RESUMEN
Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.
Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Glucógeno/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa-6-Fosfatasa/metabolismo , Glucógeno Fosforilasa/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Vía de Señalización Hippo , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estadificación de Neoplasias , Transición de Fase , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasa 3/metabolismo , Proteínas Señalizadoras YAP/metabolismoRESUMEN
Mitochondria need to be juxtaposed to phagosomes for the synergistic production of ample reactive oxygen species (ROS) in phagocytes to kill pathogens. However, how phagosomes transmit signals to recruit mitochondria has remained unclear. Here we found that the kinases Mst1 and Mst2 functioned to control ROS production by regulating mitochondrial trafficking and mitochondrion-phagosome juxtaposition. Mst1 and Mst2 activated the GTPase Rac to promote Toll-like receptor (TLR)-triggered assembly of the TRAF6-ECSIT complex that is required for the recruitment of mitochondria to phagosomes. Inactive forms of Rac, including the human Rac2(D57N) mutant, disrupted the TRAF6-ECSIT complex by sequestering TRAF6 and substantially diminished ROS production and enhanced susceptibility to bacterial infection. Our findings demonstrate that the TLR-Mst1-Mst2-Rac signaling axis is critical for effective phagosome-mitochondrion function and bactericidal activity.
Asunto(s)
Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones Bacterianas/etiología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Actividad Bactericida de la Sangre/inmunología , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/microbiología , Fagocitos/microbiología , Fagosomas/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Sepsis/etiología , Sepsis/inmunología , Sepsis/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Receptores Toll-Like/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismoRESUMEN
The second-order nonlinear transport illuminates a frequency-doubling response emerging in quantum materials with a broken inversion symmetry. The two principal driving mechanisms, the Berry curvature dipole and the skew scattering, reflect various information including ground-state symmetries, band dispersions, and topology of electronic wave functions. However, effective manipulation of them in a single system has been lacking, hindering the pursuit of strong responses. Here, we report on the effective manipulation of the two mechanisms in a single graphene moiré superlattice, AB-BA stacked twisted double bilayer graphene. Most saliently, by virtue of the high tunability of moiré band structures and scattering rates, a record-high second-order transverse conductivity â¼ 510 µm S V-1 is observed, which is orders of magnitude higher than any reported values in the literature. Our findings establish the potential of electrically tunable graphene moiré systems for nonlinear transport manipulations and applications.
RESUMEN
Time reversal symmetry breaking in superconductors, resulting from external magnetic fields or spontaneous magnetization, often leads to unconventional superconducting properties. In this way, an intrinsic phenomenon called the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state may be realized by the Zeeman effect. Here, we construct the FFLO state in an artificial CrOCl/NbSe2 van der Waals (vdW) heterostructure by utilizing the superconducting proximity effect of NbSe2 flakes. The proximity-induced superconductivity demonstrates a considerably weak gap of about 0.12 meV, and the in-plane upper critical field reveals the behavior of the FFLO state. First-principles calculations uncover the origin of the proximitized superconductivity, which indicates the importance of Cr vacancies or line defects in CrOCl. Moreover, the FFLO state could be induced by the inherent large spin splitting in CrOCl. Our findings not only provide a practical scheme for constructing the FFLO state but also inspire the discovery of an exotic FFLO state in other two-dimensional vdW heterostructures.
RESUMEN
Multiple Endocrine Neoplasia 1 gene (MEN1), which is known to be a tumor suppressor gene in lung tissues, encodes a 610 amino acid protein menin. Previous research has proven that MEN1 deficiency promotes the malignant progression of lung cancer. However, the biological role of this gene in the immune microenvironment of lung cancer remains unclear. In this study, we found that programmed cell death-ligand 1 (PD-L1) is upregulated in lung-specific KrasG12D mutation-induced lung adenocarcinoma in mice, after Men1 deficiency. Simultaneously, CD8+ and CD3+ T cells are depleted, and their cytotoxic effects are suppressed. In vitro, PD-L1 is inhibited by the overexpression of menin. Mechanistically, we found that MEN1 inactivation promotes the deubiquitinating activity of COP9 signalosome subunit 5 (CSN5) and subsequently increases the level of PD-L1.
Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Escape del Tumor , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Escape del Tumor/genética , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitinación , MutaciónRESUMEN
The use of membrane-based guided bone regeneration techniques has great potential for single-stage reconstruction of critical-sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and ß-TCP particles into a Poly(lactic acid-carbonate (PDT) composite nano-absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.
RESUMEN
OBJECTIVES: T helper 9 (Th9) cells are recognised for their characteristic expression of the transcription factor PU.1 and production of interleukin-9 (IL-9), which has been implicated in various autoimmune diseases. However, its precise relationship with rheumatoid arthritis (RA) pathogenesis needs to be further clarified. METHODS: The expression levels of PU.1 and IL-9 in patients with RA were determined by ELISA, western blotting (WB) and immunohistochemical staining. PU.1-T cell-conditional knockout (KO) mice, IL-9 KO and IL-9R KO mice were used to establish collagen antibody-induced arthritis (CAIA), respectively. The inhibitor of PU.1 and IL-9 blocking antibody was used in collagen-induced arthritis (CIA). In an in vitro study, the effects of IL-9 were investigated using siRNAs and IL-9 recombinant proteins. Finally, the underlying mechanisms were further investigated by luciferase reporter analysis, WB and Chip-qPCR. RESULTS: The upregulation of IL-9 expression in patients with RA exhibited a positive correlation with clinical markers. Using CAIA and CIA model, we demonstrated that interventions targeting PU.1 and IL-9 substantially mitigated the inflammatory phenotype. Furthermore, in vitro assays provided the proinflammatory role of IL-9, particularly in the hyperactivation of macrophages and fibroblast-like synoviocytes. Mechanistically, we uncovered that PU.1 and IL-9 form a positive feedback loop in RA: (1) PU.1 directly binds to the IL-9 promoter, activating its transcription and (2) Th9-derived IL-9 induces PU.1 via the IL-9R-JAK1/STAT3 pathway. CONCLUSIONS: These results support that the PU.1-IL-9 axis forms a positive loop in Th9 dysregulation of RA. Targeting this signalling axis presents a potential target approach for treating RA.
RESUMEN
The silicon thermo-optic switch (TOS) is one of the most fundamental and crucial blocks in large-scale silicon photonic integrated circuits (PICs). An energy-efficient silicon TOS with ultrahigh extinction ratio can effectively mitigate cross talk and reduce power consumption in optical systems. In this Letter, we demonstrate a silicon TOS based on cascading Mach-Zehnder interferometers (MZIs) with spiral thermo-optic phase shifters. The experimental results show that an ultrahigh extinction ratio of 58.8â dB is obtained, and the switching power consumption is as low as 2.32â mW/π without silicon air trench. The rise time and fall time of the silicon TOS are about 10.8 and 11.2â µs, respectively. Particularly, the figure of merit (FOM) has been improved compared with previously reported silicon TOS. The proposed silicon TOS may find potential applications in optical switch arrays, on-chip optical delay lines, etc.
RESUMEN
ß-arrestin2, a pivotal protein within the arrestin family, is localized in the cytoplasm, plasma membrane and nucleus, and regulates G protein-coupled receptors (GPCRs) signaling. Recent evidence shows that ß-arrestin2 plays a dual role in regulating GPCRs by mediating desensitization and internalization, and by acting as a scaffold for the internalization, kinase activation, and the modulation of various signaling pathways, including NF-κB, MAPK, and TGF-ß pathways of non-GPCRs. Earlier studies have identified that ß-arrestin2 is essential in regulating immune cell infiltration, inflammatory factor release, and inflammatory cell proliferation. Evidently, ß-arrestin2 is integral to the pathological mechanisms of inflammatory immune diseases, such as inflammatory bowel disease, sepsis, asthma, rheumatoid arthritis, organ fibrosis, and tumors. Research on the modulation of ß-arrestin2 offers a promising strategy for the development of pharmaceuticals targeting inflammatory immune diseases. This review meticulously describes the roles of ß-arrestin2 in cells associated with inflammatory immune responses and explores its pathological relevance in various inflammatory immune diseases.
RESUMEN
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Asunto(s)
Vía de Señalización Hippo , Interleucina-6 , Regeneración Hepática , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Receptor de Angiotensina Tipo 2 , Transducción de Señal , Animales , Masculino , Ratones , Acetaminofén , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Proteínas Señalizadoras YAP/metabolismoRESUMEN
Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.
Asunto(s)
Catequina , Etanol , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Etanol/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , FN-kappa B/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment. METHODS: A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA). RESULTS: The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under the curve (AUC) of 0.98(95% CI: 0.97-0.99) for the training cohort and 0.79(95% CI: 0.67-0.90) for the test cohort. In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy. CONCLUSION: DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).
Asunto(s)
Carcinoma de Células Escamosas , Aprendizaje Profundo , Neoplasias del Cuello Uterino , Femenino , Humanos , Radioterapia Adyuvante , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/radioterapia , Radiómica , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Imagen por Resonancia Magnética , Estudios RetrospectivosRESUMEN
The clinical application of tumor necrosis factor-α (TNF-α) is limited by its short half-life, subeffective concentration in the targeted area and severe systemic toxicity. In this study, the recombinant polypeptide S4-TNF-α was constructed and coupled with chitosan-modified superparamagnetic iron oxide nanoparticles (S4-TNF-α-SPIONs) to achieve pH-sensitive controlled release and active tumor targeting activity. The isoelectric point (pI) of S4-TNF-α was reconstructed to approach the pH of the tumor microenvironment. The negative-charge S4-TNF-α was adsorbed to chitosan-modified superparamagnetic iron oxide nanoparticles (CS-SPIONs) with a positive charge through electrostatic adsorption at physiological pH. The acidic tumor microenvironment endowed S4-TNF-α with a zero charge, which accelerated S4-TNF-α release from CS-SPIONs. Our studies showed that S4-TNF-α-SPIONs displayed an ideal pH-sensitive controlled release capacity and improved antitumor effects. Our study presents a novel approach to enhance the pH-sensitive controlled-release of genetically engineered drugs by adjusting their pI to match the pH of the tumor microenvironment.
Asunto(s)
Preparaciones de Acción Retardada , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Humanos , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Ratones , Nanopartículas Magnéticas de Óxido de Hierro/química , Quitosano/química , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB CRESUMEN
Tea (Camellia sinensis) is consumed worldwide for its numerous benefits and China lead the world production. In March 2023, leaf spots were observed on approximately 10% of tea plants in a 50-ha commercial tea plantation in Menghai (21°46'13"N, 100°30'6"E), Yunnan, China. Initial symptoms appeared as small spots, which progressively expanded and spread over the entire leaf surface. Subsequently, pale pink mold layers developed from the lesions (Fig. S1). To isolate the pathogen, small leaf pieces (3 × 3 mm) were cut from the margins of the lesions, sterilized with 75% ethanol for 30 sec and 0.5% NaClO for another 30 sec, and rinsed three times with sterile water. The pieces were placed on acidified potato dextrose agar (PDA) plates and incubated in darkness at 28°C. A total of 15 fungal isolates with identical morphologies were collected. The colonies appeared pale pink with white mycelia initially then turned orange-pink at the center and light white at the edges. After 10-15 days, exhibiting a powdery texture and concentric rings with uniform edges. Conidia were found at the apex peduncle and were inverted pear-shaped or oval, either non-septate (15.3 ± 2 × 7.8 ± 1.8 µm in size, n = 60) or septate, with a slightly constricted spore base featuring papillary projecvtions (14.8 ± 1.5 × 7.4 ± 0.7 µm in size, n = 60). The morphology closely resembled Trichoderma roseum (Oh et al. 2014). To confirm the species, the strain CYB5 was selected for identification by sequencing the ribosomal internal transcribed spacer (ITS) and large subunit (LSU) genes using polymerase chain reaction (PCR) (White et al.1990). The ITS (GenBank accession OR889657) and LSU (PQ270526) gene sequences exhibited 98% similarity with the Trichoderma roseum sequence KP317992 from NCBI database. A phylogenetic tree was constructed using MEGA 11 (Felsenstein 1981) based on the concatenated sequences (ITS and LSU) of the strain CYB5 and reference strains (Fig. S2). The analysis confirmed that CYB5 is T. roseum (Inácio et al. 2011). Pathogenicity tests were conducted on detached healthy tea leaves placed on wet filter paper in petri dishes. Micro-wounds were made on leaves using a sterilized needle, followed by inoculation with a 6-mm plug of CYB5. Control leaves were inoculates with fungus-free agar disks. The dishes were incubated at 25°C in the dark for 7 days. The leaves inoculated with CYB5 developed reddish brown to dark brown lesions around the inoculated sites, while control leaves remained asymptomatic. The fungus was reisolated from the lesion, and the isolates were morphologically identical to the original cultures. A second pathogenicity test was conducted on potted tea plants of the cultivar 'Yunkang No. 10.' Three plants scratched with a needle and three non-wounded plants were inoculated by spraying 20 ml of a spore suspension (105 spores/ml) of CYB5. Plants sprayed with sterile water served as controls. All plants were maintained in a growth chamber at 28°C, and 70% relative humidity. The lesions developed three days post-inoculation, and typical symptoms appeared after 10 days on spore-inoculated plants only. T. roseum was reisolated and reidentified based on the morphology and molecular analyses, thus fulfilling Koch's postulates. To our best knowledge, this is the first report of T. roseum causing tea leaf rot in China.
RESUMEN
Chemical presodiation (CP) is an effective strategy to enhance energy density of sodium ion batteries. However, the sodiation reagents reported so far are basically polycyclic aromatic hydrocarbons (PAHs) wth low reductive potential (~0.1â V vs. Na+ /Na), which could easily cause over-sodiation and structural deterioration of the presodiated cathodes. In this work, Aromatic ketones (AKs) are rationally designed as mild presodiating reagents by introducing a carbonyl group (C=O) into PAHs to balance the conjugated and inductive effect. As the representatives, two compounds 9-Fluorenoneb (9-FN) and Benzophenone (BP) manifest favorable equilibrium potential of 1.55â V and 1.07â V (vs. Na+ /Na), respectively. Note that 9-FN demonstrates versatile presodiating capability toward multiple Na uptake hosts (tunneled Na0.44 MnO2 , layered Na0.67 Ni0.33 Mn0.67 O2 , polyanionic Na4 Fe2.91 (PO4 )2 P2 O7 , Na3 V2 (PO4 )3 and Na3 V2 (PO4 )2 F3 ), enabling greatly improved initial charging capacity of the cathode to balance the irrevisible capacity of the anode. Our results indicate that the Aromatic ketones are competitive presodiating cathodic reagents for high-performance sodium-ion batteries, and will inspire more studies and application attempts in the future.
RESUMEN
BACKGROUND: Ovarian development is an important prerequisite and basis for animal reproduction. In many vertebrates, it is regulated by multiple genes and influenced by sex steroid hormones and environmental factors. However, relative information is limited in shellfish. To explore the biological functions and molecular mechanisms of mRNA and non-coding RNA that regulate ovarian development in Scapharca broughtonii, we performed whole transcriptome sequencing analysis on ovaries at three developmental stages. Furthermore, the biological processes involved in the differential expression of mRNA and ncRNA were analyzed. RESULTS: A total of 11,342 mRNAs, 6897 lncRNAs, 135 circRNAs, and 275 miRNAs were differentially expressed. By mapping the differentially expressed RNAs from the three developmental stages of Venn diagram, multiple groups of shared mRNAs and lncRNAs were found to be associated with ovarian development, with some mRNA and ncRNA functions associated with steroid hormone. In addition, we constructed and visualized the lncRNA/circRNA-miRNA-mRNA network based on ceRNA targeting relationships. CONCLUSIONS: These findings may facilitate our further understanding the mRNA and ncRNAs roles in the regulation of shellfish reproduction.
Asunto(s)
Arcidae , MicroARNs , ARN Largo no Codificante , Scapharca , Animales , Femenino , ARN Mensajero/genética , ARN Largo no Codificante/genética , Ovario , ARN no Traducido/genética , MicroARNs/genética , ARN CircularRESUMEN
Controlling the heterogeneous nucleation of new phases is of importance in tuning the microstructures and properties of materials. However, the role of vacancy-a popular defect in materials that is hard to be resolved under conventional electron microscopy-in the heterogeneous phase nucleation remains intriguing. Here, this work captures direct in situ experimental evidences that vacancy clusters promote the heterogeneous hydride nucleation and cause the anomalous precipitation memory effect in zirconium. Both interstitial and vacancy dislocation loops form after hydride dissolution. Interestingly, hydride reprecipitation only occurs on those vacancy loop decorated sites during cooling. Atomistic simulations reveal that hydrogen atoms are preferentially segregated at individual vacancy and vacancy clusters, which assist hydride nucleation, and stimulate the unusual memory effect during hydride reprecipitation. The finding breaks the traditional view on the sequence of heterogeneous nucleation sites and sheds light on the solid phase transformation related to vacancy-sensitive alloying elements.
RESUMEN
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Asunto(s)
Neoplasias , Síndrome de Fibrosis por Radiación , Humanos , Fibrosis , Pulmón/patología , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Neoplasias/patologíaRESUMEN
Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. ß-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether ß-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and ß-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver ß-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, ß-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. ß-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that ß-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas ß-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, ß-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3ß pathway. These results suggest that ß-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, ß-arrestin2 may act as an effective therapeutic target for AIH.
Asunto(s)
Hepatitis Autoinmune , Hepatopatías , Arrestina beta 2 , Animales , Ratones , Apoptosis , Autoanticuerpos/metabolismo , Arrestina beta 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hepatitis Autoinmune/diagnóstico , Hepatitis Autoinmune/tratamiento farmacológico , Hepatocitos/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Macrófagos/metabolismo , Proteínas S100/metabolismoRESUMEN
Anaerobic digestion (AD) can not only treat organic waste, but also recycle energy. However, high-solids AD of kitchen waste usually failed due to excessive acidification. In this study, the effect of activated carbon (AC) on kitchen waste AD performance was investigated under high-solids conditions (total solids contents = 15%). The results showed that efficiencies of acidogenesis and methanogenesis were promoted in presence of moderate concentration (50 g/L > AC >5 g/L), but high concentration (AC >70 g/L) weakened AD performance. Moreover, AC addition enhanced the methane production rate from 66.0 mL/g VS to 231.50 mL/g VS, i.e., up to 250.7%. High-throughput sequencing results demonstrated that the abundance of electroactive DMER64 increased from less than 1%-29.7% (20 g/L AC). As AC gradually increasedï¼aceticlastic methanogenesis changed to hydrogenotrophic pathway. Predicted functional analysis indicated that AC can enhance abundances of energy and inorganic ion metabolism, resulting in high methane production.