Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 173, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870952

RESUMEN

BACKGROUND: Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD: A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS: For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iß levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS: The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Humanos , Atrofia Muscular , Diferenciación Celular , Fibras Musculares Esqueléticas
2.
FASEB J ; 36(12): e22670, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412502

RESUMEN

Inflammatory bone diseases include osteoarthritis (OA) and rheumatoid arthritis (RA), which can cause severe bone damage in a chronic inflammation state, putting tremendous pressure on the patients' families and government agencies regarding medical costs. In addition, the complexity of osteoimmunology makes research on these diseases difficult. Hence, it is urgent to determine the potential mechanisms and find effective drugs to target inflammatory bone diseases to reduce the negative effects of these diseases. Recently, pyroptosis, a gasdermin-induced necrotic cell death featuring secretion of pro-inflammatory cytokines and lysis, has become widely known. Based on the effect of pyroptosis on immunity, this process has gradually emerged as a vital component in the etiopathogenesis of inflammatory bone diseases. Herein, we review the characteristics and mechanisms of pyroptosis and then focus on its clinical significance in inflammatory bone diseases. In addition, we summarize the current research progress of drugs targeting pyroptosis to enhance the therapeutic efficacy of inflammatory bone diseases and provide new insights for future directions.


Asunto(s)
Enfermedades Óseas , Piroptosis , Humanos , Piroptosis/fisiología , Inflamación/patología , Citocinas/metabolismo , Muerte Celular
3.
Pharmacol Res ; 191: 106739, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948327

RESUMEN

Nearly half of all Asian non-small cell lung cancer (NSCLC) patients harbour epidermal growth factor receptor (EGFR) mutations, and first-generation EGFR tyrosine kinase inhibitors (TKIs) are one of the first-line treatments that have improved the outcomes of these patients. Unfortunately, 20% of these patients can not benefit from the treatment. The basis of this primary resistance is poorly understood. Therefore, overcoming EGFR-TKI primary resistance and maintaining the efficacy of TKIs has become a key issue. ß-Elemene, a sesquiterpene compound extracted from Curcuma aromatica Salisb. (wenyujing), has shown potent antitumor effects. In this research, we found that ß-elemene combined with erlotinib enhanced the cytotoxicity of erlotinib to primary EGFR-TKI-resistant NSCLC cells with EGFR mutations and that ferroptosis was involved in the antitumor effect of the combination treatment. We found that lncRNA H19 was significantly downregulated in primary EGFR-TKI-resistant NSCLC cell lines and was upregulated by the combination treatment. Overexpression or knockdown of H19 conferred sensitivity or resistance to erlotinib, respectively, in both in vitro and in vivo studies. The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that ß-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , ARN Largo no Codificante , Sesquiterpenos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , ARN Largo no Codificante/genética , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
4.
Soft Matter ; 14(40): 8090-8094, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30283943

RESUMEN

We have immobilized poly(ethylene glycol) (PEG) on the surfaces of poly(lactic-co-glycolic acid) (PLGA) nanoparticles by two different chemical methods, i.e., SOCl2 halogenate-alcoholysis and DCC dehydration. The immobilized PLGA nanoparticles were characterized by DLS, 1H NMR, FT-IR and laser trapping/confocal Raman spectroscopic techniques. As a result, especially the Raman spectra which were measured after optically trapping ca. 10 individual nanoparticles in solution indicated that the PLGA nanoparticles were successfully immobilized with the PEG by the chemical methods.

5.
Antonie Van Leeuwenhoek ; 111(10): 1845-1853, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29603043

RESUMEN

A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15-35 °C (optimum, 25-30 °C) and pH 6-11 (optimum, 7.5-8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA-DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G + C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (= CCTCC AB 2016294T = KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.


Asunto(s)
Organismos Acuáticos/microbiología , Dinoflagelados/microbiología , Bacterias Aerobias Gramnegativas/clasificación , ADN Bacteriano , Bacterias Aerobias Gramnegativas/química , Bacterias Aerobias Gramnegativas/genética , Bacterias Aerobias Gramnegativas/aislamiento & purificación , Metabolómica/métodos , Tipificación Molecular , Fenotipo , Filogenia , ARN Ribosómico 16S/genética
6.
Biochem Biophys Res Commun ; 482(2): 366-374, 2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27856242

RESUMEN

KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH)2D3 suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. Further studies revealed that 1, 25(OH)2D3-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH)2D3 induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages.


Asunto(s)
Proliferación Celular/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Lipopolisacáridos/administración & dosificación , Activación de Macrófagos/fisiología , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Animales , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación de Macrófagos/efectos de los fármacos , Ratones , FN-kappa B , Unión Proteica , Subunidades de Proteína/metabolismo , Células RAW 264.7 , Vitamina D/administración & dosificación
7.
Biochim Biophys Acta ; 1852(7): 1477-89, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25892184

RESUMEN

In response to vascular injury, inflammation, oxidative stress, and cell proliferation often occur simultaneously in vascular tissues. We previously observed that microRNA-155 (miR-155), which is implicated in proliferation and inflammation is involved in neointimal hyperplasia; however, the molecular mechanisms by which it regulates these processes remain largely unknown. In this study, we observed that vascular smooth muscle cell (VSMC) proliferation and neointimal formation in wire-injured femoral arteries were reduced by the loss of miR-155 and increased by the gain of miR-155. The proliferative effect of miR-155 was also observed in cultured VSMCs. Notably, expression of the miR-155-target protein mammalian sterile 20-like kinase 2 (MST2) was increased in the injured arteries of miR-155-/- mice. miR-155 directly repressed MST2 and thus activated the extracellular signal-regulated kinase (ERK) pathway by promoting an interaction between RAF proto-oncogene serine/threonine-protein kinase (Raf-1) and mitogen-activated protein kinase kinase (MEK) and stimulating inflammatory and oxidative stress responses; together, these effects lead to VSMC proliferation and vascular remodeling. Our data reveal that MST2 mediates miR-155-promoted inflammatory and oxidative stress responses by altering the interaction of MEK with Raf-1 and MST2 in response to vascular injury. Therefore, suppression of endogenous miR-155 might be a novel therapeutic strategy for vascular injury and remodeling.


Asunto(s)
Proliferación Celular , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células HEK293 , Humanos , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/fisiología , Neointima/patología , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Serina-Treonina Quinasa 3
8.
Cell Biochem Funct ; 33(4): 226-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25907265

RESUMEN

Tongxinluo (TXL) is a compound prescription formulated according to the meridian theory of traditional Chinese medicine. It may play an important role in cardiovascular protection by improving endothelial cell function. The aim of present study was to investigate whether endothelial protection with TXL is related to its regulation of tight junction protein expression. Human cardiac microvascular endothelial cells (HCMECs) were cultured and treated with 10(-7) mol l(-1) angiotensin II (Ang II) and the different doses of TXL; the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin was determined by Western blotting and real-time PCR. Gain-of-function and loss-of-function of Krüppel-like factor 5 (KLF5) were carried out in HCMEC transfected with either KLF5 adenovirus pAd-KLF5 or siRNA specific for KLF5. Angiotensinogen transgenic mice were treated with TXL by oral administration of TXL of 0.75 g kg(-1) day(-1) , and immunohistochemical staining was performed with antioccludin, anticlaudin, anti-VE-cadherin, antibeta-catenin and anti-KLF5 antibodies. Ang II treatment significantly reduced the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin in cultured HCMECs. TXL pretreatment could abrogate the down-regulation of these tight junction proteins induced by Ang II. Ang II treatment also decreased KLF5 expression at the mRNA and protein levels; TXL pretreatment markedly reversed the inhibitory effect of Ang II on KLF5 expression. Gain-of-function and loss-of-function of KLF5 showed that KLF5 mediated the expression of tight junction proteins in HCMECs. TXL-enhanced expression of the tight junction proteins was mediated by KLF5. In angiotensinogen transgenic mice, TXL also increased the tight junction protein levels by inducing KLF5 expression. Chinese medicine TXL increases tight junction protein levels by inducing KLF5 expression in microvascular endothelial cells.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Endotelio Vascular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Angiotensina II/farmacología , Animales , Western Blotting , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Técnicas para Inmunoenzimas , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Uniones Estrechas/efectos de los fármacos
9.
Am J Physiol Heart Circ Physiol ; 307(4): H552-62, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951754

RESUMEN

Tongxinluo (TXL), a traditional Chinese medicine, has multiple vasoprotective effects, including anti-inflammation. MicroRNA-155 (miR-155) is involved in vascular inflammation and atherosclerosis. However, a direct relationship between TXL and miR-155 in the development of vascular inflammation and remodeling had not yet been shown. The objective of the present study was to investigate whether TXL exerts an inhibitory effect on the vascular inflammatory response and neointimal hyperplasia by regulating miR-155 expression. Using the carotid artery ligation model in mice, we have shown that TXL dose dependently inhibited neointimal formation and reduced the vascular inflammatory response by inhibiting inflammatory cytokine production and macrophage infiltration. miR-155 was induced by carotid artery ligation, and neointimal hyperplasia was strongly reduced in miR-155(−/−) mice. In contrast, miR-155 overexpression partly reversed the inhibitory effect of TXL on neointimal hyperplasia. In bone marrow-derived macrophages, miR-155 and TNF-α formed a positive feedback loop to promote the inflammatory response, which could be blocked by TXL. Furthermore, TXL increased Akt1 protein expression and phosphorylation in TNF-α-stimulated marrow-derived macrophages, and knockdown of Akt1 abrogated the TXL-induced suppression of miR-155. In conclusion, TXL inhibits the vascular inflammatory response and neointimal hyperplasia induced by carotid artery ligation in mice. Suppression of miR-155 expression mediated by Akt1 and blockade of the feedback loop between miR-155 and TNF-α are important pathways whereby TXL exerts its vasoprotective effects.


Asunto(s)
Arterias Carótidas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Retroalimentación Fisiológica , MicroARNs/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Túnica Íntima/metabolismo , Animales , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Medicamentos Herbarios Chinos/uso terapéutico , Hiperplasia/tratamiento farmacológico , Hiperplasia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/genética , Túnica Íntima/efectos de los fármacos , Túnica Íntima/patología
10.
Abdom Radiol (NY) ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305292

RESUMEN

PURPOSE: Lifelong re-examination of CT enterography (CTE) in patients with inflammatory bowel disease (IBD) may be necessary, and reducing radiation exposure during CT examinations is crucial. We investigated the potential application of deep learning reconstruction (DLR) in CTE to reduce radiation dose and improve image quality in IBD. METHODS: Thirty-six patients with known or suspected IBD were prospectively recruited to the low-dose CTE (LDCTE) group, while forty patients were retrospectively selected from previous clinical standard-dose CTE (STDCTE) scans as controls. STDCTE images were reconstructed with hybrid-IR (adaptive iterative dose reduction 3-dimensional [AIDR3D], standard setting); LDCTE images were reconstructed with AIDR3D and DLR (Advanced Intelligence ClearIQ Engine [AiCE], Body mild/standard/strong, Sharp Body mild/standard/strong setting). The effective radiation dose (ED), image noise, signal-to-noise ratio (SNR), overall image quality, subjective image noise, and diagnostic effectiveness were compared between the LDCTE and STDCTE groups. RESULTS: Compared with STDCTE, the ED of LDCTE was lower by 54.1% (p<0.001). Compared with STDCTE-AIDR3D, LDCTE-AIDR3D reconstruction objective image noise and SNR were greater (p<0.05), the subjective overall image quality was lower (p<0.05), and the diagnostic efficiency was lower (AUC=0.52, p<0.05). The SNRs of reconstructedimages of LDCTE-AiCE Body Strong and LDCTE-AiCE Body Sharp standard/strong groups were greater than that of STDCTE-AIDR3D group (all p<0.05), and the diagnostic performance was better than or comparable to that of STDCTE; the AUCs were 0.83, 0.76 and 0.76, respectively CONCLUSION: Compared with STDCTE with AIDR3D, LDCTE with DLR effectively reduced the radiation dose and improve image quality in IBD patients.

11.
Insights Imaging ; 15(1): 165, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940988

RESUMEN

OBJECTIVES: We aimed to develop MRI-based radiomic models (RMs) to improve the diagnostic accuracy of radiologists in characterizing intestinal fibrosis in patients with Crohn's disease (CD). METHODS: This retrospective study included patients with refractory CD who underwent MR before surgery from November 2013 to September 2021. Resected bowel segments were histologically classified as none-mild or moderate-severe fibrosis. RMs based on different MR sequence combinations (RM1: T2WI and enhanced-T1WI; RM2: T2WI, enhanced-T1WI, diffusion-weighted imaging [DWI], and apparent diffusion coefficient [ADC]); RM3: T2WI, enhanced-T1WI, DWI, ADC, and magnetization transfer MRI [MTI]), were developed and validated in an independent test cohort. The RMs' diagnostic performance was compared to that of visual interpretation using identical sequences and a clinical model. RESULTS: The final population included 123 patients (81 men, 42 women; mean age: 30.26 ± 7.98 years; training cohort, n = 93; test cohort, n = 30). The area under the receiver operating characteristic curve (AUC) of RM1, RM2, and RM3 was 0.86 (p = 0.001), 0.88 (p = 0.001), and 0.93 (p = 0.02), respectively. The decision curve analysis confirmed a progressive improvement in the diagnostic performance of three RMs with the addition of more specific sequences. All RMs performance surpassed the visual interpretation based on the same MR sequences (visual model 1, AUC = 0.65, p = 0.56; visual model 2, AUC = 0.63, p = 0.04; visual model 3, AUC = 0.77, p = 0.002), as well as the clinical model composed of C-reactive protein and erythrocyte sedimentation rate (AUC = 0.60, p = 0.13). CONCLUSIONS: The RMs, utilizing various combinations of conventional, DWI and MTI sequences, significantly enhance radiologists' ability to accurately characterize intestinal fibrosis in patients with CD. CRITICAL RELEVANCE STATEMENT: The utilization of MRI-based RMs significantly enhances the diagnostic accuracy of radiologists in characterizing intestinal fibrosis. KEY POINTS: MRI-based RMs can characterize CD intestinal fibrosis using conventional, diffusion, and MTI sequences. The RMs achieved AUCs of 0.86-0.93 for assessing fibrosis grade. MRI-radiomics outperformed visual interpretation for grading CD intestinal fibrosis.

12.
Cancer Lett ; 575: 216413, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37769798

RESUMEN

Immune checkpoint blockade therapy has revolutionized the field of cancer treatment, leading to durable responses in patients with advanced and metastatic cancers where conventional therapies were insufficient. However, factors like immunosuppressive cells and immune checkpoint molecules within the tumor microenvironment (TME) can suppress the immune system and thus negatively affect the efficiency of immune checkpoint inhibitors. Pyroptosis, a gasdermin-induced programmed cell death, could transform "cold tumors" to "hot tumors" to improve the milieu of TME, thus enhancing the immune response and preventing tumor growth. Recently, evidence showed that epigenetics could regulate pyroptosis, which further affects tumorigenesis, suggesting that epigenetics-based tumor cells pyroptosis could be a promising therapeutic strategy. Hence, this review focuses on the pyroptotic mechanism and summarizes three common types of epigenetics, DNA methylation, histone modification, and non-coding RNA, all of which have a role in regulating the expression of transcription factors and proteins involved in pyroptosis in cancer. Especially, we discuss targeting strategies on epigenetic-regulated pyroptosis and provide insights on the future trend of cancer research which may fuel cancer therapies into a new step.

13.
Epigenetics Chromatin ; 16(1): 9, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36890610

RESUMEN

Polycomb group RING finger protein 6 (PCGF6) plays an important role as a regulator of transcription in a variety of cellular processes, including tumorigenesis. However, the function and expression of PCGF6 in papillary RCC (pRCC) remain unclear. In the present study, we found that PCGF6 expression was significantly elevated in pRCC tissues, and high expression of PCGF6 was associated with poor survival of patients with pRCC. The overexpression of PCGF6 promoted while depletion of PCGF6 depressed the proliferation of pRCC cells in vitro. Interestingly, myc-related zinc finger protein (MAZ), a downstream molecular of PCGF6, was upregulated in pRCC with hypomethylation promoter. Mechanically, PCGF6 promoted MAZ expression by interacting with MAX and KDM5D to form a complex, and MAX recruited PCGF6 and KDM5D to the CpG island of the MAZ promoter and facilitated H3K4 histone demethylation. Furthermore, CDK4 was a downstream molecule of MAZ that participated in PCGF6/MAZ-regulated progression of pRCC. These results indicated that the upregulation of PCGF6 facilitated MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the MAZ promoter. The PCGF6/MAZ/CDK4 regulatory axis may be a potential target for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN , Complejo Represivo Polycomb 1/metabolismo , Antígenos de Histocompatibilidad Menor , Histona Demetilasas , Quinasa 4 Dependiente de la Ciclina/genética
14.
Heliyon ; 9(10): e20621, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842634

RESUMEN

Objective: Studies have shown that Wuzi Yanzong Pill (WYP) can be used to treat neurological diseases, but its mechanisms for multiple sclerosis (MS) remain unclear. This study aims to determine the effect of WYP on MS in an animal model of experimental autoimmune encephalomyelitis (EAE), and explore its mechanism. To provide theoretical basis for the clinical treatment of MS with WYP. Methods: C57BL/6 female mice were randomly divided into Blank control, EAE control, low dose WYP, medium dose WYP, and high dose WYP groups. One week before model generation, the mice were gavaged with saline (50 mL/kg/d) in Blank control and EAE control groups. The treatment groups was gavaged with different doses of WYP solution (4, 8, or 16 g/kg/d respectively) Clinical scores were recorded daily. Sample collection was conducted on the 14th and 28th days, respectively The expressions of IL-10, IL-17, IL-12, TNF-α and IFN-γ in spleen were detected by ELISA. The expressions of ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, CCR2 in spleen, brain and spinal cord were detected by Western Blot. The types of macrophages and the contents of intracellular IL-10 and IL-12 were detected by Flow Cytometry. The contents of TNF-α and TLR4 mRNA in the spleen were detected by RT-PCR. Results: WYP treatment improved the clinical score of EAE mice in a significant dose-dependent manner, with the WYP high-dose group showed the most significant improvement in clinical score. Compared with the EAE control group, WYP high dose group had significantly lower levels of IL-17, IFN-γ, ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, and CCR2 as well as TNF-α and TLR4 mRNA, but increased the number of M2 macrophages and IL-10. Conclusion: WYP treatment relieves clinical symptoms in EAE mice, which may be related to regulate inflammatory pathway and inhibiting expressions of inflammatory cytokines.

15.
Eur J Radiol ; 162: 110766, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36924538

RESUMEN

BACKGROUND: More than half of patients with Crohn's disease (CD) require at least one surgery for symptom management; however, approximately half of the patients may experience postoperative anastomotic recurrence (PAR). OBJECTIVES: This study aims to develop and validate a preoperative computed tomography enterography (CTE)-based radiomics signature to predict early PAR in CD. DESIGN: A total of 186 patients with CD (training cohort, n = 134; test cohort, n = 52) who underwent preoperative CTE and surgery between January 2014 and June 2020 were included in this retrospective multi-centre study. METHODS: 106 radiomic features were initially extracted from intestinal lesions and peri-intestinal mesenteric fat, respectively; significant radiomic features were selected from them and then used to develop intestinal or mesenteric radiomics signatures, using the least absolute shrinkage and selection operator and a Cox regression model. A radiomics-based nomogram incorporating these signatures with clinical-radiological factors was created for comparison with a model based on clinical-radiological features alone. RESULTS: 68 of 134 patients in training cohort and 16 of 52 patients in test cohort suffered from PAR. The intestinal radiomic signature (hazard ratio [HR]: 2.17; 95% confidence interval [CI]: 1.32-3.58; P = 0.002) and mesenteric radiomic signature (HR: 2.19; 95% CI: 1.14-4.19; P = 0.018) were independent risk factors for PAR in the training cohort as per a multivariate analysis. The radiomics-based nomogram (C-index: 0.710; 95% CI: 0.672-0.748) yielded superior predictive performance than the clinical-radiological model (C-index, 0.607; 95% CI: 0.582-0.632) in the test cohort. Decision curve analysis demonstrated that the radiomics-based nomogram outperformed the clinical-radiological model in terms of clinical usefulness. CONCLUSIONS: Preoperative mesenteric and intestinal CTE radiomics signatures are potential non-invasive predictors of PAR in postoperative patients with CD.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/cirugía , Tomografía Computarizada por Rayos X/métodos , Nomogramas , Radiografía , Estudios Retrospectivos
16.
Sci Rep ; 13(1): 436, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624121

RESUMEN

We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.


Asunto(s)
Fibras Musculares Esqueléticas , Transducción de Señal , Isoproterenol/farmacología , Isoproterenol/metabolismo , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , ARN Interferente Pequeño/metabolismo
17.
United European Gastroenterol J ; 10(10): 1179-1193, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461914

RESUMEN

Cross-sectional imaging-ultrasonography, computed tomography enterography, and magnetic resonance enterography-is a routine and indispensable tool for patients with Crohn's disease (CD) that helps to detect or monitor disease characteristics before, during, and after CD treatment. New emerging radiological technologies may have further clinical applications in the management of CD. In this review article, we focus on the latest developments in cross-sectional imaging in CD research, including its role in intra- and extra-luminal lesion detection, intestinal inflammation and fibrosis grading, therapeutic response assessment and outcome prediction, postoperative recurrence detection and prediction, and the gut-brain axis.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Intestino Delgado/patología , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/patología , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Enfermedades Inflamatorias del Intestino/patología , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos
18.
Chin J Integr Med ; 28(10): 867-871, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35508859

RESUMEN

Applying Chinese medicine (CM) is an important strategy for malignant tumor treatment in China. One of the significant characteristics of CM is to treat diseases based on syndrome differentiation. For Western medicine, it is of important clinical significance to formulate guidelines for the diagnosis and treatment of cancer patients based on the characteristics of disease differentiation. In Chinese clinical practice, the combination of disease differentiation and syndrome differentiation is an important feature for cancer treatment in the past. Currently, molecular profiling and genomic analysis-based precision medicine optimizes the anticancer drug design and holds the greatest success in treating cancer patients. Therefore, we want to know which populations of cancer patients can benefit more from CM treatment if the theory of precision medicine is applied to CM clinical practice. So, we developed a novel diagnostic and therapeutic strategy "disease-syndrome differentiation-genomic profiling-prescriptions" for cancer patients by CM syndrome differentiation and precision medicine. As a result, this strategy has greatly enhanced the anti-tumor efficacy of CM and improved clinical outcomes for cancer patients with some gene mutations. Our idea will hopefully establish a novel approach for the inheritance and innovation of CM.


Asunto(s)
Antineoplásicos , Medicamentos Herbarios Chinos , Neoplasias , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Síndrome
19.
Oncogene ; 41(8): 1166-1177, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35058597

RESUMEN

BEST4 is a member of the bestrophin protein family that plays a critical role in human intestinal epithelial cells. However, its role and mechanism in colorectal cancer (CRC) remain largely elusive. Here, we investigated the role and clinical significance of BEST4 in CRC. Our results demonstrate that BEST4 expression is upregulated in clinical CRC samples and its high-level expression correlates with advanced TNM (tumor, lymph nodes, distant metastasis) stage, LNM (lymph node metastasis), and poor survival. Functional studies revealed that ectopic expression of BEST4 promoted CRC cell proliferation and metastasis, whereas the depletion of BEST4 had the opposite effect both in vitro and in vivo. Mechanistically, BEST4 binds to the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and promotes p110 kinase activity; this leads to activation of Akt signaling and expression of MYC and CCND1, which are critical regulators of cell proliferation and metastasis. In clinical samples, the expression of BEST4 is positively associated with the expression of phosphorylated Akt, MYC and CCND1. Pharmacological inhibition of Akt activity markedly repressed BEST4-mediated Akt signaling and proliferation and metastasis of CRC cells. Importantly, the interaction between BEST4 and p85α was also enhanced by epidermal growth factor (EGF) in CRC cells. Therapeutically, BEST4 suppression effectively sensitized CRC cells to gefitinib treatment in vivo. Taken together, our findings indicate the oncogenic potential of BEST4 in colorectal carcinogenesis and metastasis by modulating BEST4/PI3K/Akt signaling, highlighting a potential strategy for CRC therapy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt
20.
Artículo en Inglés | MEDLINE | ID: mdl-34335834

RESUMEN

The transforming growth factor-ß (TGF-ß) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-ß signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-ß signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-ß signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-ß signaling. Specifically, this review evaluates TGF-ß's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-ß signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA