Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(13): e2308743, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948424

RESUMEN

Long-term exposure to low concentration indoor VOCs of acetaldehyde (CH3CHO) is harmful to human health. Thus, a novel isogenous heterojunction CeO2/Ce-MOF photocatalyst is synthesized via a one-step hydrothermal method for the effective elimination of CH3CHO in this work. This CeO2/Ce-MOF photocatalyst performs well in CH3CHO removal and achieves an apparent quantum efficiency of 7.15% at 420 nm, which presents ≈6.7 and 3.4 times superior to those generated by CeO2 and Ce-MOF, respectively. The enhanced efficiency is due to two main aspects including i) an effective photocarrier separation ability and the prolonged reaction lifetime of excitons play crucial roles and ii) the formation of an internal electric field (IEF) is sufficient to overcome the considerable exciton binding energy, and increases the exciton dissociation efficiency by up to 50.4%. Moreover, the reasonable pathways and mechanisms of CH3CHO degradation are determined by in situ DRIFTS analysis and simulated DFT calculations. Those results demonstrated that S-scheme heterojunction successfully increases the efficiency of harmful volatile organic compounds elimination, and it offers essential guidance for designing rare earth-based MOF photocatalysts.

2.
Small ; 20(20): e2308908, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105418

RESUMEN

The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (•OH) and superoxide radicals (•O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.

3.
Exp Eye Res ; 245: 109966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857822

RESUMEN

The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (ß-HB). Prior work, based on detecting ß-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export ß-HB across the apical membrane. Here, we compare the accuracy of measuring ß-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of ß-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete ß-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming ß-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce ß-HB. Altogether, we substantiate ß-HB secretion in RPE but find that the secretion is equal apically and basally, RPE ß-HB can derive from ketogenic amino acids or fatty acids, and accurate ß-HB assessment requires mass spectrometric analysis.


Asunto(s)
Ácido 3-Hidroxibutírico , Cuerpos Cetónicos , Epitelio Pigmentado de la Retina , Epitelio Pigmentado de la Retina/metabolismo , Cuerpos Cetónicos/metabolismo , Células Cultivadas , Ácido 3-Hidroxibutírico/metabolismo , Humanos , Pruebas de Enzimas/métodos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Espectrometría de Masas , Animales
4.
BMC Public Health ; 23(1): 2371, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031053

RESUMEN

BACKGROUND: An increasing number of systematic reviews (SRs) in the environmental field have been published in recent years as a result of the global concern about the health impacts of air pollution and temperature. However, no study has assessed and compared the methodological and reporting quality of SRs on the health effects of air pollutants and extreme temperatures. This study aims to assess and compare the methodological and reporting quality of SRs on the health effects of ambient air pollutants and extreme temperatures. METHODS: PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Web of Science, and Epistemonikos databases were searched. Two researchers screened the literature and extracted information independently. The methodological quality of the SRs was assessed through A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2). The reporting quality was assessed through Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA). RESULTS: We identified 405 SRs (286 for air pollution, 108 for temperature, and 11 for the synergistic effects). The methodological and reporting quality of the included SRs were suboptimal, with major deficiencies in protocol registration. The methodological quality of SRs of air pollutants was better than that of temperature, especially in terms of satisfactory explanations for any heterogeneity (69.6% v. 45.4%). The reporting quality of SRs of air pollution was better than temperature, however, adherence to the reporting of the assessment results of risk of bias in all SRs (53.5% v. 34.3%) was inadequate. CONCLUSIONS: Methodological and reporting quality of SRs on the health effect of air pollutants were higher than those of temperatures. However, deficiencies in protocol registration and the assessment of risk of bias remain an issue for both pollutants and temperatures. In addition, developing a risk-of-bias assessment tool applicable to the temperature field may improve the quality of SRs.


Asunto(s)
Contaminantes Atmosféricos , Revisiones Sistemáticas como Asunto , Humanos , Contaminantes Atmosféricos/efectos adversos , Calor , Proyectos de Investigación , Informe de Investigación , Temperatura
5.
Exp Eye Res ; 178: 212-222, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336126

RESUMEN

The daily shedding and renewal of photoreceptor outer segments (OS) is critical for maintaining vision. This process relies on the efficient uptake, degradation, and sorting of shed OS material by the retinal pigment epithelium (RPE). Poor OS degradation has been linked to retinal degenerations such as Stargardt disease and may contribute to macular degeneration. While primary human fetal RPE cultures have emerged as a valuable model of in vivo human RPE function, surprisingly few studies have utilized the model for tracking the degradation and fate of OS components in the RPE. Here, we establish an improved platform for studying this topic by modifying existing protocols and creating new methods. Our human fetal culture model facilitates studies of RPE secretion in response to OS ingestion, preserves RPE differentiation and polarization during live-cell imaging of OS phagocytosis, and minimizes costs. We optimize Mer tyrosine kinase-dependent OS phagocytosis assays specifically in human fetal cultures and provide a simple and accurate method for measuring total OS consumption by the RPE. Finally, we utilize chemical transfection, dextran labeling, and immunocytochemistry to evaluate key players in OS degradation, including lysosomes and autophagy proteins. To facilitate quantification of autophagy vesicles, we develop customized image analysis macros in the Fiji/ImageJ software environment. These protocols will facilitate a broad range of studies in human fetal RPE cultures aimed at determining the ultimate fate of OS components after ingestion, a critical step in understanding the pathogenesis of numerous retinal diseases.


Asunto(s)
Fagocitosis/fisiología , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Epitelio Pigmentado de la Retina/fisiología , Autofagia/fisiología , Biomarcadores/metabolismo , Células Cultivadas , Medio de Cultivo Libre de Suero , Investigación Fetal , Humanos , Inmunohistoquímica , Lisosomas/metabolismo , Microscopía , Cultivo Primario de Células , Proteínas/metabolismo , Epitelio Pigmentado de la Retina/citología
7.
Lab Invest ; 95(11): 1278-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26280220

RESUMEN

Retinoblastoma (RB) is the most common primary intraocular cancer in children, and the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin-embedded human RB tissue, cryopreserved mouse retina, and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal retinal pigment epithelium (RPE) and fetal and adult retina, mouse retina and embryonic stem (ES) cells. Although enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i impaired intracellular adenosine triphosphate (ATP) production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma.


Asunto(s)
Epigénesis Genética/fisiología , Complejo Represivo Polycomb 2/efectos de los fármacos , Neoplasias de la Retina/metabolismo , Retinoblastoma/metabolismo , Animales , Línea Celular Tumoral , Preescolar , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Humanos , Lactante , Masculino , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/fisiología , Neoplasias de la Retina/patología , Retinoblastoma/patología
8.
Sci Adv ; 10(5): eadl5432, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295163

RESUMEN

Activation of carbon-hydrogen (C-H) bonds is of utmost importance for the synthesis of vital molecules. Toward achieving efficient photocatalytic C-H activation, our investigation revealed that incorporating hydrophilic C≡N-Sb(CN)3 sites into hydrophobic sp2 carbon-conjugated covalent organic frameworks (sp2-c-COFs) had a dual effect: It simultaneously enhanced charge separation and improved generation of polar reactive oxygen species. Detailed spectroscopy measurements and simulations showed that C≡N-Sb(CN)3 primarily functioned as water capture sites, which were not directly involved in photocatalysis. However, the potent interaction between water molecules and the Sb(CN)3-modified framework notably enhanced charge dynamics in hydrophobic sp2-c-COFs. The reactive species ·O2- and ·OH (ad) subsequently combined with benzyl radical, leading to the formation of benzaldehyde, benzyl alcohol, and lastly benzyl benzoate. Notably, the Sb(CN)3-modified sp2-c-COFs exhibited a 54-fold improvement in reaction rate as compared to pristine sp2-c-COFs, which achieved a remarkable 68% conversion rate for toluene and an 80% selectivity for benzyl benzoate.

9.
ACS Nano ; 18(23): 14893-14906, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38801653

RESUMEN

Stem cell therapies are gaining traction as promising treatments for a variety of degenerative conditions. Both clinical and preclinical studies of regenerative medicine are hampered by the lack of technologies that can evaluate the migration and behavior of stem cells post-transplantation. This study proposes an innovative method to longitudinally image in vivo human-induced pluripotent stem cells differentiated to retinal pigment epithelium (hiPSC-RPE) cells by multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging powered by ultraminiature chain-like gold nanoparticle cluster (GNC) nanosensors. The GNC exhibits an optical absorption peak in the near-infrared regime, and the 7-8 nm size in diameter after disassembly enables renal excretion and improved safety as well as biocompatibility. In a clinically relevant rabbit model, GNC-labeled hiPSC-RPE cells migrated to RPE degeneration areas and regenerated damaged tissues. The hiPSC-RPE cells' distribution and migration were noninvasively, longitudinally monitored for 6 months with exceptional sensitivity and spatial resolution. This advanced platform for cellular imaging has the potential to enhance regenerative cell-based therapies.


Asunto(s)
Oro , Imagen Multimodal , Epitelio Pigmentado de la Retina , Conejos , Animales , Humanos , Oro/química , Epitelio Pigmentado de la Retina/citología , Trasplante de Células Madre , Tomografía de Coherencia Óptica , Nanopartículas del Metal/química , Células Madre Pluripotentes Inducidas/citología , Movimiento Celular , Diferenciación Celular , Imagen Óptica , Técnicas Fotoacústicas
10.
Nat Chem ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918581

RESUMEN

Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K-N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials' band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e- water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m-2 per day.

11.
J Vis Exp ; (194)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37125790

RESUMEN

The daily phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) contributes to the accumulation of an intracellular aging pigment termed lipofuscin. The toxicity of lipofuscin is well established in Stargardt's disease, the most common inherited retinal degeneration, but is more controversial in age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world. Determining lipofuscin toxicity in humans has been difficult, and animal models of Stargardt's have limited toxicity. Thus, in vitro models that mimic human RPE in vivo are needed to better understand lipofuscin generation, clearance, and toxicity. The majority of cell culture lipofuscin models to date have been in cell lines or have involved feeding RPE a single component of the complex lipofuscin mixture rather than fragments/tips of the entire photoreceptor outer segment, which generates a more complete and physiologic lipofuscin model. Described here is a method to induce the accumulation of lipofuscin-like material (termed undigestible autofluorescence material, or UAM) in highly differentiated primary human pre-natal RPE (hfRPE) and induced pluripotent stem cell (iPSC) derived RPE. UAM accumulated in cultures by repeated feedings of ultraviolet light-treated OS fragments taken up by the RPE via phagocytosis. The key ways that UAM approximates and differs from lipofuscin in vivo are also discussed. Accompanying this model of lipofuscin-like accumulation, imaging methods to distinguish the broad autofluorescence spectrum of UAM granules from concurrent antibody staining are introduced. Finally, to assess the impact of UAM on RPE phagocytosis capacity, a new method for quantifying outer segment fragment/tips uptake and breakdown has been introduced. Termed "Total Consumptive Capacity", this method overcomes potential misinterpretations of RPE phagocytosis capacity inherent in classic outer segment "pulse-chase" assays. The models and techniques introduced here can be used to study lipofuscin generation and clearance pathways and putative toxicity.


Asunto(s)
Lipofuscina , Pigmentos Retinianos , Animales , Humanos , Lipofuscina/metabolismo , Pigmentos Retinianos/metabolismo , Fagocitosis/fisiología , Epitelio Pigmentado de la Retina , Línea Celular , Células Cultivadas
12.
ACS Appl Mater Interfaces ; 15(51): 59444-59453, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38091379

RESUMEN

The photocatalytic oxygen evolution of bismuth oxybromide (BiOBr) is greatly hindered by its low visible-light response and high electron-hole recombination. Nonmetal doping can effectively alleviate these issues, leading to improvement in photocatalytic performance. Herein, Bi2Te3 was introduced as both the Te doping source and the morphology-control template to improve the photocatalytic performance of BiOBr. Appropriate amounts of Te are critical to maintain the ultrathin plate-like structure of BiOBr, whereas excessive Te results in the formation of a flower-like architecture. Oxygen evolution activity disclosed that a plate-like structure is essential for realizing higher performance owing to sufficient light utilization and efficient charge separation. An optimal oxygen evolution rate of 368.0 µmol h-1 g-1 was achieved for the Te-doped sample, which is 2.3-fold as that of the undoped BiOBr (158.9 µmol h-1 g-1). Theoretical calculations demonstrated that Te doping can induce impurity levels above the valence band of BiOBr, which slightly narrowed the band gap and strengthened the light absorption in the range of 400-800 nm. More importantly, Te dopants could act as shallow traps for confining the excited electrons, thus prolonging the carrier lifetime. This work provides a novel strategy to prepare highly efficient photocatalysts by simultaneously realizing morphology manipulation and nonmetal doping.

13.
bioRxiv ; 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36909658

RESUMEN

PURPOSE: RPE oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O 2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. METHODS: We altered the availability of O 2 to human primary RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCR), glucose consumption, lactate production, 13 C-glucose flux, hypoxia inducible factor (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, trans-epithelial electrical resistance, cell morphology, and pigmentation. RESULTS: Medium volumes commonly employed during RPE culture limit diffusion of O 2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O 2 availability decrease acetyl-CoA utilization, increase glycolysis, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. CONCLUSIONS: Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology ″under the hood″. As RPE-centric diseases like age-related macular degeneration (AMD) involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O 2 availability seen with smaller media volumes.

14.
Adv Mater ; 35(48): e2306831, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37775094

RESUMEN

Revealing the photocatalytic mechanism between various junctions and catalytic activities has become a hotspot in photocatalytic systems. Herein, an internal molecular heptazine/triazine (H/T) junction in crystalline carbon nitride (HTCN) is constructed and devoted to selective two-electron oxygen reduction reaction (2e- ORR) for efficient hydrogen peroxide (H2 O2 ) production. In-situ X-ray diffraction spectra under various temperatures authenticate the successful formation of molecular H/T junction in HTCN during the calcining process rather than physically mixing. The increased surface photovoltage and transient photovoltage signals, and the decreased exciton binding energy undoubtably elucidate that an obvious increasement of carrier density and diffusion capability of photogenerated electrons are realized over HTCN. Additionally, the analyses of in situ photoirradiated Kelvin probe force microscopy and femto-second transient absorption spectra reveal the successful construction of the strong internal built-in-electric field and the existence of the majority of long-lived shallow trapped electrons associated with molecular H/T junction over HTCN, respectively. Benefiting from these, the photocatalytic results exhibit an incredible improvement (96.5-fold) for H2 O2 production. This novel work provides a comprehensive understanding of the long-lived reactive charges in molecular H/T junctions for strengthening the driving-force for photocatalytic H2 O2 production, which opens potential applications for enhancing PCN-based photocatalytic redox reactions.

15.
Nanomicro Lett ; 16(1): 23, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985523

RESUMEN

This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.

16.
Invest Ophthalmol Vis Sci ; 64(14): 4, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922158

RESUMEN

Purpose: Retinal pigment epithelium (RPE) oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. Methods: We altered the availability of O2 to human primary and induced pluripotent stem cell-derived RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCRs), glucose consumption, lactate production, 13C6-glucose and 13C5-glutamine flux, hypoxia inducible factor 1α (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, transepithelial electrical resistance, cell morphology, and pigmentation. Results: Medium volumes commonly employed during RPE culture limit diffusion of O2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O2 availability decrease acetyl-CoA utilization, increase glycolysis and reductive carboxylation, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. Conclusions: Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology "under the hood." As RPE-centric diseases like age-related macular degeneration involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O2 availability seen with smaller media volumes.


Asunto(s)
Retina , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Retina/metabolismo , Hipoxia/metabolismo , Glucosa/farmacología , Lípidos , Células Cultivadas
17.
Adv Mater ; 35(1): e2207114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36205652

RESUMEN

Designing and synthesizing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is important for realizing the hydrogen economy. Tuning the electronic structure of the electrocatalysts is essential to achieve optimal HER activity, and interfacial engineering is an effective strategy to induce electron transfer in a heterostructure interface to optimize HER kinetics. In this study, ultrafine RhP2 /Rh nanoparticles are synthesized with a well-defined semiconductor-metal heterointerface embedded in N,P co-doped graphene (RhP2 /Rh@NPG) via a one-step pyrolysis. RhP2 /Rh@NPG exhibits outstanding HER performances under all pH conditions. Electrochemical characterization and first principles density functional theory calculations reveal that the RhP2 /Rh heterointerface induces electron transfer from metallic Rh to semiconductive RhP2 , which increases the electron density on the Rh atoms in RhP2 and weakens the hydrogen adsorption on RhP2 , thereby accelerating the HER kinetics. Moreover, the interfacial electron transfer activates the dual-site synergistic effect of Rh and P of RhP2 in neutral and alkaline environments, thereby promoting reorganization of interfacial water molecules for faster HER kinetics.

18.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986876

RESUMEN

Purpose: In age-related macular degeneration (AMD) and Sorsby's fundus dystrophy (SFD), lipid-rich deposits known as drusen accumulate under the retinal pigment epithelium (RPE). Drusen may contribute to photoreceptor and RPE degeneration in AMD and SFD. We hypothesize that stimulating ß-oxidation in RPE will reduce drusen accumulation. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate ß-oxidation and diminish lipid accumulation in fatty liver disease. In this report we test the hypothesis that an ACC inhibitor, Firsocostat, limits the accumulation of lipid deposits in cultured RPE cells. Methods: We probed metabolism and cellular function in mouse RPE-choroid, human fetal- derived RPE cells, and induced pluripotent stem cell-derived RPE cells. We used 13 C6-glucose and 13 C16-palmitate to determine the effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. 13 C labeling of metabolites in these pathways were analyzed using gas chromatography-linked mass spectrometry. We quantified ApoE and VEGF release using enzyme-linked immunosorbent assays. Immunostaining of sectioned RPE was used to visualize ApoE deposits. RPE function was assessed by measuring the trans-epithelial electrical resistance (TEER). Results: ACC inhibition with Firsocostat increases fatty acid oxidation and remodels lipid composition, glycolytic metabolism, lipoprotein release, and enhances TEER. When human serum is used to induce sub-RPE lipoprotein accumulation, fewer lipoproteins accumulate with Firsocostat. In a culture model of Sorsby's fundus dystrophy, Firsocostat also stimulates fatty acid oxidation, improves morphology, and increases TEER. Conclusions: Firsocostat remodels intracellular metabolism and improves RPE resilience to serum-induced lipid deposition. This effect of ACC inhibition suggests that it could be an effective strategy for diminishing drusen accumulation in the eyes of patients with AMD.

19.
Nat Commun ; 14(1): 7115, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932292

RESUMEN

Photocatalytic two-electron oxygen reduction to produce high-value hydrogen peroxide (H2O2) is gaining popularity as a promising avenue of research. However, structural evolution mechanisms of catalytically active sites in the entire photosynthetic H2O2 system remains unclear and seriously hinders the development of highly-active and stable H2O2 photocatalysts. Herein, we report a high-loading Ni single-atom photocatalyst for efficient H2O2 synthesis in pure water, achieving an apparent quantum yield of 10.9% at 420 nm and a solar-to-chemical conversion efficiency of 0.82%. Importantly, using in situ synchrotron X-ray absorption spectroscopy and Raman spectroscopy we directly observe that initial Ni-N3 sites dynamically transform into high-valent O1-Ni-N2 sites after O2 adsorption and further evolve to form a key *OOH intermediate before finally forming HOO-Ni-N2. Theoretical calculations and experiments further reveal that the evolution of the active sites structure reduces the formation energy barrier of *OOH and suppresses the O=O bond dissociation, leading to improved H2O2 production activity and selectivity.

20.
Front Chem ; 10: 920121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592308

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2021.812287.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA