Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(16): e70014, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39183544

RESUMEN

End-ischemic normothermic mechanical perfusion (NMP) could provide a curative treatment to reduce cholestatic liver injury from donation after circulatory death (DCD) in donors. However, the underlying mechanism remains elusive. Our previous study demonstrated that air-ventilated NMP could improve functional recovery of DCD in a preclinical NMP rat model. Here, metabolomics analysis revealed that air-ventilated NMP alleviated DCD- and cold preservation-induced cholestatic liver injury, as shown by the elevated release of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and γ-glutamyl transferase (GGT) in the perfusate (p < .05) and the reduction in the levels of bile acid metabolites, including ω-muricholic acid, glycohyodeoxycholic acid, glycocholic acid, and glycochenodeoxycholate (GCDC) in the perfused livers (p < .05). In addition, the expression of the key bile acid metabolism enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is predominantly expressed in hepatocytes, was substantially elevated in the DCD rat liver, followed by air-ventilated NMP (p < .05), and in vitro, this increase was induced by decreased GCDC and hypoxia-reoxygenation in the hepatic cells HepG2 and L02 (p < .05). Knockdown of UGT1A1 in hepatic cells by siRNA aggravated hepatic injury caused by GCDC and hypoxia-reoxygenation, as indicated by the ALT and AST levels in the supernatant. Mechanistically, UGT1A1 is transcriptionally regulated by peroxisome proliferator-activator receptor-γ (PPAR-γ) under hypoxia-physoxia. Taken together, our data revealed that air-ventilated NMP could alleviate DCD- and cold preservation-induced cholestatic liver injury through PPAR-γ/UGT1A1 axis. Based on the results from this study, air-ventilated NMP confers a promising approach for predicting and alleviating cholestatic liver injury through PPAR-γ/UGT1A1 axis.


Asunto(s)
PPAR gamma , Animales , Ratas , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Humanos , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , Hígado/metabolismo , Hígado/patología , Colestasis/metabolismo , Perfusión , Ratas Sprague-Dawley , Preservación de Órganos/métodos , Trasplante de Hígado
2.
Hepatology ; 75(2): 338-352, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34455616

RESUMEN

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is a common complication of hepatectomy and liver transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Regulator of G-protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates the G-protein and mitogen-activated protein kinase (MAPK) signaling pathways. However, the role of RGS14 in hepatic IRI remains unclear. APPROACH AND RESULTS: We found that RGS14 expression increased in mice subjected to hepatic ischemia-reperfusion (IR) surgery and during hypoxia reoxygenation in hepatocytes. We constructed global RGS14 knockout (RGS14-KO) and hepatocyte-specific RGS14 transgenic (RGS14-TG) mice to establish 70% hepatic IRI models. Histological hematoxylin and eosin staining, levels of alanine aminotransferase and aspartate aminotransferase, expression of inflammatory factors, and apoptosis were used to assess liver damage and function in these models. We found that RGS14 deficiency significantly aggravated IR-induced liver injury and activated hepatic inflammatory responses and apoptosis in vivo and in vitro. Conversely, RGS14 overexpression exerted the opposite effect of the RGS14-deficient models. Phosphorylation of TGF-ß-activated kinase 1 (TAK1) and its downstream effectors c-Jun N-terminal kinase (JNK) and p38 increased in the liver tissues of RGS14-KO mice but was repressed in those of RGS14-TG mice. Furthermore, inhibition of TAK1 phosphorylation rescued the effect of RGS14 deficiency on JNK and p38 activation, thus blocking the inflammatory responses and apoptosis. CONCLUSIONS: RGS14 plays a protective role in hepatic IR by inhibiting activation of the TAK1-JNK/p38 signaling pathway. This may be a potential therapeutic strategy for reducing incidences of hepatic IRI in the future.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Alanina Transaminasa/metabolismo , Animales , Apoptosis , Aspartato Aminotransferasas/metabolismo , Hipoxia de la Célula , Células Cultivadas , Activación Enzimática , Hepatocitos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Hepatology ; 76(1): 94-111, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34735734

RESUMEN

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS: RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS: We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.


Asunto(s)
Proteínas de la Membrana , Fosfoproteínas Fosfatasas , Daño por Reperfusión , Ubiquitina-Proteína Ligasas , Animales , Apoptosis , Humanos , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosfoproteínas Fosfatasas/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Mol Cancer ; 21(1): 207, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320056

RESUMEN

Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Comunicación Celular , Membrana Celular/metabolismo
5.
Hepatology ; 73(2): 738-758, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343849

RESUMEN

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (I/R) injury, which mainly involves inflammatory responses and apoptosis, is a common cause of organ dysfunction in liver transplantation (LT). As a critical mediator of inflammation and apoptosis in various cell types, the role of tripartite motif-containing (TRIM) 27 in hepatic I/R injury remains worthy of study. APPROACH AND RESULTS: This study systemically evaluated the putative role of TRIM27/transforming growth factor ß-activated kinase 1 (TAK1)/JNK (c-Jun N-terminal kinase)/p38 signaling in hepatic I/R injury. TRIM27 expression was significantly down-regulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Subsequently, using global Trim27 knockout mice (Trim27-KO mice) and hepatocyte-specific Trim27 transgenic mice (Trim27-HTG mice), TRIM27 functions to ameliorate liver damage, reduce the inflammatory response, and prevent cell apoptosis. In parallel in vitro studies, activating TRIM27 also prevented H/R-induced hepatocyte inflammation and apoptosis. Mechanistically, TRIM27 constitutively interacted with the critical components, TAK1 and TAK1 binding protein 2/3 (TAB2/3), and promoted the degradation of TAB2/3, leading to inactivation of TAK1 and the subsequent suppression of downstream JNK/p38 signaling. CONCLUSIONS: TRIM27 is a key regulator of hepatic I/R injury by mediating the degradation of TAB2/3 and suppression of downstream TAK1-JNK/p38 signaling. TRIM27 may be a promising approach to protect the liver against I/R-mediated hepatocellular damage in transplant recipients.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Trasplante de Hígado/efectos adversos , Hígado/irrigación sanguínea , Proteínas Nucleares/metabolismo , Daño por Reperfusión/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biopsia , Línea Celular , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteolisis , RNA-Seq , Daño por Reperfusión/etiología , Ubiquitina-Proteína Ligasas/genética
6.
Cytokine ; 159: 156017, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054963

RESUMEN

BACKGROUND: Small-for-size syndrome following liver surgery is characterized by compromised liver regeneration. Liver macrophages play key roles in initiating liver regeneration, and modulation of the immune microenvironment through macrophages may accelerate liver regeneration. In our current study, we aimed to explore the involvement of innate immunity after extended hepatectomy in rats and humans, and to test the effect of immunity modulation on small-for-size liver regeneration in rats. METHODS: Serum programmed cell death protein ligand 1 (PD-L1) was measured after major hepatectomy and minor hepatectomy in humans and rats. Liver regeneration in rats was assessed using liver-to-body weight ratio and kinetic growth rate, antigen Ki67 and proliferating cell nuclear antigen (PCNA), and macrophage polarization was assessed by inducible nitric oxide synthase (iNOS), cluster of differentiation protein 163 (CD163) expression by immunohistochemistry (IHC) and iNOS/CD163 ratio. Rat hepatocyte BRL or human hepatocyte LO2 were co-cultured with rat bone marrow-derived macrophages or human macrophages THP-1. BMS-1 or Nivolumab were used to block programmed cell death protein 1 (PD-1)/PD-L1 in vitro and in vivo. RESULTS: PD-L1 expressions were significantly higher following major hepatectomy compared to minor resection in both humans and rats; compromised liver regeneration after extended hepatectomy in rats was associated with PD-L1 upregulation and M2 macrophage polarization. M1 macrophages increased proliferation of hepatocytes through interleukin-6 (IL-6), and M2 macrophages decreased hepatocyte proliferation; blocking PD-1/PD-L1 reversed the effect of M2 macrophages on the survival of hepatocytes in vitro and promoted liver growth in rats through M1 macrophage polarization. CONCLUSION: Compromised hepatic regeneration following extended hepatectomy is characterized by M2 macrophage polarization and upregulated PD-L1 expression. Blocking PD-1/PD-L1 may enhance small-for-size liver regeneration by inducing M1 macrophage polarization.


Asunto(s)
Hepatectomía , Hepatopatías , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Antígeno B7-H1/metabolismo , Humanos , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Ligandos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nivolumab/metabolismo , Receptor de Muerte Celular Programada 1 , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas
7.
J Gene Med ; 23(8): e3347, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33894044

RESUMEN

BACKGROUND: The risk of chronic hepatitis B (CHB) infection is influenced by aberrant DNA methylation and altered nucleotide synthesis and repair, possibly caused by polymorphic variants in one-carbon metabolism genes. In the present study, we investigated the relationship between polymorphisms belonging to the one-carbon metabolic pathway and CHB infection. METHODS: A case-control study using 230 CHB patients and 234 unrelated healthy controls was carried out to assess the genetic association of 24 single nucleotide polymorphisins (SNPs) determined by mass spectrometry. RESULTS: Three SNPs, comprising rs10717122 and rs2229717 in serine hydroxymethyltransferase1/2 (SHMT2) and rs585800 in betaine-homocysteine S-methyltransferase (BHMT), were associated with the risk of CHB. Patients with DEL allele, DEL.DEL and DEL.T genotypes of rs10717122 had a 1.40-, 2.00- and 1.83-fold increased risk for CHB, respectively. Cases inheriting TA genotype of rs585800 had a 2.19-fold risk for CHB infection. The T allele of rs2229717 was less represented in the CHB cases (odds ratio = 0.66, 95% confidence interval = 0.48-0.92). The T allele of rs2229717 was less in patients with a low hepatitis B virus-DNA level compared to the control group (odds ratio = 0.49, 95% confidence interval = 0.25-0.97) and TT genotype of rs2229717 had a significant correlation with hepatitis B surface antigen level (p = 0.0195). Further gene-gene interaction analysis showed that subjects carrying the rs10717122 DEL.DEL/DEL.T and rs585800 TT/TA genotypes had a 2.74-fold increased risk of CHB. CONCLUSIONS: The results of the present study suggest that rs10717122, rs585800 and rs2229717 and gene-gene interactions of rs10717122 and rs585800 affect the outcome of CHB infection, at the same time as indicating their usefulness as a predictive and diagnostic biomarker of CHB infection.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/genética , Carbono/metabolismo , Glicina Hidroximetiltransferasa/genética , Hepatitis B Crónica/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Adenosilhomocisteinasa/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Femenino , Predisposición Genética a la Enfermedad , Glicina N-Metiltransferasa/genética , Hepatitis B Crónica/metabolismo , Humanos , Masculino , Metionina Adenosiltransferasa/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteínas Supresoras de Tumor/genética
8.
Biochem Biophys Res Commun ; 552: 150-156, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744763

RESUMEN

Hepatocyte apoptosis is a crucial factor affecting liver quality in brain-dead donors. The identification of key molecular proteins involved in brain-death (BD)-induced hepatocyte apoptosis may help determine an effective method for improving the quality of livers from brain-dead donors. In this study, we used in vivo and in vitro models to investigate the role of chitinase-3-like protein 1 (CHI3L1) in promoting liver cell apoptosis after BD. Chitin was used to inhibit CHI3L1 in a rat model of BD. Macrophage polarization of THP-1 cells and hypoxia/reoxygenation (H/R) of LO-2 cells were used to mimic BD-induced cell stress in liver. We found that CHI3L1 played a vital role in promoting liver cell apoptosis. Six hours after BD, CHI3L1 expression was significantly upregulated in liver macrophages and was associated with BD-induced M1 polarization of these cells. In liver cells cultured under H/R conditions, recombinant CHI3L1 activated the protease-activated receptor 2 (PAR2)/c-June N-terminal kinase (JNK) apoptotic pathway and aggravated apoptosis. Compared with the control group, chitin particles inhibited the expression of CHI3L1 in the liver of brain dead rats, thereby reducing activation of the hepatocyte surface receptor, PAR2, and its downstream JNK/caspase-3 signaling pathway, ultimately reducing hepatocyte apoptosis. In conclusion, our results indicate that CHI3L1 relies on a PAR2/JNK-mediated mechanism to promote BD-induced hepatocyte apoptosis.


Asunto(s)
Apoptosis/genética , Muerte Encefálica/fisiopatología , Caspasa 3/genética , Proteína 1 Similar a Quitinasa-3/genética , Hepatocitos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Receptor PAR-2/genética , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Células Cultivadas , Quitina/farmacología , Proteína 1 Similar a Quitinasa-3/metabolismo , Regulación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Interferencia de ARN , Ratas Sprague-Dawley , Receptor PAR-2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células THP-1
9.
Hepatology ; 71(3): 1037-1054, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31393024

RESUMEN

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS: In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-ß-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS: Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Hepatocitos/enzimología , Hígado/irrigación sanguínea , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Oxidorreductasas/fisiología , Daño por Reperfusión/prevención & control , Animales , Apoptosis , Proteínas de Ciclo Celular/deficiencia , Inflamación/etiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Masculino , Ratones , Oxidorreductasas/deficiencia , Daño por Reperfusión/patología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
10.
Hepatobiliary Pancreat Dis Int ; 20(5): 469-477, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34348873

RESUMEN

BACKGROUND: Liver injury is one of the most common complications during sepsis. Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine. This study explored the role of MIF in the lipopolysaccharide (LPS)-induced liver injury through genetically manipulated mouse strains. METHODS: The model of LPS-induced liver injury was established in wild-type and Mif-knockout C57/BL6 mice. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) were detected, and the expressions of MIF, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were measured. Liver histopathology was conducted to assess liver injury. Moreover, the inhibitions of MIF with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) and 4-iodo-6-phenylpyrimidine (4-IPP) were used to evaluate their therapeutic potential of liver injury. RESULTS: Compared with wild-type mice, the liver function indices and inflammation factors presented no significant difference in the Mif-/- mice. After 72 h of the LPS-induced liver injury, serum levels of ALT, AST, and TBil as well as TNF-α and IL-1ß were significantly increased, but the knockout of Mif attenuated liver injury and inflammatory response. In liver tissue, mRNA levels of TNF-α, IL-1ß and NF-κB p65 were remarkably elevated in LPS-induced liver injury, while the knockout of Mif reduced these levels. Moreover, in LPS-induced liver injury, the inhibitions of MIF with ISO-1 and 4-IPP alleviated liver injury and slightly attenuated inflammatory response. Importantly, compared to mice with LPS-induced liver injury, Mif knockout or MIF inhibitions significantly prolonged the survival of the mice. CONCLUSIONS: In LPS-induced liver injury, the knockout of Mif or MIF inhibitions alleviated liver injury and slightly attenuated inflammatory response, thereby prolonged the survival of the mice. Targeting MIF may be an important strategy to protect the liver from injury during sepsis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Factores Inhibidores de la Migración de Macrófagos , Sepsis , Animales , Técnicas de Inactivación de Genes , Lipopolisacáridos/toxicidad , Hígado , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética
11.
Hepatobiliary Pancreat Dis Int ; 20(2): 147-153, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32291179

RESUMEN

BACKGROUND: HMex-3A, an RNA-binding protein, was found to be associated with tumorigenesis. However, the roles of hMex-3A in hepatocellular carcinoma (HCC) progression remained unclear. METHODS: The different expression of hMex-3A between HCC tissues and non-tumor tissues was evaluated using The Cancer Genome Atlas database. Thereafter, the hMex-3A expression was evaluated in HCC tissues using Western blotting and qRT-PCR. Immunohistochemistry was performed to investigate the association between hMex-3A level and clinicopathological features including prognosis in HCC patients. In addition, we used si-hMex-3A to knockdown hMex-3A in HCC cells to test Cell Counting Kit-8, colony formation, cell migration and invasion. RESULTS: The hMex-3A expression was significantly elevated in HCC tissues. Analysis of the clinicopathological parameters suggested that hMex-3A expression was significantly associated with pathological grade (P = 0.019) and TNM stage (P = 0.001) in HCC. Moreover, univariate and multivariate Cox-regression analyses revealed that high hMex-3A expression (HR = 1.491, 95% CI: 1.107-2.007; P = 0.009) was an independent risk factor for overall survival in HCC patients. Finally, we confirmed that si-hMex-3A could significantly inhibit HCC cell proliferation, migration, and invasion in vitro. CONCLUSIONS: HMex-3A may contribute to the progression of HCC and might be used as a novel therapeutic target and prognostic marker in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Pronóstico
12.
Bioorg Chem ; 92: 103199, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446241

RESUMEN

Ginkgo Biloba leaf extract has been widely used for the prevention and treatment of thrombosis and cardiovascular disease in both eastern and western countries, but the bioactive constituents and the underlying mechanism of anti-thrombosis have not been fully characterized. The purpose of this study was to investigate the inhibitory effects of major constituents in Ginkgo biloba on human thrombin, a key serine protease regulating the blood coagulation cascade and the processes of thrombosis. To this end, a fluorescence-based biochemical assay was used to assay the inhibitory effects of sixteen major constituents from Ginkgo biloba on human thrombin. Among all tested natural compounds, four biflavones (ginkgetin, isoginkgetin, bilobetin and amentoflavone), and five flavonoids (luteolin, apigenin, quercetin, kaempferol and isorhamnetin) were found with thrombin inhibition activity, with the IC50 values ranging from 8.05 µM to 82.08 µM. Inhibition kinetic analyses demonstrated that four biflavones were mixed inhibitors against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki values ranging from 4.12 µM to 11.01 µM. Molecular docking method showed that the four biflavones could occupy the active cavity with strong interactions of salt bridges and hydrogen bonds. In addition, mass spectrometry-based lysine labeling reactivity assay suggested that the biflavones could bind on human thrombin at exosite I rather than exosite II. All these findings suggested that the biflavones in Ginkgo biloba were naturally occurring inhibitors of human thrombin, and these compounds could be used as lead compounds for the development of novel thrombin inhibitors with improved efficacy and high safety profiles.


Asunto(s)
Flavonas/química , Ginkgo biloba/química , Hemostáticos/química , Extractos Vegetales/química , Hojas de la Planta/química , Inhibidores de Serina Proteinasa/química , Trombina/antagonistas & inhibidores , Sitios de Unión , Evaluación Preclínica de Medicamentos , Flavonas/metabolismo , Hemostáticos/farmacología , Humanos , Cinética , Lisina/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/metabolismo , Unión Proteica , Inhibidores de Serina Proteinasa/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
13.
Acta Pharmacol Sin ; 40(3): 410-417, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30202013

RESUMEN

We recently reported that a CB2R agonist, GW405833 (GW), reduced both the ACh-induced Ca2+ oscillations and the L-arginine-induced Ca2+ signal enhancement in mouse pancreatic acinar cells, suggesting that GW-induced inhibition may prevent the pathogenesis of acute pancreatitis. In this study, we aim to evaluate the effects of other cannabinoid ligands on Ca2+ signaling in acinar cells. Patch-clamp whole-cell recordings were applied to measure ACh-induced intracellular Ca2+ oscillations in pancreatic acinar cells acutely dissociated from wild-type (WT), CB1R knockout (KO), and CB2R KO mice, and the pharmacological effects of various cannabinoid ligands on the Ca2+ oscillations were examined. We found that all the 8 CB2R agonists tested inhibited ACh-induced Ca2+ oscillations. Among them, GW, JWH133, and GP1a caused potent inhibition with IC50 values of 5.0, 6.7, and 1.2 µmol/L, respectively. In CB2R KO mice or in the presence of a CB2R antagonist (AM630), the inhibitory effects of these 3 CB2R agonists were abolished, suggesting that they acted through the CB2Rs. The CB1R agonist ACEA also induced inhibition of Ca2+ oscillations that existed in CB1R KO mice and in the presence of a CB1R antagonist (AM251), suggesting a non-CB1R effect. In WT, CB1R KO, and CB2R KO mice, a nonselective CBR agonist, WIN55,212-2, inhibited Ca2+ oscillations, which was not mediated by CB1Rs or CB2Rs. The endogenous cannabinoid substance, 2-arachidonoylglycerol (2-AG), did not show an inhibitory effect on Ca2+ oscillations. In conclusion, CB2R agonists play critical roles in modulating Ca2+ signals in mouse pancreatic acinar cells, while other cannabinoid ligands modulate Ca2+ oscillations in a heterogeneous manner through a CB receptor or non-CB-receptor mechanism.


Asunto(s)
Células Acinares/efectos de los fármacos , Calcio/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Animales , Ligandos , Masculino , Ratones Noqueados , Páncreas/citología
14.
Biochem Biophys Res Commun ; 495(4): 2456-2461, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29287727

RESUMEN

Bromodomains and extra-terminal (BET) proteins inhibitors are promising cancer therapeutic agents. However, tumor cells often develop resistance to BET inhibitors, greatly limiting their therapeutic potential. To study the mechanism underlying the resistance of BET inhibitors in hepatocellular carcinoma (HCC) cells, we herein investigated the impact of BET inhibitor JQ1 on the gene expression of Bcl-2 family members by RNA sequencing analysis, and found that acute treatment with JQ1 triggered upregulation of Mcl-1 in HCCLM3 and BEL7402 cell lines. This JQ1-triggered Mcl-1 upregulation was further confirmed by quantitative reverse transcription polymerase chain reaction and western blotting analysis, both at mRNA and protein levels. Inhibition of Mcl-1 by RNA interference dramatically enhanced JQ1-triggered caspase-3 activation, cleavage of poly (ADP-ribose) polymerase and apoptotic cell death induction in multiple HCC cell lines. Moreover, JQ1 in combination with cyclin-dependent kinase inhibitor flavopiridol at a subtoxic concentration that reduced expression of Mcl-1, triggered massive apoptotic cell death in HCCLM3 and BEL7402 cell lines. Together, these data suggest that Mcl-1 is a major contributor to BET inhibitor-resistance in HCC cells, and that combining drugs capable of down-regulating Mcl-1 may promote therapeutic potential in human HCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Azepinas/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Triazoles/administración & dosificación , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Células Hep G2 , Humanos , Proteínas/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos
15.
Anal Chem ; 89(18): 9884-9891, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28809472

RESUMEN

In this study, a novel fluorescent detection system for biological sensing of human albumin (HA) was developed on the basis of the pseudoesterase activity and substrate preference of HA. The designed near-infrared (NIR) fluorescent probe (DDAP) could be effectively hydrolyzed by HA, accompanied by significant changes in both color and fluorescence spectrum. The sensing mechanism was fully investigated by fluorescence spectroscopy, NMR, and mass spectra. DDAP exhibited excellent selectivity and sensitivity toward HA over a variety of human plasma proteins, hydrolases, and abundant biomolecules found in human body. The probe has been successfully applied to measure native HA in diluted plasma samples and the secreted HA in the hepatocyte culture supernatant. DDAP has also been used for fluorescence imaging of HA reabsorption in living renal cells, and the results show that the probe exhibits good cell permeability, low cytotoxicity and high imaging resolution. Furthermore, DDAP has been successfully used for real-time tracking the uptaking and degradation of albumin in ex vivo mouse kidney models for the first time. All these results clearly demonstrated that DDAP-based assay held great promise for real-time sensing and tracking HA in complex biological systems, which would be very useful for basic researches and clinical diagnosis of HA-associated diseases.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica , Albúmina Sérica Humana/análisis , Colorantes Fluorescentes/síntesis química , Células Hep G2 , Humanos , Rayos Infrarrojos , Estructura Molecular , Albúmina Sérica Humana/biosíntesis , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo , Células Tumorales Cultivadas
16.
J Gastroenterol Hepatol ; 31(1): 222-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26102208

RESUMEN

BACKGROUND AND AIMS: The restenosis following percutaneous transluminal balloon angioplasty (PTBA) is high for Budd-Chiari syndrome (BCS) patients with hepatic venous obstruction (HVO). We aim to evaluate the safety and long-term outcome of PTBA with a large balloon catheter in a large series of patients with HVO. METHODS: Between January 2005 and December 2013, 93 consecutive BCS patients with HVO were referred for PTBA and subsequently underwent color Doppler ultrasonography or angiography follow-up. Data were retrospectively collected, and follow-up observations were performed at 1-, 2-, 2- to 5-, and 5- to 8-years postoperatively. RESULTS: Percutaneous transluminal balloon angioplasty was technically successful in all patients. Ninety-one patients (97.85%) were treated with PTBA and two with PTBA and stent. Major procedure-related complications occurred in six of the 93 patients (6.45%). The cumulative 1-, 2-, 2- to 5-, and 5- to 8-year primary patency rates were 97.5%, 92.9%, 90%, and 86.5%, respectively. Cumulative 1-, 2-, 2- to 5-, and 5- to 8-year secondary patency rates were 100%, 100%, 98.6%, and 97.3%, respectively. Mean and median primary patency rates were 51.50 ± 3.01 months and 55.0 ± 3.63 months, respectively. Cumulative 1-, 2-, 2- to 5-, and 5- to 8-year survival rates were 98.75%, 98.6%, 100%, and 100%, respectively. Mean and median survival times were 53.10 ± 3.04 months and 55.0 ± 3.64 months, respectively. CONCLUSION: Percutaneous transluminal balloon angioplasty with a large balloon is a safe and effective treatment that could provide excellent rates of long-term patency and survival for the majority of Chinese patients with BCS and HVO.


Asunto(s)
Angioplastia de Balón/métodos , Síndrome de Budd-Chiari/terapia , Adolescente , Adulto , Anciano , Angioplastia de Balón/mortalidad , Pueblo Asiatico , Síndrome de Budd-Chiari/complicaciones , Síndrome de Budd-Chiari/mortalidad , Femenino , Estudios de Seguimiento , Venas Hepáticas , Enfermedad Veno-Oclusiva Hepática/complicaciones , Enfermedad Veno-Oclusiva Hepática/terapia , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Seguridad , Tasa de Supervivencia , Tiempo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
17.
Genomics ; 105(2): 101-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479386

RESUMEN

Idiopathic scoliosis is the most common pediatric spinal deformity affecting 1% to 3% of the population, and adolescent idiopathic scoliosis (AIS) accounts for approximately 80% of these cases; however, the etiology and pathogenesis of AIS are still uncertain. The current study aims to identify the relationship between G protein-coupled receptor 126 (GPR126) gene and AIS predisposition, to identify the relationship between the genotypes of the GPR126 SNPs and the clinical phenotypes of AIS. We conducted a case-control study and genotyped twenty SNPs of GPR126 gene including ten exonic SNPs and ten intronic polymorphisms in 352 Chinese sporadic AIS patients and 149 healthy controls. We provided evidence for strong association of three intronic SNPs of the GPR126 gene with AIS susceptibility: rs6570507 A > G (p =0 .0035, OR = 1.729), rs7774095 A > C (p = 0.0078, OR = 1.687), and rs7755109 A > G (p = 0.0078, OR = 1.687). However, we did not identify any significant association between ten exonic SNPs of GPR126 and AIS. Linkage disequilibrium analysis indicated that rs7774095 A > C and rs7755109 A > G could be parsed into one block. The association between the intronic haplotype and AIS was further confirmed in an independent population with 110 AIS individuals and 130 healthy controls (p = 0.046, OR = 1.680). Furthermore, molecular mechanisms underlying intronic SNP regulation of GPR126 gene were studied. Although intronic SNPs associated with AIS didn't influence GPR126 mRNA alternative splicing, there was a strong association of rs7755109 A > G with decreased GPR126 mRNA level and protein levels. Our findings indicate that genetic variants of GPR126 gene are associated with AIS susceptibility in Chinese populations. The genetic association of GPR126 gene and AIS might provide valuable insights into the pathogenesis of adolescent idiopathic scoliosis.


Asunto(s)
Pueblo Asiatico/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Escoliosis/genética , Adolescente , Niño , Exones , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Humanos , Intrones , Desequilibrio de Ligamiento , Masculino , Receptores Acoplados a Proteínas G/metabolismo
18.
Knee Surg Sports Traumatol Arthrosc ; 22(11): 2830-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24474584

RESUMEN

PURPOSE: To compare the outcomes of diffuse pigmented villonodular synovitis (PVNS) of the knee treated with routine anteroposterior open surgery or modified multi-directional arthroscopy. METHODS: Medical records of patients with diffuse PVNS who underwent surgery between 2002 and 2010 were reviewed. Patients were followed up at 3, 6, 12, 24, and 36 months. Operative time, blood loss, length of hospital stay, recurrence rate, and International Knee Documentation Committee (IKDC) scores and Lysholm knee scores at 1- and 3-year postoperatively were compared between the open surgery and arthroscopy groups. RESULTS: A total of 41 patients with diffuse PVNS were included (20 in open surgery group and 21 in multi-directional arthroscopy group). There was no significant difference in the baseline characteristics between the two groups. Operation time, postoperative bleeding, and length of hospital stay were all significantly lower in the arthroscopy group than in the open surgery group (all, P < 0.05). There were four recurrences in the open surgery group and one in arthroscopy group. All five recurrences received a second surgery without any subsequent recurrences. At both 1- and 3-year postoperatively, IKDC and Lysholm scores were significantly greater in the arthroscopy group than the open surgery group (all P < 0.001). CONCLUSIONS: The multi-directional arthroscopic technique was associated with significantly shorter operation time and hospital stay, less blood loss, and better postoperative IKDC and Lysholm scores than open surgery. LEVEL OF EVIDENCE: Retrospective study with controls, Level III.


Asunto(s)
Articulación de la Rodilla/cirugía , Sinovitis Pigmentada Vellonodular/cirugía , Adulto , Artroscopía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167490, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39236363

RESUMEN

Vascular endothelial inflammation is crucial in hepatic ischemia-reperfusion injury (IRI). Our previous research has shown that connective tissue growth factor (CTGF), secreted by endothelial cells, protects against acute liver injury, but its upstream mechanism is unclear. We aimed to clarify the protective role of CTGF in endothelial cell inflammation during IRI and reveal the regulation between endoplasmic reticulum stress-induced activating transcription factor 6 (ATF6) and CTGF. Hypoxia/reoxygenation in endothelial cells, hepatic IRI in mice and clinical specimens were used to examine the relationships between CTGF and inflammatory factors and determine how ATF6 regulates CTGF and reduces damage. We found that activating ATF6 promoted CTGF expression and reduced liver damage in hepatic IRI. In vitro, activated ATF6 upregulated CTGF and downregulated inflammation, while ATF6 inhibition had the opposite effect. Dual-luciferase assays and chromatin immunoprecipitation confirmed that activated ATF6 binds to the CTGF promoter, enhancing its expression. Activated ATF6 increases CTGF and reduces extracellular regulated protein kinase 1/2 (ERK1/2) phosphorylation, decreasing inflammatory factors. Conversely, inhibiting ATF6 decreases CTGF and increases the phosphorylation of ERK1/2, increasing inflammatory factor levels. ERK1/2 inhibition reverses this effect. Clinical samples have shown that CTGF increases after IRI, inversely correlating with inflammatory cytokines. Therefore, ATF6 activation during liver IRI enhances CTGF expression and reduces endothelial inflammation via ERK1/2 inhibition, providing a novel target for diagnosing and treating liver IRI.


Asunto(s)
Factor de Transcripción Activador 6 , Factor de Crecimiento del Tejido Conjuntivo , Hígado , Daño por Reperfusión , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Animales , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Humanos , Ratones , Masculino , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
20.
J Surg Oncol ; 107(4): 393-401, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22927239

RESUMEN

BACKGROUND: Post-operative liver regeneration may contribute to tumor recurrence. There is a theoretical need for an adjuvant therapy that can suppress tumor growth without adversely affecting post-operative liver regeneration. OBJECTIVE: To evaluate the effect of RAF inhibitor Sorafenib on cell viability and proliferation of hepatoma cells and hepatocytes in vitro and in an in vivo rat model. METHODS: Cell viability, DNA synthesis, and RAF/MAPK kinase activity in the primary hepatocyte and hepatoma cell lines were investigated after Sorafenib exposure. Sequence analysis of the B-RAF gene in hepatic cells was determined. Tumor markers were compared within the rats after 70% hepatectomy with or without daily oral gavages of Sorafenib. Liver regeneration was assessed by liver function tests and proliferation markers. RESULTS: Primary hepatocytes showed higher cell viability, proliferation rate, and stronger RAF/MAPK kinase activity compared with hepatoma cell lines. The in vivo tumor volumes, size, and metastases were significantly decreased (P < 0.05) whereas no significant change in liver regeneration related to Sorafenib exposure was found (P > 0.05). B-RAF V600E mutation was not detected neither in the hepatic cells nor untransformed hepatocytes. CONCLUSIONS: The RAF targeted inhibitor can reduce tumor growth without retarding liver regeneration in this experiment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Hepatectomía , Hepatocitos/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Regeneración Hepática/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/antagonistas & inhibidores , Animales , Western Blotting , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Hepatectomía/efectos adversos , Hepatectomía/métodos , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Micrometástasis de Neoplasia , Niacinamida/farmacología , Ratas , Sorafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA