Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol ; 39(3): 1235-1244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926988

RESUMEN

Bisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three-week-old male rat offspring were selected for an open-field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real-time polymerase chain reaction (RT-PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA-T) and GABA transporter 1 (GAT-1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.


Asunto(s)
Fenoles , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Ratas , Masculino , Animales , Compuestos de Bencidrilo , Cognición , Transducción de Señal , Ácido gamma-Aminobutírico
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 316-323, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-38953254

RESUMEN

Objective To investigate the expression levels of selenoprotein genes in the patients with coronavirus disease 2019 (COVID-19) and the possible regulatory mechanisms.Methods The dataset GSE177477 was obtained from the Gene Expression Omnibus,consisting of a symptomatic group (n=11),an asymptomatic group (n=18),and a healthy control group (n=18).The dataset was preprocessed to screen the differentially expressed genes (DEG) related to COVID-19,and gene ontology functional annotation and Kyoto encyclopedia of genes and genomes enrichment analysis were performed for the DEGs.The protein-protein interaction network of DEGs was established,and multivariate Logistic regression was employed to analyze the effects of selenoprotein genes on the presence/absence of symptoms in the patients with COVID-19.Results Compared with the healthy control,the symptomatic COVID-19 patients presented up-regulated expression of GPX1,GPX4,GPX6,DIO2,TXNRD1,SELENOF,SELENOK,SELENOS,SELENOT,and SELENOW and down-regulated expression of TXNRD2 and SELENON (all P<0.05).The asymptomatic patients showcased up-regulated expression of GPX2,SELENOI,SELENOO,SELENOS,SELENOT,and SELENOW and down-regulated expression of SELP (all P<0.05).The results of multivariate Logistic regression analysis showed that the abnormally high expression of GPX1 (OR=0.067,95%CI=0.005-0.904,P=0.042) and SELENON (OR=56.663,95%CI=3.114-856.999,P=0.006) was the risk factor for symptomatic COVID-19,and the abnormally high expression of SELP was a risk factor for asymptomatic COVID-19 (OR=15.000,95%CI=2.537-88.701,P=0.003).Conclusions Selenoprotein genes with differential expression are involved in the regulation of COVID-19 development.The findings provide a new reference for the prevention and treatment of COVID-19.


Asunto(s)
COVID-19 , Selenoproteínas , Humanos , Selenoproteínas/genética , Selenoproteínas/metabolismo , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2 , Mapas de Interacción de Proteínas/genética
3.
Cancer Control ; 30: 10732748231170485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37072373

RESUMEN

Objective: This study sought to determine the mean prognostic usefulness of seleniumphosphate synthase (SEPHS1) by investigating its expression in 33 human malignancies and its relationship to tumor immunity.Methods: The expression of selenophosphate synthase 1 (SEPHS1) in 33 human malignant tumors was examined using the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), and TIMER databases. Furthermore, the TCGA cohort was used to investigate relationships between SEPHS1 and immunological checkpoint genes (ICGs), tumor mutation burden (TMB), microsatellite instability (MSI), and DNA mismatch repair genes (MMRs). To establish independent risk factors and calculate survival probabilities for liver hepatocellular carcinoma (LIHC) and brain lower-grade glioma (LGG), Cox regression models and Kaplan-Meier curves were utilized. Eventually, the Genomics of Cancer Drug Sensitivity (GDSC) database was used to evaluate the drug sensitivity in LGG and LIHC patients with high SEPHS1 expression.Results: Overall, in numerous tumor tissues, SEPHS1 was highly expressed, and it significantly linked with the prognosis of LGG, ACC, and LIHC (P < .05). Furthermore, in numerous cancers, SEPHS1 expression was linked to tumor-infiltrating immune cells (TIICs), TMB, MSI, and MMRs. According to univariate and multivariate Cox analyses, SEPHS1 expression was significant for patients with LGG and LIHC.Conclusion: High SEPHS1 expression has a better prognosis for LGG, while low SEPHS1 expression has a better prognosis for LIHC. Chemotherapy was advised for LGG patients, particularly for those with high SEPHS1 expression because it can predict how responsive patients will be to 5-Fluorouracil and Temozolomide. This interaction between SEPHS1 and chemoradiotherapy has a positive clinical impact and may be used as evidence for chemotherapy for LGG and LIHC patients.


Asunto(s)
Carcinoma Hepatocelular , Glioma , Neoplasias Hepáticas , Selenio , Humanos , Fosfatos
4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 563-570, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37654136

RESUMEN

Objective To study the expression of selenoprotein genes in human immunodeficiency virus(HIV)infection and its mother-to-child transmission,so as to provide a theoretical basis for the prevention,diagnosis,and treatment of acquired immunodeficiency syndrome.Methods The dataset GSE4124 was downloaded from the Gene Expression Omnibus(GEO).Two groups of HIV-positive mothers(n=25)and HIV-negative mothers(n=20)were designed.HIV-positive mothers included a subset of transmitter(TR)mothers(n=11)and non-transmitter(NTR)mothers(n=14).Then,t-test was carried out to compare the expression levels of selenoprotein genes between the four groups(HIV-positive vs. HIV-negative,NTR vs. HIV-negative,TR vs. HIV-negative,TR vs. NTR).Univariate and multivariate Logistic regression were adopted to analyze the effects of differentially expressed genes on HIV infection and mother-to-child transmission.R software was used to establish a nomogram prediction model and evaluate the model performance.Results Compared with the HIV-negative group,HIV-positive,NTR,and TR groups had 8,5 and 8 down-regulated selenoprotein genes,respectively.Compared with the NTR group,the TR group had 4 down-regulated selenoprotein genes.Univariate Logistic regression analysis showed that abnormally high expression of GPX1,GPX3,GPX4,TXNRD1,TXNRD3,and SEPHS2 affected HIV infection and had no effect on mother-to-child transmission.The multivariate Logistic regression analysis showed that the abnormally high expression of TXNRD3(OR=0.032,95%CI=0.002-0.607,P=0.022)was positively correlated with HIV infection.As for the nomogram prediction model,the area under the receiver-operating characteristic curve for 1-year survival of HIV-infected patients was 0.840(95%CI=0.690-1.000),and that for 3-year survival of HIV-infected patients was 0.870(95%CI=0.730-1.000).Conclusions Multiple selenoprotein genes with down-regulated expression levels were involved in the regulation of HIV infection and mother-to-child transmission.The abnormal high expression of TXNRD3 was positively correlated with HIV infection.The findings provide new ideas for the prevention,diagnosis,and treatment of acquired immunodeficiency syndrome.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Femenino , Transmisión Vertical de Enfermedad Infecciosa , Nomogramas , Selenoproteínas/genética
5.
Rheumatology (Oxford) ; 61(8): 3471-3480, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34888649

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis, but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS: MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, small hairpin RNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS: MGMT protein expression and mRNA levels were decreased (P = 0.02, P = 0.007) and promoter methylation was increased (P = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (P = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all P < 0.0001). Furthermore, DNA damage and apoptosis were increased in chondrocytes treated with T-2 toxin (all P < 0.0001), but were decreased after selenium treatment (P < 0.0001, P = 0.01). Decreased mRNA level and increased methylation of MGMT were found in the T-2 toxin group (P = 0.005, P = 0.002), while selenium reversed it (P = 0.02, P = 0.004). CONCLUSIONS: MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which could provide a therapeutic target for KBD.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , Cartílago Articular/metabolismo , Condrocitos/metabolismo , ADN , Metilación de ADN , Decitabina/farmacología , Regulación hacia Abajo , Guanina/análogos & derivados , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , ARN Mensajero/metabolismo , Toxina T-2/metabolismo
6.
J Bone Miner Metab ; 40(2): 317-326, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35059888

RESUMEN

INTRODUCTION: The aims of the study were to investigate the relationship between aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and Kashin-Beck disease (KBD), explore the effects of the rs3204689 polymorphism and methylation status on the expression levels of ALDH1A2, and further clarify the pathogenesis of KBD. MATERIALS AND METHODS: The genotype of ALDH1A2 rs3204689 was detected by PCR-RFLP in 103 KBD patients and 109 healthy controls in the whole blood. The mRNA level of ALDH1A2 was measured by qRT-PCR, and the protein expression was detected using IHC staining and Western blotting. The MSP-PCR was used to identify the ALDH1A2 methylation level. RESULTS: There were significant differences in G/G, G/C, and C/C frequencies of ALDH1A2 rs3204689 between the KBD and control groups (χ2 = 7.113, P = 0.029); the minor allele G of ALDH1A2 was associated with the risk of KBD (χ2 = 5.984, P = 0.014). The mRNA and protein levels of ALDH1A2 were increased in the whole blood and cartilage of KBD patients compared with the controls (P = 0.049, P < 0.0001, P = 0.019). Meanwhile, a statistically significant difference was observed between G/G, G/C and C/C genotype on mRNA expression (P = 0.039). The methylation level of the ALDH1A2 gene promoter region showed no significant difference between the KBD and control groups (χ2 = 0.317, P = 0.573). CONCLUSION: Our case-control study indicates that the common variant rs3204689 near ALDH1A2 is associated with KBD in Chinese population. The risk allele G of rs3204689 is statistically linked to the high expression of ALDH1A2, which is up-regulated in the cartilage and whole blood of KBD patients. Our findings suggest a potential role of ALDH1A2 in the pathogenesis of KBD.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Enfermedad de Kashin-Beck , Retinal-Deshidrogenasa , Familia de Aldehído Deshidrogenasa 1/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Sitios de Carácter Cuantitativo , Retinal-Deshidrogenasa/genética
7.
Chin Med Sci J ; 37(2): 142-150, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35796338

RESUMEN

Objective Iodothyronine deiodinases (DIOs) are important selenoproteins that play a key role in the bone and joint diseases. Osteoarthritis (OA) is the most prevalent joint disease especially in elders. This bioinformatic analysis was performed to explore the role of DIOs in OA pathogenesis. Methods The biological functions of selenoprotein DIOs were analyzed by bioinformatic techniques, including GenCLip 3.0, Database for Annotation, Visualization and Integrated Discovery (DAVID), STRING, Cytoscape, and Network Analyst. The expression of DIOs in the healthy individuals and OA patients was determined by mining OA-related microarray data in the gene expression omnibus (GEO) database of National Center for Biotechnology Information and performing a Meta-analysis of the data with Review Manager 5.3. Results Cluster analysis revealed that the function of the DIOs was associated with thyroid hormone receptor and iodothyronine; GO analysis showed that DIOs were mainly involved in biological processes, such as ethanol metabolism and phenol-containing compound metabolism and primarily involved in the cytochrome P450 metabolism of exogenous organisms and thyroid hormone signaling; SULT1A1 was the core node of the PPI network; miRNAs and thyroid hormones had some iterations with DIO1and DIO2; Meta-analysis showed that DIO3 expression was significantly up-regulated in OA patients (SMD = 0.31, 95%CI: 0.03, 0.59, P = 0.03). Conclusions The main biological functions of DIOs were closely associated with the regulation of thyroid hormone. And the up-regulated expression of DIO3 may have crucial impact on the occurrence of OA.


Asunto(s)
Fenómenos Biológicos , Osteoartritis , Anciano , Humanos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Osteoartritis/genética , Selenoproteínas , Hormonas Tiroideas/metabolismo
8.
Chin Med Sci J ; 37(1): 52-59, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35256049

RESUMEN

Objective This study was designed to determine the methylation profile of four CpGs and the genotypes of two CpG-SNPs located in promoter region of DIO2 in patients with Kashin-Beck disease (KBD). We also analyzed the interaction between the CpGs methylations and CpG-SNPs. Methods Whole blood specimens were collected from 16 KBD patients and 16 healthy subjects. Four CpGs and two CpG-SNPs in the promoter regions of DIO2 were detected using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The CpGs methylation levels were compared between samples from KBD patients and healthy subjects. The methylation levels were also analyzed in KBD patients with different CpG-SNP genotypes. Results The mRNA expression of DIO2 in whole blood of KBD patients was significnatly lower than in healthy controls (P <0.05). The methylation levels of DIO2-1_CpG_3 in KBD patients were significantly higher than those in healthy controls (P <0.05). The methylation levels of four CpGs were not significantly different between KBD patients and healthy controls. The methylation level of DIO2-1_CpG_3 in the promoter region of DIO2 in KBD patients with GA/AA genotype was significantly higher than that of KBD patients with GG genotype (P <0.05). Conclusion The methylation level of DIO2 increases in KBD patients. Similar trends exist in KBD carriers of variant genotypes of CpG-SNPs DIO2 rs955849187.


Asunto(s)
Yoduro Peroxidasa/genética , Enfermedad de Kashin-Beck , Estudios de Casos y Controles , Humanos , Enfermedad de Kashin-Beck/genética , Metilación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Yodotironina Deyodinasa Tipo II
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(6): 970-979, 2022 Dec.
Artículo en Zh | MEDLINE | ID: mdl-36621786

RESUMEN

Objective To investigate the expression of thioredoxin reductase 3(TXNRD3),a selenoprotein,in 33 human malignant tumors and then analyze its effect on the survival prognosis.Methods We employed the genotype-tissue expression project database,the cancer cell line encyclopedia,and the cancer genome atlas to explore the expression of TXNRD3 gene in 33 human malignant tumors and analyze its impact on the survival prognosis.Further,we explored the correlations of TXNRD3 with immune cells and immune infiltration in the tumor microenvironment,as well as with neoantigens,immune checkpoint genes,tumor mutational burden,and microsatellite instability.Subsequently,human samples were classified into high-and low-expression groups according to TXNRD3 gene expression levels,and the enrichment analysis of biological functions and signaling pathways was performed.Results The analysis with multiple databases showed that TXNRD3 was highly expressed in 15 tumors.The survival analysis showed that TXNRD3 was significantly associated with poor prognosis in pancreatic cancer patients.In addition,the expression level of TXNRD3 was correlated with immune infiltration in tumor microenvironment,neoantigens,immune checkpoint genes,tumor mutational burden,and microsatellite instability.TXNRD3 affected the expression of DNA mismatch repair genes.The gene set enrichment indicated that TXNRD3 was involved in regulating multiple signaling pathways associated with tumor metabolism and tumor immunity.Conclusion TXNRD3 is widely expressed in tumors and has a clinical value for the survival prognosis prediction and treatment of multiple tumors,demonstrating the potential of being a promising biomarker for targeted treatment of multiple tumors.


Asunto(s)
Neoplasias Pancreáticas , Reductasa de Tiorredoxina-Disulfuro , Humanos , Línea Celular , Inestabilidad de Microsatélites , Pronóstico , Reductasa de Tiorredoxina-Disulfuro/genética , Microambiente Tumoral
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(2): 276-285, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35538763

RESUMEN

Objective To investigate the relationship between the expression of glutathione peroxidase(GPX)genes and the clinical prognosis in glioma patients,and to construct and evaluate the model for predicting the prognosis of glioma. Methods The clinical information and GPX expression of 663 patients,including 153 patients of glioblastoma(GBM)and 510 patients of low-grade glioma(LGG),were obtained from The Cancer Genome Atlas(TCGA)database.The relationship between GPX expression and patient survival was analyzed.The key GPX affecting the prognosis of glioma was screened out by single- and multi-factor Cox's proportional-hazards regression models and validated by least absolute shrinkage and selection operator(Lasso)regression.Finally,we constructed the model for predicting the prognosis of glioma with the screening results and then used concordance index and calibration curve respectively to evaluate the discrimination and calibration of model. Results Compared with those in the control group,the expression levels of GPX1,GPX3,GPX4,GPX7,and GPX8 were up-regulated in glioma patients(all P<0.001).Moreover,the expression levels of other GPX except GPX3 were higher in GBM patients than in LGG patients(all P<0.001).The Kaplan-Meier curves showed that the progression-free survival of GBM with high expression of GPX1(P=0.013)and GPX4(P=0.040),as well as the overall survival,disease-specific survival,and progression-free survival of LGG with high expression of GPX1,GPX7,and GPX8,was shortened(all P<0.001).GPX7 and GPX8 were screened out as the key factors affecting the prognosis of LGG.The results were further used to construct a nomogram model,which suggested GPX7 was the most important variable.The concordance index of the model was 0.843(95%CI=0.809-0.853),and the calibration curve showed that the predicted and actual results had good consistency. Conclusion GPX7 is an independent risk factor affecting the prognosis of LGG,and the nomogram model constructed with it can be used to predict the survival rate of LGG.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Glioma/diagnóstico , Glutatión Peroxidasa/metabolismo , Humanos , Peroxidasas , Pronóstico , Modelos de Riesgos Proporcionales
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(6): 950-960, 2022 Dec.
Artículo en Zh | MEDLINE | ID: mdl-36621784

RESUMEN

Objective To investigate the expression regulation of autophagy-related genes(ATG)and the mechanism of autophagy in rheumatoid arthritis(RA).Methods The differentially expressed genes(DEG)of RA were identified from GSE55235 and GSE55457,on the basis of which the differentially expressed autophagy-related genes(DE-ATG)were selected from the Human Autophagy Database.STRING 11.0 and GeneMANIA were used to establish protein-protein interaction networks.Further,the transcription factor-gene-miRNA co-expression network was established via NetworkAnalyst and Cytoscape.Finally,receiver operating characteristic(ROC)curve and DrugBank were employed to evaluate the efficacy of the predicted biomarkers and the performance of drugs targeting DE-ATG.GraphPad Prism 8.2.1 and R 4.0.3 were used for statistical analysis and graphics.Results A total of 485 DEG were enriched in signaling pathways such as T cell activation,hormone regulation,osteoclast differentiation,RA,and chemokines.Eleven DE-ATG regulated the expression of RUNX1,TP53,SOX2,and hsa-mir-155-5p in synovial tissues of RA patients and were involved in the response to environmental factors such as 2,3,7,8-tetrachlorodibenzodioxin and silicon dioxide.The ROC curve analysis identified the DE-ATG with good sensitivity and specificity,such as MYC,MAPK8,CDKN1A,and TNFSF10,which can be used to distinguish certain phenotypes and serve as novel biomarkers for RA.Conclusions In RA,down-regulated DE-ATG expression may promote apoptosis and lysis of chondrocytes.The identified novel biomarkers provides new ideas and methods for diagnosing and treating RA.The establishment of transcription factor-miRNA-gene co-expression network provides direct evidence for dissecting synovial inflammation and articular cartilage destruction.


Asunto(s)
Artritis Reumatoide , MicroARNs , Humanos , Artritis Reumatoide/genética , MicroARNs/genética , Biomarcadores , Autofagia , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(5): 562-572, 2022 May 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-35753726

RESUMEN

OBJECTIVES: Renal cell carcinoma (RCC) is a renal cortical tumor with high clinical incidence. The effect of glutathione peroxidases (GPXs) on RCC and the possible mechanism are still unclear. This study aims to explore the expression level of GPXs gene in RCC and its effect on the clinical prognosis of patients with RCC via bioinformatics analysis. METHODS: The mRNA expressions of GPXs family genes were obtained from the public data of The Cancer Genome Atlas (TCGA) database. The Kruskal-Wails test was used to analyze the differences in mRNA expression of GPXs family genes between samples from patients with RCC and the normal population. UALAN databases were used to analyze the differences in protein expression of GPXs family genes between samples from patients with renal clear cell carcinoma and the normal population, and to evaluate the role of GPXs family genes in RCC. The Kaplan-Meier Plotter was used to analyze the correlation between different types of RCC and overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), and progression-free survival (PFS). Kaplan-Meier survival curve was drawn based on the GPX8 gene expression to study the relationship between GPX8 gene expression and prognosis of RCC patients. Based on the results of multivariate Cox regression analysis, a Nomogram scoring model for RCC prediction was established by introducing GPX8 gene. RESULTS: The mRNA expressions of GPX1 and GPX4 were higher in the sample of renal chromophobe cell carcinoma, renal clear cell carcinoma, and renal papillary cell carcinoma than those in the normal population (all P<0.01), and GPX7 and GPX8 were significantly over-expressed in patients with renal papillary cell carcinoma and renal clear cell carcinoma (all P<0.01). Compared with the normal group, the protein expressions of GPX1, GPX2, GPX7, and GPX8 were increased significantly in renal clear cell carcinoma (all P<0.01), while GPX3 and GPX4 expressions were decreased significantly (both P<0.01). The protein expressions of GPX1, GPX2, GPX7, and GPX8 were increased significantly in patients with renal clear cell carcinoma at different tumor grades (all P<0.01), while GPX3 and GPX4 expressions were decreased significantly (both P<0.01). Survival analysis showed that OS, DFS, DSS, and PFS were all decreased in patients with clear cell carcinoma compared with patients with papillary cell carcinoma and chromophobe cell carcinoma. According to the GPX8 level, patients were assigned into the low, medium, and high expression groups. Compared with the low GPX8 level group, the OS (P<0.01), DFS (P=0.03), DSS (P<0.01), and PFS (P=3.18×10-7) were significantly decreased in the high level group. Univariate Cox proportional regression analysis showed that the high level of GPX8 was associated with poor OS of 3 different types of renal cancer. Multifactorial analysis showed that GPX8 was an independent factor affecting the OS of patients with renal papillary cell carcinoma. Race and post tumor node metastasis (pTNM) typing were independent factors influencing the OS of patients with renal clear cell carcinoma. GPX8 and pTMN were independent factors influencing the OS of patients with renal chromophobe cell carcinoma. Based on these variables, the Nomogram risk models of 3 types of cell carcinoma were established, and the discrimination and calibration of the models were evaluated using the Consistency index (C-index) and calibration curves. The C-index of the risk model of renal papillary cell carcinoma was 0.62 (95% CI 0.51 to 1.00, P=0.03). The results of receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) was 0.88. The C-index of the risk model of renal clear cell carcinoma was 0.72 (95% CI 0.52 to 1.00, P=0.03). The results of ROC curve showed that the AUC was 0.90. The C-index of the risk model of chromophobe cell carcinoma of kidney was 0.90 (95% CI 0.85 to 1.00, P<0.01). The results of ROC curve showed that the AUC was 0.59. CONCLUSIONS: GPXs family genes, especially GPX8, are potential markers for poor prognosis of RCC, and the occurrence and development of RCC can be predicted in clinical practice based on the expressions of GPXs family genes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Neoplasias Renales/genética , Peroxidasas , Pronóstico , ARN Mensajero/genética
13.
Eur Spine J ; 30(10): 3115-3127, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34392419

RESUMEN

OBJECTIVE: We focus on providing the first comprehensive national dataset on the incidence, injury aetiology and mortality of TSCI in China. METHODS: A multi-stage stratified cluster sampling method was used. We included TSCI cases from all hospitals in three regions, nine provinces and 27 cities in China via search of electronic medical records and retrospectively analysed the characteristics of TSCI in China from 2009 to 2018. We estimated the incidence of TSCI in the total population and subgroups. RESULTS: There were 5954 actual cases in 2009, corresponding to a total estimated TSCI incidence of 45.1 cases per million population (95% CI, 44.0-46.3). There were 10,074 actual cases in 2018, corresponding to a total estimated TSCI incidence of 66.5 cases per million population (95% CI, 65.2-67.8) (P < 0.001; annual average percentage change (AAPC), 4.4%). From 2009 to 2018, the incidence of almost all sex/age groups showed an increasing trend over time (P < 0.001; AAPC, 0.7-8.8%). The elderly population (aged 65-74) displayed the highest incidence of TSCI (with an average annual incidence of 127.1 cases per million [95% CI, 119.8-134.3]). CONCLUSIONS: The TSCI incidence increased significantly from 2009 to 2018. The incidence in the elderly populations was consistently high and continues to increase over time. The mortality of TSCI patients in hospitals is relatively low and continues to decrease each year, but elderly individuals remain at a high risk of hospital death.


Asunto(s)
Traumatismos de la Médula Espinal , Anciano , China/epidemiología , Humanos , Incidencia , Proyectos de Investigación , Estudios Retrospectivos , Traumatismos de la Médula Espinal/epidemiología
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(1): 1-10, 2021 Jan 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-33678630

RESUMEN

OBJECTIVES: To study the gene expression of adipose tissue CD14+ cells in patients with Type 2 diabetes mellitus (T2DM) based on chip data, screen differentially expressed genes, and analyze their relationship with the environmental factors. METHODS: The data of GSE54350 were obtained from the public database of gene expression profiling. The data were pre-processed by Network Analyst, String 11.0, Cytoscape 3.7.1, and other analytical software. The differentially expressed genes were analyzed by gene ontology biological function and kyoto encycopedia of genes and genomes (KEGG) signaling pathway to establish differential gene protein interaction network, transcription factor-gene regulatory network, microRNA-gene regulatory network, environmental factors-gene regulatory network, and other interaction systems. RESULTS: The gene expression pattern of CD14+ cells in adipose tissue of obese T2DM patients was significantly different from that of obese non-T2DM patients. There were 19 differentially expressed genes with up-regulation. The differentially expressed genes were mainly involved in ARP2/3 complex regulation of actin cytoskeleton, positively associated with biological processes such as protein complex assembly, and involved in the phagocytic Fcγ receptor signaling pathways and receptor family signaling pathways. The protein-protein interaction networks showed that TNF was the core protein node. The microRNA-gene regulatory network showed that hsa-mir-124-3p interacted with differentially expressed genes; TNF, KYNU, RCAN1 and other related genes all interacted with environmental factors. CONCLUSIONS: The gene expression of adipose tissue CD14+ cells are significantly changed in obese T2DM patients. TNF may play an important role in the process of obesity affecting the immune status of T2DM patients. Multiple microRNAs, transcription factors, and environmental factors also play a role in the above process. This study provides new material and new ideas for further exploration of the impact of obesity on T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Tejido Adiposo , Biología Computacional , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/genética , Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Proteínas Musculares
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(11): 1203-1211, 2021 Nov 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-34911854

RESUMEN

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 can damage the myocardium directly, or activate the immune system, trigger a cytokine storm, and cause inflammatory cells to infiltrate the myocardial tissue and damage the myocardium. This study is based on the sequencing data to analyze the changes in gene expression of cardiomyocytes and macrophages after SARS-CoV-2 infection, and explore the potential effects of SARS-CoV-2 on the heart and immune system. METHODS: The public data set GSE151879 was retrieved. The online software Network Analyst was used to preprocess the data, and the differentially expressed genes (DEGs) [log2(fold change)>2, adjusted P-value<0.05] screening between the infection group and the control group in cardiomyocytes, human embryonic stem cell-derived cardiomyocytes, and macrophages were screened. Consistent common differentially expressed genes (CCDEGs) with the same expression pattern in cardiomyocytes and macrophages were obtained, and the online analysis software String was used to conduct enrichment analysis of their biological functions and signal pathways. Protein-protein interaction network, transcription factor-gene interaction network, miRNA-gene interaction network and environmental chemical-gene interaction network were established, and Cytoscape 3.72 was used to perform visualization. RESULTS: After data standardization, the data quality was excellent and it can ensure reliable results. Myocardial cell infection with SARS-CoV-2 and gene expression spectrum were changed significantly, including a total of 484 DEGs in adult cardiomyoblasts, a total of 667 DEGs in macrophages, and a total of 1 483 DEGs in human embryo source of cardiomyopathy. The Stum, mechanosensory transduction mediator homolog (STUM), dehydrogenase/reductase 9 (DHRS9), calcium/calmodulin dependent protein kinase II beta (CAMK2B), claudin 1(CLDN1), C-C motif chemokine ligand 2 (CCL2), TNFAIP3 interacting protein 3 (TNIP3), G protein-coupled receptor 84 (GPR84), and C-X-C motif chemokine ligand 1 (CXCL1) were identical in expression patterns in 3 types of cells. The protein-protein interaction suggested that CAMK2B proteins may play a key role in the antiviral process in 3 types of cells; and silicon dioxide (SiO2), benzodiazepine (BaP), nickel (Ni), and estradiol (E2) affect anti-SARS-CoV-2 processes of the 3 types of cells. CONCLUSIONS: CAMK2B, CLDN1, CCL2, and DHRS9 genes play important roles in the immune response of cardiomyocytes against SARS-CoV-2. SiO2, BaP, Ni, E2 may affect the cell's antiviral process by increasing the toxicity of cardiomyocytes, thereby aggravating SARS-CoV-2 harm to the heart.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Macrófagos , Miocitos Cardíacos , Dióxido de Silicio , Transcriptoma
16.
J Cell Physiol ; 235(12): 9946-9957, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32458485

RESUMEN

Kashin-Beck disease (KBD) is a complex endemic osteoarthropathy, which mainly occurs in the northeast to southwest China. Iodothyronine deiodinases 3 (DIO3) is one of the selenoproteins, which is closely related to bone metabolism and unclear to KBD. This study aims to investigate the role and associated mechanisms of methylation and expression of DIO3 with disease severity in patients with KBD. We performed a bioinformatics analysis first to identify the biological mechanisms involved in selenoproteins. The methylation status of the DIO3 gene and DIO3 gene expression, as well as DIO3-related regulatory genes in patients with KBD, were analyzed. We found that 15 CpG sites of six selenoproteins were hypomethylated with 5-azacytidine treatment. DIO3 hypermethylation was associated with an increased risk of KBD and may lead to downregulation of DIO3 gene expression as well as be an indicator of the severity of KBD, which may provide a new insight for gene-environment correlations and interactions in etiology and pathogenesis of KBD.


Asunto(s)
Metilación de ADN/genética , Yoduro Peroxidasa/genética , Enfermedad de Kashin-Beck/genética , Selenoproteínas/genética , Adolescente , China/epidemiología , Biología Computacional , Islas de CpG/genética , Femenino , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Kashin-Beck/epidemiología , Enfermedad de Kashin-Beck/patología , Masculino , Índice de Severidad de la Enfermedad
17.
J Cell Physiol ; 234(6): 8908-8917, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30317616

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a kind of chronic osteoarthropathy and degenerative joint disease. Epigenetic regulation in the gene expression dynamics has become increasingly important in OA. We performed a combined analysis of two types of microarray datasets (gene expression and DNA methylation) to identify methylation-based key biomarkers to provide a better understanding of molecular biological mechanisms of OA. METHODS: We obtained two expression profiling datasets (GSE55235, GSE55457) and one DNA methylation profiling data set (GSE63695) from the Gene Expression Omnibus. First, differentially expressed genes (DEGs) between patients with OA and controls were identified using the Limma package in R(v3.4.4). Then, function enrichment analysis of DEGs was performed using a DAVID database. For DNA methylation datasets, ChAMP methylation analysis package was used to identify differential methylation genes (DMGs). Finally, a comprehensive analysis of DEGs and DMGs was conducted to identify genes that exhibited differential expression and methylation simultaneously. RESULTS: We identified 112 DEGs and 2,896 DMGs in patients with OA compared with controls. Functional analysis of DEGs obtained that inflammatory responses, immune responses, and positive regulation of apoptosis, tumor necrosis factor (TNF) signaling pathway, and osteoclast differentiation may be involved in the pathogenesis of OA. Cross-analysis revealed 26 genes that exhibited differential expression and methylation in OA. Among them, ADAMTS9, FKBP5, and PFKBF3 were identified as valuable methylation-based biomarkers for OA. CONCLUSION: In summary, our study identified different molecular features between patients with OA and controls. This may provide new clues for clarifying the pathogenetic mechanisms of OA.


Asunto(s)
Proteína ADAMTS9/metabolismo , Regulación de la Expresión Génica/fisiología , Osteoartritis/metabolismo , Fosfofructoquinasa-2/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Proteína ADAMTS9/genética , Biomarcadores , Metilación de ADN , Bases de Datos Genéticas , Humanos , Fosfofructoquinasa-2/genética , Proteínas de Unión a Tacrolimus/genética , Transcriptoma
18.
J Cell Physiol ; 234(10): 17433-17443, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30820958

RESUMEN

Osteoarthritis (OA) is one of the most common forms of arthritis world widely. Some key genes and diagnostic markers have been reported due to the development of modern molecular biology technologies. However, the etiology and pathogenesis of OA remains unknown. In this study, an integrated network and pathway analysis towards the biological function of OA-associated genes was conducted to provide valuable information to further explore the etiology and pathogenesis of OA. A total of 2,548 genes which reported a statistically significant association with OA were screened. An integrated network and pathway analysis was performed to identify the pathways and genes most associated to OA. Moreover, OA-specific protein-protein interaction (PPI) network was constructed by cytocluster based on the Molecular Complex Detection Algorithm (MCODE) to screen its candidate biomarkers. Quantitative real-time polymerase chain reaction was used to confirm the expression levels and to validate the results of MCODE cluster analysis by six genes. The pathway networks suggested that extracellular matrix (ECM) organization, collagen degradation and collagen formation showed important associations with OA. In top two PPI clusters, 61 of the OA-associated genes were included in the OA-specific PPI network, which also included 23 candidate genes that are likely to be highly associated with OA based on MCODE clusters. Analysis of mRNA showed that the expression levels of COL9A1, COL9A2, ITGA3, COL9A3, ITGA2, and LAMA1 in the peripheral blood mononuclear cells of OA patients were significantly lower than those of the normal controls (p<0.005). To our knowledge, this is the first comprehensive and systematic report based on OA-related genes demonstrating that the functional destruction of collagen in cartilage may be a very important contributing factor to OA. Quantitative detection of collagen synthesis may be of great help in early identification and prediction of OA. Maintaining the quality and quantity of collagen can be a potential target for clinical treatment of OA in the future practice.


Asunto(s)
Redes Reguladoras de Genes/genética , Leucocitos Mononucleares/metabolismo , Osteoartritis/metabolismo , Mapas de Interacción de Proteínas/genética , Biomarcadores/análisis , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Leucocitos Mononucleares/patología , Osteoartritis/patología , ARN Mensajero/genética
19.
Med Sci Monit ; 25: 903-912, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30705250

RESUMEN

BACKGROUND The purpose of this study was to explore the immune mechanism of dendritic cells (DCs) against measles virus (MV), and to identify potential biomarkers to improve measles prevention and treatment. MATERIAL AND METHODS The gene expression profile of GSE980, which comprised 10 DC samples from human blood infected with MV (RNA was isolated at 3, 6, 12, and 24 h post-infection) and 4 normal DC control samples, was obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the MV-infected DC samples and the control samples were screened using Genevestigator software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed using GenCLip 2.0 and STRING 10.5 software. The protein-protein interaction (PPI) network was established using Cytoscape 3.4.0. RESULTS The gene expression profiles of MV-infected DCs were obviously changed. Twenty-six common DEGs (0.9%, MV-infected DCs vs. normal DCs) were identified at 4 different time points, including 14 down-regulated and 12 up-regulated genes (P=0.001). GO analysis showed that DEGs were significantly enriched in defense response to virus, type I interferon signaling pathway, et al. ISG15 and CXCL10 were the key genes in the PPI network of the DEGs, and may interact directly with the type I interferon signaling and defense response to virus signaling. CONCLUSIONS The DEGs increased gradually with the duration of MV infection. The type I interferon signaling pathway and the defense response to viral processes can be activated against MV by ISG15 and CXCL10 in DCs. These may provide novel targets for the treatment of MV.


Asunto(s)
Biología Computacional/métodos , Células Dendríticas/inmunología , Virus del Sarampión/inmunología , Biomarcadores , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Virus del Sarampión/patogenicidad , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Programas Informáticos , Transcriptoma/genética
20.
J Med Virol ; 90(7): 1199-1209, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29508932

RESUMEN

Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4+ and CD8+ T cells. The numbers of CD4+ and CD8+ T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4+ and CD8+ T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4+ and CD8+ T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4+ T cells counts and ratio of CD4+ /CD8+ T cells decreased while CD8+ T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4+ and CD8+ T cells at acute and chronic stage with the criterial of P-value <0.05 and fold change (FC) ≥2; 3) In acute HIV infection, type 1 interferon (IFN-1) pathway might played a critical role in response to HIV infection of T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4+ T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4+ and CD8+ T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Perfilación de la Expresión Génica , Infecciones por VIH/patología , VIH/inmunología , Interacciones Huésped-Patógeno , Biología Computacional , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA