 clinical A. fumigatus isolates collected from Huashan Hospital, Shanghai, China, using EUCAST methodology, and reviewed the literature on triazole resistant A. fumigatus published between 1966 and 2020 in China. Olorofim was active in vitro against all tested A. fumigatus isolates with MIC90 of 0.031mg/L (range 0.008-0.062 mg/L). For 4 triazole-resistant A. fumigatus (TRAF) isolates, the olorofim MIC ranged between 0.016-0.062mg/L. The reported rates of TRAF in China is 2.5% - 5.56% for clinical isolates, and 0-1.4% for environmental isolates.TR34/L98H/S297T/F495I is the predominant resistance mechanism, followed by TR34/L98H. Non TR-mediated TRAF isolates, mostly harboring a cyp51A single point mutation, showed greater genetic diversity than TR-mediated resistant isolates. Resistance due toTR34/L98H and TR34/L98H/S297T/F495I mutations among TRAF isolates might have evolved from separate local isolates in China. Continuous isolation of TRAF in China underscores the need for systematic resistance surveillance as well as the need for novel drug targets such as olorofim.

9.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32041791

RESUMEN

Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Células-Madre Neurales/citología , Neurogénesis/fisiología , Estrés Oxidativo/fisiología , Factores de Transcripción/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Opt Express ; 31(3): 4521-4536, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785418

RESUMEN

The long-focal-depth mirror is a novel reflective element proposed in recent years. Due to the advantages of negligible dependence on wavelength and high damage threshold, it is suitable to focus ultra-short laser pulses with broadband spectra and high intensity with a focal depth of centimeter scale. To the best of our knowledge, the focusing properties of this mirror has been only studied under low numerical aperture (NA). In this paper, we extend it to the case of high NA and it is proved that an accelerating superluminal laser focus can be always generated by this extension, in which the degree of acceleration increases with the increase of NA. And the velocity of laser focus increases approximately linearly from c to 1.6c for NA = 0.707. Due to its properties of tight focusing, the Richards-Wolf integrals have been used to study the intensity distribution of each polarization component for different kinds of incident light. And these are linearly polarized light, radially polarized light, azimuthally polarized light, linearly polarized light with spiral phase, and linearly polarized light with ultrashort pulses. From comparisons of numerical results, the intensity distributions are obviously different for different kind of incident light, and accelerating superluminal laser focus with special structure (such as the hollow conical beam) can be produced under appropriate condition. We believe this study can expand the fields of application for the long-focal-depth mirror.

11.
J Exp Bot ; 74(5): 1551-1563, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516416

RESUMEN

Improvement of photosynthesis in non-foliar green tissues is beneficial for enhancing crop yield. Recently, we have demonstrated that panicle stomatal conductance is a major limiting factor for photosynthesis. However, mechanisms underlying the responses of panicle stomatal conductance (gs,panicle) and photosynthesis (Apanicle) to environmental stimuli remain unknown. In the present study, the responses of gs,panicle and leaf stomatal conductance (gs,leaf) to exogenous application of abscisic acid and step-changes in vapor pressure deficit were investigated at the anthesis stage in pot-grown rice plants. Furthermore, the effects of drought on Apanicle and leaf photosynthesis (Aleaf) were examined. Smearing and xylem feeding of abscisic acid significantly decreased gs,leaf. In contrast, while smearing of abscisic acid substantially increased gs,panicle, its xylem feeding dramatically decreased gs,panicle. In addition, both gs,leaf and gs,panicle effectively responded to step changes in vapor pressure deficit. Furthermore, both Aleaf and Apanicle were sensitive to plant dehydration; however, given the lower sensitivity of panicle water potential than leaf water potential to drought, Apanicle was less sensitive to soil drought than Aleaf. These findings indicate that gs,panicle is hydropassively regulated, while panicle photosynthesis is less sensitive to drought.


Asunto(s)
Ácido Abscísico , Oryza , Sequías , Suelo , Hojas de la Planta/fisiología , Agua/fisiología , Estomas de Plantas/fisiología , Fotosíntesis
12.
Ann Bot ; 132(5): 963-978, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37739395

RESUMEN

BACKGROUND AND AIMS: Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS: In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS: Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS: The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.


Asunto(s)
Brassica napus , Brassica rapa , Células del Mesófilo/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantas , Pared Celular , Dióxido de Carbono
13.
Plant Dis ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38050402

RESUMEN

Fusarium nematophilum NQ8GII4 is an endophytic fungus isolated from the root of healthy wolfberry (Lycium barbarum). Previous studies have reported that NQ8GII4 could dwell in wolfberry roots and enhance the defense responses in wolfberry against root rot, which is caused by F. oxysporum. To further elucidate the molecular mechanism of wolfberry disease resistance induced by NQ8GII4, in the present study, we adopted RNA sequencing analysis to profile the transcriptome of wolfberry response to NQ8GII4 infestation over a time course of 3 and 7 days post-inoculation (dpi). Gene ontology (GO) enrichment analysis revealed that DEGs were enriched related to biological regulation, response to stimulus, signaling, detoxification, immune system process, transporter activity, electron carrier activity, transcription factor activity, nucleic acid binding transcription factor, and antioxidant activity. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, it was found that many of these DEGs were enriched in pathways related to plant-pathogen interactions, hormone signal transduction, and phenylpropanoid biosynthesis pathway in wolfberry. This suggests that innate immunity, phytohormone signaling, and numerous phenylpropanoid compounds, which comprise a complex defense network in wolfberry. Chloroplast 50S ribosomal proteins (50S RP) were consistently located at the core position of the response in wolfberry following infestation with NQ8GII4 analyzed by protein-protein interaction (PPI) network. This study elucidated the molecular mechanism underlying the interaction between NQ8GII4 and wolfberry, clarified the wolfberry immune response network to endophytic fungi infestation, identified candidate resistance genes in wolfberry, and provided a fundamental date for subsequent work.

14.
Fa Yi Xue Za Zhi ; 39(2): 193-199, 2023 Apr 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37277383

RESUMEN

Talent is one of the basic and strategic supports for building a modern socialist country in all aspects. Since the 1980s, the establishment of forensic medicine major and the cultivation of innovative talents in forensic medicine have become hot topics in higher education in forensic medicine. Over the past 43 years, the forensic medicine team of Shanxi Medical University has adhered to the joint education of public security and colleges, and made collaborative innovation, forming a training mode of "One Combination, Two Highlights, Three Combinations, Four in One" for innovative talents in forensic medicine. It has carried out "5+3/X" integrated reform, and formed a relatively complete talent training innovation mode and management system in teaching, scientific research, identification, major, discipline, team, platform and cultural construction. It has made a historic contribution to China's higher forensic education, accumulated valuable experience for the construction of first-class major and first-class discipline of forensic medicine, and provided strong support for the construction of the national new forensic talent training system. The popularization of this training mode is conducive to the rapid and sustainable development of forensic science, and provides more excellent forensic talents for national building, regional social development and the discipline construction of forensic science.


Asunto(s)
Medicina Legal , Humanos , Medicina Legal/educación , Aptitud
15.
Proc Natl Acad Sci U S A ; 116(16): 7982-7989, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30948646

RESUMEN

The emergence of new pathogenic fungi has profoundly impacted global biota, but the underlying mechanisms behind host shifts remain largely unknown. The endophytic insect pathogen Metarhizium robertsii evolved from fungi that were plant associates, and entomopathogenicity is a more recently acquired adaptation. Here we report that the broad host-range entomopathogen M. robertsii has 18 genes that are derived via horizontal gene transfer (HGT). The necessity of degrading insect cuticle served as a major selective pressure to retain these genes, as 12 are up-regulated during penetration; 6 were confirmed to have a role in penetration, and their collective actions are indispensable for infection. Two lipid-carrier genes are involved in utilizing epicuticular lipids, and a third (MrNPC2a) facilitates hemocoel colonization. Three proteases degraded the procuticular protein matrix, which facilitated up-regulation of other cuticle-degrading enzymes. The three lipid carriers and one of the proteases are present in all analyzed Metarhizium species and are essential for entomopathogenicity. Acquisition of another protease (MAA_01413) in an ancestor of broad host-range lineages contributed to their host-range expansion, as heterologous expression in the locust specialist Metarhizium acridum enabled it to kill caterpillars. Our work reveals that HGT was a key mechanism in the emergence of entomopathogenicity in Metarhizium from a plant-associated ancestor and in subsequent host-range expansion by some Metarhizium lineages.


Asunto(s)
Transferencia de Gen Horizontal/genética , Especificidad del Huésped/genética , Metarhizium , Virulencia/genética , Animales , Saltamontes/microbiología , Metarhizium/genética , Metarhizium/patogenicidad
16.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080802

RESUMEN

The structural temperature distribution, especially temperature difference caused by solar radiation, has a great impact on the deformation and curvature of the concrete slab tracks of high-speed railways. Previous studies mainly focused on the temperature prediction of slab tracks, while how the temperature distribution is affected by environmental conditions has been rarely investigated. Based on the integral transformation method, this work presents an analytical method to determine and decompose the temperature distribution of the concrete slab track. A field temperature test of a half-scaled specimen of concrete slab track was conducted to validate the developed methodology. In the proposed method, we decompose the temperature distribution of the slab track into an initial temperature component and a boundary temperature component. Then, the boundary temperature components caused by solar radiation and atmospheric temperature are investigated, respectively. The results show that the solar radiation plays a significant role in the nonlinear temperature distribution, while the atmospheric temperature has little effect. By contrast, the temperature change in the slab surface resulting from the atmospheric temperature accounts on average for only 5% in the hot weather condition. The proposed method establishes a relation between the structural temperature and meteorological parameters (i.e., the solar radiation and atmospheric temperature). Consequently, the temperature distribution of the concrete slab track is predicted via the meteorological parameters.

17.
Angew Chem Int Ed Engl ; 61(11): e202116394, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34994496

RESUMEN

Heteroatom doping has been proved to effectively enhance the sloping capacity, nevertheless, the high sloping capacity almost encounters a conflict with the disappointing initial Coulombic efficiency (ICE). Herein, we propose a heteroatom configuration screening strategy by introducing a secondary carbonization process for the phosphate-treated carbons to remove the irreversible heteroatom configurations but with the reversible ones and free radicals remaining, achieving a simultaneity between the high sloping capacity and ICE (≈250 mAh g-1 and 80 %). The Na storage mechanism was also studied based on this "slope-dominated" carbon to reveal the reason for the absence of the plateau. This work could inspire to distinguish and filter the irreversible heteroatom configurations and facilitate the future design of practical "slope-dominated" carbon anodes towards high-power Na-ion batteries.

18.
Planta ; 254(1): 12, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165635

RESUMEN

MAIN CONCLUSION: Rice genotypes with larger stomata maintain higher nocturnal stomatal conductance, thus having lower nocturnal leaf temperature via transpirational cooling. Incomplete night stomatal closure has been widely observed, but the mechanisms and functions of nocturnal stomatal conductance (gs,n) are not fully understood. Stomatal anatomy, leaf morphology, gs,n and nocturnal leaf temperature (Tleaf,n) were measured in 30 Oryza genotypes. Nocturnal leaf conductance (gn) showed a significant circadian rhythm; it gradually increased by 58% from 20:30 to 04:30. Contrary to cuticular conductance (gcut), gs,n was highly correlated with gn. Moreover, gs,n accounted for 76% of gn. Tleaf,n was significantly lower than the air temperature, and was negatively correlated with both gs,n and nocturnal transpiration rate (En). gs,n was positively correlated with stomatal size, intervein distance between major veins (IVDmajor), leaf thickness (LT), individual leaf area (LA), and leaf width (LW). It was also found negatively correlated with stomatal density. Reversely, Tleaf,n was negatively correlated with stomatal size, IVDmajor, intervein distance between minor veins, LA and LW. Tleaf,n presented a positive correlation with stomatal density. This study highlights the importance of stomatal anatomy and leaf morphology on regulating gs,n and Tleaf,n. The underlying mechanisms to the determinants of gs,n and the physiological and ecological functions of the Tleaf,n regulation on rice growth and production were carefully discussed.


Asunto(s)
Oryza , Fotosíntesis , Hojas de la Planta , Estomas de Plantas , Transpiración de Plantas , Temperatura , Agua
19.
Nanotechnology ; 32(19): 195205, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33540395

RESUMEN

Quaternary Ag-In-Zn-S (AIZS) quantum dots (QDs) play critical roles in various applications since they have advantages of combining superior optical and electrical features, such as tunable fluorescence emission and high carrier mobilities. However, the application of semiconductor AIZS QDs in brain-inspired devices (e.g. memristor) has been rarely reported. In this work, the tunable volatile threshold switching (TS) and non-volatile memory switching (MS) behaviors have been obtained in a memristor composed of AIZS QDs by regulating the magnitude of compliance current. Additionally, the innovative Ag/AIZS structure devices without traditional oxide layer exhibit low operation voltage (∼0.25 V) and programming current (100 nA) under the TS mode. Moreover, the devices achieve reproducible bipolar resistive switching (RS) behaviors with large ON/OFF ratio of ∼105, ultralow power consumption of ∼10-10 W, and good device-to-device uniformity under the MS mode. Furthermore, the charge transport mechanisms of the high- and low-resistance states under the positive and negative bias have been analyzed with space-charge-limited-current and filament conduction models, respectively. This work not only validates the potential of AIZS QDs acting as dielectric layer in RS devices but also provides a new guideline for designing ultralow power and multiple RS characteristics devices.

20.
Mycoses ; 64(10): 1272-1278, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34133793

RESUMEN

BACKGROUND: Trichophyton rubrum, an important aetiological agent of superficial dermatophytosis, occasionally penetrates into deeper tissues, causing inflammation and a granulomatous response. Only few case reports of T. rubrum granuloma with molecular evidence for autoinoculation have been published. OBJECTIVES: To find the genetic basis of adaptation to a different microhabitat following autoinoculation of Trichophyton rubrum. METHODS: A case of Majocchi's granuloma is reported, with isolation of T. rubrum strains from foot and chin, respectively. Whole-genome sequencing of the two strains has been performed. Phylogenetic reconstruction and SIFT analysis were conducted. RESULTS: A phenotypic difference has been observed between the two isolates. 20 and 19 indels, 8 and 15 SNVs were found in foot and chin strains, respectively. Foot and chin strains formed a monophyletic group. Two non-synonymous mutations of chin strains were observed in the TERG_06754 gene encoding cytochrome c peroxidase (CCP). The G293C amino acid change in TERG_03373 was predicted to affect protein function significantly. The mutated amino acid (cysteine) was only found in the chin strain in all dermatophyte non-redundant sequences. CONCLUSIONS: Non-synonymous mutations located in TERG_06754 and TERG_03373 were predicted to affect protein functions, which may facilitate the adaption for invasion of the superficial cutaneous strain. As the different living environments of these two strains (oxygenous, lower-temperature for the pedal strain; hypoxia, higher-temperature for the chin strain), a stratum corneum-to-dermal adaption hypothesis of T. rubrum was proposed.


Asunto(s)
Arthrodermataceae , Tiña , Aminoácidos , Humanos , Filogenia , Trichophyton/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA