Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 577(7790): 350-354, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942055

RESUMEN

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications1-7. However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d33 (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k33 (about 94 per cent) and a large electro-optical coefficient γ33 (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d33 value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity8-10. This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.

2.
Genome Res ; 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977842

RESUMEN

A cattle pangenome representation was created based on the genome sequences of 898 cattle representing 57 breeds. The pangenome identified 83 Mb of sequence not found in the cattle reference genome, representing 3.1% novel sequence compared with the 2.71-Gb reference. A catalog of structural variants developed from this cattle population identified 3.3 million deletions, 0.12 million inversions, and 0.18 million duplications. Estimates of breed ancestry and hybridization between cattle breeds using insertion/deletions as markers were similar to those produced by single nucleotide polymorphism-based analysis. Hundreds of deletions were observed to have stratification based on subspecies and breed. For example, an insertion of a Bov-tA1 repeat element was identified in the first intron of the APPL2 gene and correlated with cattle breed geographic distribution. This insertion falls within a segment overlapping predicted enhancer and promoter regions of the gene, and could affect important traits such as immune response, olfactory functions, cell proliferation, and glucose metabolism in muscle. The results indicate that pangenomes are a valuable resource for studying diversity and evolutionary history, and help to delineate how domestication, trait-based breeding, and adaptive introgression have shaped the cattle genome.

3.
J Biol Chem ; 299(8): 105015, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414146

RESUMEN

The initial formation of the follicular antrum (iFFA) serves as a dividing line between gonadotropin-independent and gonadotropin-dependent folliculogenesis, enabling the follicle to sensitively respond to gonadotropins for its further development. However, the mechanism underlying iFFA remains elusive. Herein, we reported that iFFA is characterized by enhanced fluid absorption, energy consumption, secretion, and proliferation and shares a regulatory mechanism with blastula cavity formation. By use of bioinformatics analysis, follicular culture, RNA interference, and other techniques, we further demonstrated that the tight junction, ion pumps, and aquaporins are essential for follicular fluid accumulation during iFFA, as a deficiency of any one of these negatively impacts fluid accumulation and antrum formation. The intraovarian mammalian target of rapamycin-C-type natriuretic peptide pathway, activated by follicle-stimulating hormone, initiated iFFA by activating tight junction, ion pumps, and aquaporins. Building on this, we promoted iFFA by transiently activating mammalian target of rapamycin in cultured follicles and significantly increased oocyte yield. These findings represent a significant advancement in iFFA research, further enhancing our understanding of folliculogenesis in mammals.


Asunto(s)
Acuaporinas , Uniones Estrechas , Animales , Femenino , Acuaporinas/genética , Hormona Folículo Estimulante , Gonadotropinas , Bombas Iónicas , Mamíferos , Serina-Treonina Quinasas TOR/genética , Ratones , Péptido Natriurético Tipo-C/metabolismo
4.
J Magn Reson Imaging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721820

RESUMEN

BACKGROUND: The angiographic features of moyamoya disease (MMD) and atherosclerosis-associated moyamoya vasculopathy (AS-MMV) are similar, but the etiology and clinical treatment strategies are different. Differentiating MMD from AS-MMV helps to choose the appropriate treatment. PURPOSE: To investigate the feasibility of a nomogram based on high-resolution vessel wall (HR-VWI) MRI features to differentiate MMD from AS-MMV. STUDY TYPE: Retrospective. SUBJECTS: One hundred and two patients with MMD (N = 52) or AS-MMV (N = 50) in the training cohort (9-72 years; 54 females) and 70 patients with MMD (N = 42) or AS-MMV (N = 28) in the validation cohort (7-69 years; 33 females). FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional time-of-flight MR angiography (3D-TOF-MRA), spin echo high-resolution 3D T1-weighted imaging (3D-T1WI), 3D T2-weighted imaging (3D-T2WI), and contrast-enhanced 3D-T1WI. ASSESSMENT: Image assessment was performed by three neuroradiologists (with 10, 15, and 18 years of experience). Demographic characteristic and image features were evaluated and compared. Independent factors of MMD were screened to construct a nomogram model in the training cohort. The validation cohort was used to validated its generality. STATISTICAL TESTS: Interclass correlation coefficient (ICC), kappa, t-test, χ2 test, receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve and concordance index (C-index). A P-value <0.05 was considered statistically significant. RESULTS: Significant differences were observed between MMD and AS-MMV in terms of age, vessel outer diameter, vessel wall thickening pattern, maximum thickness, dot sign, and anterior cerebral artery (ACA) involved. Age, outer diameter, dot sign, and ACA involved were independent factors. The C-index was 0.886 in the training cohort and 0.859 in the validation cohort. The ROC demonstrated high diagnostic efficacy with an AUC of 0.884 in the training cohort and 0.857 in the validation cohort. DATA CONCLUSION: A nomogram model based on age, vessel outer diameter, dot sign and ACA involved may effectively distinguish MMD from AS-MMV with good reliability and accuracy. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

5.
Cell Commun Signal ; 22(1): 49, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233930

RESUMEN

N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/metabolismo , Citidina/genética , ARN Mensajero/genética , Neoplasias/genética
6.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291517

RESUMEN

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , ARN/genética , ARN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metilación , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612689

RESUMEN

Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1ß). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.


Asunto(s)
Vesículas Extracelulares , Leche , Animales , Femenino , Embarazo , Bovinos , Calostro , Lipopolisacáridos/farmacología , Caspasa 3 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2 , Células Epiteliales
8.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731521

RESUMEN

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Asunto(s)
Dominio Catalítico , Inhibidores Enzimáticos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/química , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Mutagénesis Sitio-Dirigida , Simulación de Dinámica Molecular
9.
Br J Cancer ; 129(3): 426-443, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380804

RESUMEN

BACKGROUND: The epigenetic mechanisms involved in the progression of pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. This study aimed to identify key transcription factors (TFs) through multiomics sequencing to investigate the molecular mechanisms of TFs that play critical roles in PDAC. METHODS: To characterise the epigenetic landscape of genetically engineered mouse models (GEMMs) of PDAC with or without KRAS and/or TP53 mutations, we employed ATAC-seq, H3K27ac ChIP-seq, and RNA-seq. The effect of Fos-like antigen 2 (FOSL2) on survival was assessed using the Kaplan-Meier method and multivariate Cox regression analysis for PDAC patients. To study the potential targets of FOSL2, we performed Cleavage Under Targets and Tagmentation (CUT&Tag). To explore the functions and underlying mechanisms of FOSL2 in PDAC progression, we employed several assays, including CCK8, transwell migration and invasion, RT-qPCR, Western blotting analysis, IHC, ChIP-qPCR, dual-luciferase reporter, and xenograft models. RESULTS: Our findings indicated that epigenetic changes played a role in immunosuppressed signalling during PDAC progression. Moreover, we identified FOSL2 as a critical regulator that was up-regulated in PDAC and associated with poor prognosis in patients. FOSL2 promoted cell proliferation, migration, and invasion. Importantly, our research revealed that FOSL2 acted as a downstream target of the KRAS/MAPK pathway and recruited regulatory T (Treg) cells by transcriptionally activating C-C motif chemokine ligand 28 (CCL28). This discovery highlighted the role of an immunosuppressed regulatory axis involving KRAS/MAPK-FOSL2-CCL28-Treg cells in the development of PDAC. CONCLUSION: Our study uncovered that KRAS-driven FOSL2 promoted PDAC progression by transcriptionally activating CCL28, revealing an immunosuppressive role for FOSL2 in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Regulación hacia Arriba , Cromatina , Ligandos , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Quimiocinas CC/metabolismo , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Neoplasias Pancreáticas
10.
Small ; 19(42): e2304310, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340581

RESUMEN

Dielectric energy storage polymers play a vital role in advanced electronics and electrical systems, due to their high breakdown strength, excellent reliability, and easy fabrication. However, the low dielectric constant and poor thermal resistance of dielectric polymers limit their energy storage density and working temperatures, making them less versatile for broader applications. In this work, a novel carboxylated poly (p-phenylene terephthalamide) (c-PPTA) is synthesized and employed to simultaneously enhance the dielectric constant and thermal resistance of polyetherimide (PEI), leading to a discharged energy density of 6.4 J cm-3 at 150 °C. The introduction of c-PPTA molecules effectively reduces the Πï£¿Π stacking effect and increases the average chain spacing between polymer molecules, which is conducive to improving the dielectric constant. Additionally, c-PPTA molecules with stronger positive charges and high dipole moments can capture electrons, resulting in reduced conduction loss and enhanced breakdown strength at high temperatures. The coiled capacitor fabricated with the PEI/c-PPTA film exhibits superior capacitance performances and higher working temperatures compared to commercial metalized PP capacitors, demonstrating great potential for dielectric polymers in high-temperature electronic and electrical energy storage systems.

11.
Nat Mater ; 21(9): 1074-1080, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35668148

RESUMEN

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

12.
J Med Virol ; 95(6): e28872, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310134

RESUMEN

China is an epidemic area of hepatitis E, and the serum prevalence data is very important for formulating prevention and control strategies. However, almost all related research in the past decade are cross-sectional studies. In this study, we analyzed the serological data from 2012 to 2021 in Chongqing for 10 consecutive years. We found that the positive rate of hepatitis E IgG antibody increased gradually, from 1.61% in January 2012 to 50.63% in December 2021. The autoregressive integrated moving average model was used to predict the trend, and it was found that it will continue to show an upward trend in the recent future. In contrast, the positive rate of IgM and clinical incidence of hepatitis E showed a relatively stable trend. Although the positive rate of antibodies gradually increased with age, there was no significant difference in the age distribution of the subjects each year. Therefore, these results suggest that the accumulated infection of hepatitis E in Chongqing may be gradually increasing, but the clinical incidence rate remains unchanged, which provides a new concern for formulating prevention and control strategies.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Hepatitis E/epidemiología , Estudios Transversales , Estudios Retrospectivos , Estudios Seroepidemiológicos , Factores de Tiempo , China/epidemiología , Anticuerpos Antihepatitis , Inmunoglobulina G , Inmunoglobulina M
13.
Bioconjug Chem ; 34(2): 326-332, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36629744

RESUMEN

We describe an application where graphene oxide nanoparticles (GONs) enable combined inhibition of Pseudorabies Virus (PRV) through delivery of a CRISPR/Cas9 system for targeted cleaving of a PRV genome and direct interaction with viral particles. The sheeted GONs could load CRISPR plasmid DNA (pDNA) to form a small sized, near-spheroidal GONs-CRISPR complex, which enables CRISPR pDNA efficient intracellular delivery and transient expression under serum conditions. Cell studies showed that GONs-CRISPR could allow rapid cellular uptake, endolysosomes escape, and nucleus transport within 3 h. Virus studies demonstrated that the pure GONs have antiviral activity and GONs-CRISPR could significantly inhibit PRV replication and result in progeny PRV decreasing by approximately 4000 times in infected host cells. Transmission electron microscopy (TEM) imaging showed that GONs-CRISPR could destroy the PRV structures by directly interacting with viral particles. This GONs-based strategy may extend the advanced application of the CRISPR system for antiviral action.


Asunto(s)
Herpesvirus Suido 1 , Nanopartículas , Animales , Herpesvirus Suido 1/genética , Sistemas CRISPR-Cas/genética , Replicación Viral , Antivirales/farmacología
14.
Virol J ; 20(1): 6, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627683

RESUMEN

Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.


Asunto(s)
Vacunas contra la COVID-19 , Proteínas de la Nucleocápside , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , Prueba de COVID-19
15.
Virol J ; 20(1): 77, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095526

RESUMEN

BACKGROUND: This study aimed to understand the incidence and clinical significance of acalculous cholecystitis in patients with acute hepatitis E (HE). PATIENTS AND METHODS: A single center enrolled 114 patients with acute HE. All patients underwent imaging of the gallbladder, and patients with gallstones and cholecystectomy were excluded. RESULTS: Acalculous cholecystitis was found in 66 patients (57.89%) with acute HE. The incidence in males was 63.95%, which was significantly higher than in females (39.29%) (P = 0.022). The mean length of hospital stay and the incidence of spontaneous peritonitis in patients with cholecystitis (20.12 ± 9.43 days and 9.09%, respectively) were significantly higher than those in patients without cholecystitis (12.98 ± 7.26 days and 0%, respectively) (P < 0.001 and P = 0.032). Albumin, total bile acid, bilirubin, cholinesterase, and prothrombin activity in patients with cholecystitis were significantly inferior to those in patients without cholecystitis (P < 0.001, P < 0.001, P < 0.001, P < 0.001 and P = 0.003, respectively). After correction by multivariate analysis, albumin and total bile acid were found to be closely related to acalculous cholecystitis in HE. CONCLUSION: Acalculous cholecystitis is very common in patients with acute HE, and may serve as a predictor of increased peritonitis, synthetic decompensation, and longer hospital stay.


Asunto(s)
Colecistitis Alitiásica , Colecistitis , Hepatitis E , Peritonitis , Masculino , Femenino , Humanos , Colecistitis Alitiásica/complicaciones , Hepatitis E/complicaciones , Enfermedad Aguda , Colecistitis/complicaciones , Colecistitis/epidemiología , Peritonitis/etiología , Ácidos y Sales Biliares
16.
BMC Neurol ; 23(1): 169, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106317

RESUMEN

BACKGROUND: There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS: One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS: We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS: These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.


Asunto(s)
Microbioma Gastrointestinal , Adulto Joven , Humanos , Masculino , Femenino , Microbioma Gastrointestinal/fisiología , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
17.
Chem Rev ; 121(10): 6124-6172, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33909415

RESUMEN

Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

18.
Nano Lett ; 22(3): 963-972, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073699

RESUMEN

Inefficient tumor accumulation and penetration remain as the main challenges to therapy efficacy of lung cancer. Local delivery of smart nanoclusters can increase drug penetration and provide superior antitumor effects than systemic routes. Here, we report self-assembled pH-sensitive superparamagnetic iron oxide nanoclusters (SPIONCs) that enhance in situ ferroptosis and apoptosis with radiotherapy and chemodynamic therapy. After pulmonary delivery in orthotopic lung cancer, SPIONCs disintegrate into smaller nanoparticles and release more iron ions in an acidic microenvironment. Under single-dose X-ray irradiation, endogenous superoxide dismutase converts superoxide radicals produced by mitochondria to hydrogen peroxide, which in turn generates hydroxyl radicals by the Fenton reaction from iron ions accumulated inside the tumor. Finally, irradiation and iron ions enhance tumor lipid peroxidation and induce cell apoptosis and ferroptosis. Thus, rationally designed pulmonary delivered nanoclusters provide a promising strategy for noninvasive imaging of lung cancer and synergistic therapy.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/farmacología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Microambiente Tumoral
19.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298559

RESUMEN

Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.


Asunto(s)
MicroARNs , Leche , Femenino , Animales , Bovinos , Humanos , Leche/metabolismo , MicroARNs/metabolismo , Estro , Progesterona/metabolismo , Células de la Granulosa/metabolismo
20.
J Environ Manage ; 338: 117836, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011530

RESUMEN

The slow startup is the major obstacle to the application of anaerobic ammonium oxidation (anammox) process in mainstream wastewater treatment. Extracellular polymeric substances (EPS) are one potential resource for stable anammox reactor operation. Response surface analysis was used to optimize the specific anammox activity (SAA) with the addition of EPS; SAA was maximum at a temperature of 35 °C and the EPS concentration of 4 mg/L. By comparing the nitrogen removal of anammox reactors with no EPS (R0), immobilized EPS (EPS-alginate beads) (R1), and liquid EPS (R2), we found that EPS-alginate beads significantly speed up the startup of anammox process and enable the start time to be shortened from 31 to 19 days. As a result of the higher MLVSS content, higher zeta potential, and lower SVI30, anammox granules of R1 exhibited a stronger capacity to aggregate. Moreover, EPS extracted from R1 had higher flocculation efficiencies than EPS derived from R0 and R2. Phylogenetic analysis of 16S rRNA genes revealed that the main anammox species in R1 is Kuenenia taxon. To clarify the relative significance of stochastic vs deterministic processes in the anammox community, neutral model and network analysis are employed. In R1, community assembly became more deterministic and stable than in other cultures. Our results show that EPS might inhibit heterotrophic denitrification and thereby promote anammox activity. This study suggested a quick start-up strategy for the anammox process based on resource recovery, which is helpful for environmentally sustainable and energy-efficient wastewater treatment.


Asunto(s)
Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Reactores Biológicos/microbiología , Filogenia , Oxidación Anaeróbica del Amoníaco , ARN Ribosómico 16S , Aguas del Alcantarillado , Oxidación-Reducción , Nitrógeno/farmacología , Desnitrificación , Anaerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA