Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 24(28): 8664-8670, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967611

RESUMEN

Stabilization of multiple polarization states at the atomic scale is pivotal for realizing high-density memory devices beyond prevailing bistable ferroelectric architectures. Here, we show that two-dimensional ferroelectric SnS or GeSe is able to revive and stabilize the ferroelectric order of three-dimensional ferroelectric BaTiO3, even when the latter is thinned to one unit cell in thickness. The underlying mechanism for overcoming the conventional detrimental critical thickness effect is attributed to facile interfacial inversion symmetry breaking by robust in-plane polarization of SnS or GeSe. Furthermore, when invoking interlayer sliding, we can stabilize multiple polarization states and achieve efficient interstate switching in the heterostructures, accompanied by dynamical ferroelectric skyrmionic excitations. When invoking sliding and twisting, the moiré domains exhibit nontrivial polar vortexes, which can be laterally displaced via different sliding schemes. These findings provide an intuitive avenue for simultaneously overcoming the standing critical thickness issue in bulk ferroelectrics and weak polarization issue in sliding ferroelectricity.

2.
Nano Lett ; 24(9): 2705-2711, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240732

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.

3.
Small ; 20(35): e2401566, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38752437

RESUMEN

Ultrathin carbon nitride pioneered a paradigm that facilitates effective charge separation and acceleration of rapid charge migration. Nevertheless, the dissociation process confronts a disruption owing to the proclivity of carbon nitride to reaggregate, thereby impeding the optimal utilization of active sites. In response to this exigency, the adoption of a synthesis methodology featuring alkaline potassium salt-assisted molten salt synthesis is advocated in this work, aiming to craft a nitrogenated graphitic carbon nitride (g-C3N5) photocatalyst characterized by thin layer and hydrophilicity, which not only amplifies the degree of crystallization of g-C3N5 but also introduces a plethora of abundant edge active sites, engendering a quasi-homogeneous photocatalytic system. Under visible light irradiation, the ultra-high H2O2 production rate of this modified high-crystalline g-C3N5 in pure water attains 151.14 µm h-1. This groundbreaking study offers a novel perspective for the innovative design of highly efficient photocatalysts with a quasi-homogeneous photocatalytic system.

4.
Nano Lett ; 22(22): 9006-9012, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342788

RESUMEN

Inducing structural changes and deformation using noninvasive methods, such as ultrafast laser technology, is an attractive route to multiple optomechanical and optoelectronic applications. Here, we show how photon excitation could accumulate in-plane stress and induce long-wavelength ripples in two-dimensional (2D) materials. Numerical results based on first-principles calculations and a continuum model predict that long-range nanoscale rippling could emerge under photon excitation in hexagonal nitride single atomic sheets. The photosoftened transverse acoustic mode dominates the out-of-plane distortion of the sheet, and the resultant rippling pattern strongly depends on the boundary condition. We reveal that the wavelength and height of the ripple scale as I-1/3 and I1/6, respectively, where I is the incident light energy flux. Our findings based on multiscale theory and simulations elucidate the interplay between carrier excitation, phonon dispersion, and long-range mechanical deformations, which could find potential usage in flexible electronics and electromechanical devices.

5.
Nano Lett ; 22(16): 6767-6774, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35930622

RESUMEN

Two-dimensional transition metal dichalcogenides possessing superconductivity and strong spin-orbit coupling exhibit high in-plane upper critical fields due to Ising pairing. Yet to date, whether such systems can become topological Ising superconductors remains to be materialized. Here we show that monolayered NbSe2 can be converted into Ising superconductors with nontrivial band topology via physical or chemical pressuring. Using first-principles calculations, we first demonstrate that a hydrostatic pressure higher than 2.5 GPa can induce a p-d band inversion, rendering nontrivial band topology to NbSe2. We then illustrate that Te-doping can function as chemical pressuring in inducing nontrivial topology in NbSe2-xTex with x ≥ 0.8, due to a larger atomic radius and stronger spin-orbit coupling of Te. We also evaluate the upper critical fields within both approaches, confirming the enhanced Ising superconductivity nature, as experimentally observed. Our findings may prove to be instrumental in material realization of topological Ising superconductivity in two-dimensional systems.

6.
Nano Lett ; 21(17): 7396-7404, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34431678

RESUMEN

As an intrinsically layered material, FeSe has been extensively explored for potentially revealing the underlying mechanisms of high transition temperature (high-Tc) superconductivity and realizing topological superconductivity and Majorana zero modes. Here we use first-principles approaches to identify that the cobalt pnictides of CoX (X = As, Sb, Bi), none of which is a layered material in bulk form. Nevertheless, all can be stabilized as monolayered systems either in freestanding form or supported on the SrTiO3(001) substrate. We further show that each of the cobalt pnictides may potentially harbor high-Tc superconductivity beyond the Cu- and Fe-based superconducting families, and the underlying mechanism is inherently tied to their isovalency nature with the FeSe monolayer. Most strikingly, each of the monolayered CoX's on SrTiO3 is shown to be topologically nontrivial, and our findings provide promising new platforms for realizing topological superconductors in the two-dimensional limit.


Asunto(s)
Cobalto , Superconductividad , Humanos
7.
Nano Lett ; 20(3): 1959-1966, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32078326

RESUMEN

Topological properties of the Lieb lattice, i.e., the edge-centered square lattice, have been extensively studied and are, however, mostly based on theoretical models without identifying real material systems. Here, based on tight-binding and first-principles calculations, we demonstrate the Lieb-lattice features of the experimentally synthesized phthalocyanine-based metal-organic framework (MPc-MOF), which holds various intriguing topological phase transitions through band engineering. First, we show that the MPc-MOFs indeed have a peculiar Lieb band structure with 1/3 filling, which has been overlooked because of its unconventional band structure deviating from the ideal Lieb band. The intrinsic MPc-MOF presents a trivial insulating state, with its gap size determined by the on-site energy difference (ΔE) between the corner and edge-center sites. Through either chemical substitution or physical strain engineering, one can tune ΔE to close the gap and achieve a topological phase transition. Specifically, upon closing the gap, topological semimetallic/insulating states emerge from nonmagnetic MPc-MOFs, while magnetic semimetal/Chern insulator states arise from magnetic MPc-MOFs, respectively. Our discovery greatly enriches our understanding of the Lieb lattice and provides a guideline for experimental observation of the Lieb-lattice-based topological states.

8.
Nano Lett ; 19(9): 6005-6012, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31386373

RESUMEN

Spin-orbit (SO) interaction is an indispensable element in the field of spintronics for effectively manipulating the spin of carriers. However, in crystalline solids, the momentum-dependent SO effective magnetic field generally results in spin randomization by a process known as the Dyakonov-Perel spin relaxation, leading to the loss of spin information. To overcome this obstacle, the persistent spin helix (PSH) state with a unidirectional SO field was proposed but difficult to achieve in real materials. Here, on the basis of first-principles calculations and tight-binding model analysis, we report for the first time a unidirectional SO field in monolayer transition metal dichalcogenides (TMDs, MX2, M = Mo, W; and X = S, Se) induced by two parallel chalcogen vacancy lines. By changing the relative positions of the two vacancy lines, the direction of the SO field can be tuned from x to y. Moreover, using k·p perturbation theory and group theory analysis, we demonstrate that the emerging unidirectional SO field is subject to both the structural symmetry and 1D nature of such defects engineered in 2D TMDs. In particular, through transport calculations, we confirm that the predicted SO states carry highly coherent spin current. Our findings shed new light on creating PSH states for high-performance spintronic devices.

9.
Nano Lett ; 18(3): 1972-1977, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29461837

RESUMEN

Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y2C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y2C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y2C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.

10.
Proc Natl Acad Sci U S A ; 112(8): 2372-7, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25646451

RESUMEN

A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson's ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics.

11.
Phys Chem Chem Phys ; 18(21): 14191-7, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27063837

RESUMEN

Penta-graphene has recently been proposed as a new allotrope of carbon composed of pure pentagons, and displays many novel properties going beyond graphene [Zhang et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 2372]. To further explore the property modulations, we have carried out a theoretical investigation of the hydrogenated and fluorinated penta-graphene sheets. Our first-principles calculations reveal that hydrogenation and fluorination can effectively tune the electronic and mechanical properties of penta-graphene: turning the sheet from semiconducting to insulating; changing the Poisson's ratio from negative to positive, and reducing the Young's modulus. Moreover, the band gaps of the hydrogenated and fluorinated penta-graphene sheets are larger than those of fully hydrogenated and fluorinated graphene by 0.37 and 0.04 eV, respectively. The phonon dispersions and ab initio molecular dynamics simulations confirm that the surface modified penta-graphene sheets are dynamically and thermally stable, and show that the hydrogenated penta-graphene has more Raman-active modes with higher frequencies as compared to the fluorinated penta-graphene.

12.
Proc Natl Acad Sci U S A ; 110(47): 18809-13, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191020

RESUMEN

Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Unlike the previously studied K4 and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polyacenes molecules.


Asunto(s)
Carbono/química , Metales/química , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Benceno , Temperatura
13.
Phys Chem Chem Phys ; 16(31): 16832-6, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25005914

RESUMEN

Si based sheets have attracted tremendous attention due to their compatibility with the well-developed Si-based semiconductor industry. On the basis of state-of-the-art theoretical calculations, we systematically study the stability, electronic and optical properties of Si based porous sheets including g-Si4N3, g-Si3N4, g-Si3N3 and g-Si3P3. We find that the g-Si3N3 and g-Si3P3 sheets are thermally stable, while the g-Si4N3 and g-Si3N4 are unstable. Different from the silicene-like sheets of SiN and Si3N which are nonplanar and metallic, both the porous g-Si3N3 and g-Si3P3 sheets are planar and nonmetallic, and the former is an indirect band gap semiconductor with a band gap of 3.50 eV, while the latter is a direct band gap semiconductor with a gap of 1.93 eV. Analysis of the optical absorption spectrum reveals that the g-Si3P3 sheet may have applications in solar absorbers owing to its narrow direct band gap and wide range optical absorption in the visible light spectrum.

14.
Phys Chem Chem Phys ; 16(42): 22979-86, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25144623

RESUMEN

Due to its compatibility with the well-developed Si-based semiconductor industry, silicene has attracted considerable attention. Using density functional theory we show for the first time that the recently synthesized superhalogen MnCl3 can be used to tune the electronic and magnetic properties of silicene, from semi-metallic to semiconducting with a wide range of band gaps, as well as from nonmagnetic to ferromagnetic (or antiferromagnetic) by changing the coverage of the superhalogen molecules. The electronic properties can be further modulated when a superhalogen and a halogen are used synergistically. The present study indicates that because of the large electron affinity and rich structural diversity superhalogen molecules have advantages over the conventional halogen atoms in modulating the material properties of silicene.

15.
J Am Chem Soc ; 135(48): 18216-21, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24191656

RESUMEN

Boron nitride (BN) and carbon are chemical analogues of each other and share similar structures such as one-dimensional nanotubes, two-dimensional nanosheets characterized by sp(2) bonding, and three-dimensional diamond structures characterized by sp(3) bonding. However, unlike carbon which can be metallic in one, two, and three dimensions, BN is an insulator, irrespective of its structure and dimensionality. On the basis of state-of-the-art theoretical calculations, we propose a tetragonal phase of BN which is both dynamically stable and metallic. Analysis of its band structure, density of states, and electron localization function confirms the origin of the metallic behavior to be due to the delocalized B 2p electrons. The metallicity exhibited in the studied three-dimensional BN structures can lead to materials beyond conventional ceramics as well as to materials with potential for applications in electronic devices.

16.
Phys Chem Chem Phys ; 15(19): 7142-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23552740

RESUMEN

Due to their porosity and biocompatibility, C-N based graphitic sheets are currently attracting much attention. Here we present our findings on a new structure of a g-C4N3 sheet composed of the tri-ring heptazine-like units, which is energetically more stable, more elastic and isotropic than the previously proposed structure consisting of the single-ring triazines. Dynamics and thermal stability of the new structure are confirmed using phonon spectrum calculations and molecular dynamics simulations. Based on hybrid density functional theory, we demonstrate that the tri-ring unit based g-C4N3 is a semiconductor with a small band gap, sharp optical absorption peaks and high absorption intensity. Although the new structure is nonmagnetic, ferromagnetism can be introduced and the optical absorption can be tuned by applying a small strain.

17.
J Chem Phys ; 138(5): 054309, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23406121

RESUMEN

Calculations based on density functional theory show that the structure of Mn(4)Cl(9) anion is that of a Mn atom at the core surrounded by three MnCl(3) moieties. Since Mn is predominantly divalent and MnCl(3) is known to be a superhalogen with a vertical detachment energy (VDE) of 5.27 eV, Mn(4)Cl(9) can be viewed as a hyperhalogen with the formula unit Mn(MnCl(3))(3). Indeed, the calculated VDE of Mn(4)Cl(9) anion, namely 6.76 eV, is larger than that of MnCl(3) anion. More importantly, unlike previously discovered hyperhalogens, Mn(4)Cl(9) is the first such hyperhalogen species composed of only two constituent atoms. We further show that Mn(4)Cl(9) can be used as a ligand to design molecules with even higher VDEs. For example, Li[Mn(MnCl(3))(3)](2) anion has a VDE of 7.26 eV. These negatively charged clusters are antiferromagnetic with most of the magnetic moments localized at the Mn sites. Our studies show new pathways for creating binary hyperhalogens.

18.
Adv Mater ; 35(1): e2203411, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36300686

RESUMEN

As a crucial concept in magnetism and spintronics, exchange bias (ExB) measures the asymmetry in the hysteresis loop of a pinned ferromagnet (FM)/antiferromagnet (AFM) interface. Previous studies are mainly focused on FM/AFM heterostructures composed of conventional bulk materials, whose complex interfaces prohibit precise control and full understanding of the phenomenon. Here, the enabling power of 2D magnets is exploited to demonstrate the emergence, non-aging, extendability, and rechargeability of ExB in van der Waals Fe3 GeTe2 homostructures, upon moderate pressuring. The emergence of the ExB is attributed to a local stress-induced FM-to-AFM transition, as validated using first-principles calculations, and confirmed in magneto-optical Kerr effect and second harmonic generation measurements. It is also observed that, negligible ExB aging before the training effect suddenly takes place through avalanching, pronounced delay of the avalanche via timed pressure repetition (extendability), ExB recovery in the post-training sample upon refreshed pressuring (rechargeability), and demonstrate its versatile tunability. These striking findings offer unprecedented insights into the underlying principles of ExB and its training, with immense technological applications in sight.

19.
Sci Bull (Beijing) ; 64(21): 1584-1591, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659570

RESUMEN

The discovery of ideal spin-1/2 kagome antiferromagnets Herbertsmithite and Zn-doped Barlowite represents a breakthrough in the quest for quantum spin liquids (QSLs), and nuclear magnetic resonance (NMR) spectroscopy plays a prominent role in revealing the quantum paramagnetism in these compounds. However, interpretation of NMR data that is often masked by defects can be controversial. Here, we show that the most significant interaction strength for NMR, i.e. the hyperfine coupling (HFC) strength, can be reasonably reproduced by first-principles calculations for these proposed QSLs. Applying this method to a supercell containing Cu-Zn defects enables us to map out the variation and distribution of HFC at different nuclear sites. This predictive power is expected to bridge the missing link in the analysis of the low-temperature NMR data.

20.
Nanoscale ; 10(3): 949-957, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29215121

RESUMEN

It is a longstanding quest to use the planar N6 ring as a structural unit to build stable atomic sheets. However, unlike C6H6, the neutral N6 ring is unstable due to the strong repulsion of the lone-pair of electrons. Using first-principles calculations and the global structure search method, we show that the N6 unit can be stabilized by the linkage of Be atoms, forming a h-BeN3 honeycomb monolayer, in which the geometry and the π-molecular orbitals of the N6 rings are well kept. This sheet is not only energetically, dynamically and thermally stable, but also can withstand high temperatures up to 1000 K. Band structure calculation combined with a group theory analysis and a tight-binding model uncover that h-BeN3 has a π-band dominated band structure with an indirect band gap of 1.67 eV. While it possesses a direct band gap of 2.07 eV at the Γ point lying in the photon energy region of visual light, its interband dipole transition is symmetrically allowed so that electrons can be excited by photons free of phonons. Based on deformation potential theory, a systematic study of the transport properties reveals that the h-BeN3 sheet possesses a high carrier mobility of ∼103 cm2 V-1 s-1, superior to the extensively studied transition metal dichalcogenide monolayers. We further demonstrate that this sheet can be rolled up into either zigzag or armchair nanotubes. These nanotubes are also dynamically stable, and are all direct band gap semiconductors with carrier mobility comparable to that of their 2D counterparts, regardless of their chirality and diameter. The robust stability and novel electronic and transport properties of the h-BeN3 sheet and its tubular derivatives endow them with great potential for applications in nanoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA