Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2401839, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804822

RESUMEN

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

2.
Compr Psychiatry ; 131: 152462, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38354586

RESUMEN

BACKGROUND: Mindfulness-based cognitive therapy (MBCT) has been documented to be effective in treating obsessive-compulsive disorder (OCD). However, the neurobiological basis of MBCT remains largely elusive, which makes it clinically challenging to predict which patients are more likely to respond poorly. Hence, identifying biomarkers for predicting treatment outcomes holds both scientific and clinical values. This prognostic study aims to investigate whether pre-treatment brain morphological metrics can predict the effectiveness of MBCT, compared with psycho-education (PE) as an active placebo, among patients with OCD. METHODS: A total of 32 patients with OCD were included in this prognostic study. They received magnetic resonance imaging (MRI) brain scans before treatment. Subsequently, 16 patients received 10 weeks of MBCT, while the other 16 patients underwent a 10-week PE program. The effectiveness of the treatments was primarily assessed by the reduction rate of the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) total score before and after the treatment. We investigated whether several predefined OCD-associated brain morphological metrics, selected based on prior published studies by the ENIGMA Consortium, could predict the treatment effectiveness. RESULTS: Both the MBCT and PE groups exhibited substantial reductions in Y-BOCS scores over 10 weeks of treatment, with the MBCT group showing a larger reduction. Notably, the pallidum total volume was associated with treatment effectiveness, irrespective of the intervention group. Specifically, a linear regression model utilizing the pre-treatment pallidum volume to predict the treatment effectiveness suggested that a one-cubic-centimeter increase in pallidum volume corresponded to a 22.3% decrease in the Y-BOCS total score reduction rate. CONCLUSIONS: Pallidum volume may serve as a promising predictor for the effectiveness of MBCT and PE, and perhaps, other treatments with the shared mechanisms by MBCT and PE, among patients with OCD.


Asunto(s)
Terapia Cognitivo-Conductual , Atención Plena , Trastorno Obsesivo Compulsivo , Humanos , Atención Plena/métodos , Globo Pálido , Terapia Cognitivo-Conductual/métodos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia , Trastorno Obsesivo Compulsivo/psicología , Resultado del Tratamiento
3.
Angew Chem Int Ed Engl ; : e202404330, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878199

RESUMEN

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a × 3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5C) and a high cycling stability (85.8%@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1C) accompanied by negligible voltage attenuation (98.5%@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

4.
Angew Chem Int Ed Engl ; 63(28): e202405372, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659283

RESUMEN

Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm-2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect-engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.

5.
Small ; 19(33): e2301391, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086134

RESUMEN

Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.

6.
J Craniofac Surg ; 34(2): 674-679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730451

RESUMEN

OBJECTIVE: To analyze the changes in the white matter structure of the whole brain in hemifacial spasm (HFS) patients by using the tract-based spatial statistics (TBSS) method. MATERIALS AND METHODS: 29 HFS patients without anxiety and depression and 29 healthy controls with matching age, sex, and education were selected. All subjects received a 3.0T magnetic resonance (MR) brain diffusion tensor imaging scan. Tract-based spatial statistics method was used to analyze the changes in white matter structure in the whole brain and obtained the cerebral white matter fibrous areas exhibiting significant intergroup differences. The fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity of these areas were abstracted. Analyzed the correlation between these diffusion metrics and clinical variables (disease duration, spasm severity). RESULTS: Compared with the healthy controls group, the HFS group exhibited significantly lower FA in the forceps minor, bilateral anterior thalamic radiation, and right superior longitudinal fasciculus ( P <0.05, threshold-free cluster enhancement corrected). Cohen grading scale of HFS patients was negatively correlated with FA of forceps minor. CONCLUSION: Based on TBSS analysis, the injury of white matter fiber tracts in HFS patients was found, including forceps minor, bilateral anterior thalamic radiation, and right superior longitudinal fasciculus. The changes of FA values in forceps minor were negatively correlated with the Cohen grading scale, suggesting that the alteration of white matter fiber in the genu-of-corpus-callosum-cortex circuit plays an important role in the neuro-pathological mechanism of HFS. Combined with previous research, it is also necessary to further explore the change of the superior longitudinal fasciculus in the future.


Asunto(s)
Espasmo Hemifacial , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Sustancia Blanca/patología , Encéfalo/patología , Imagen por Resonancia Magnética
7.
Angew Chem Int Ed Engl ; 62(22): e202302655, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988084

RESUMEN

Sulfide electrolytes with high ionic conductivity hold great promise for all-solid-state lithium batteries. However, the parasitic redox reactions between sulfide electrolyte and Li metal result in interfacial instability and rapid decline of the battery performance. Herein, a redox-resistible Li6 PS5 Cl (LPSC) electrolyte is created by regulating the electron distribution in LPSC with Mg and F incorporation. The introduction of Mg triggers the electron agglomeration around S atom, inhibiting the electron acceptance from Li, and F generates the self-limiting interface, which hinders the redox reactions between LPSC and Li metal. This redox-resistible Li6 PS5 Cl-MgF2 electrolyte therefore presents a high critical current density (2.3 times that of pristine electrolyte). The LiCoO2 /Li6 PS5 Cl-MgF2 /Li cell shows an outstanding cycling stability (93.3 %@100 cycles at 0.2 C). This study highlights the electronic structure modulation to address redox issues on sulfide-based lithium batteries.

8.
J Biomed Inform ; 134: 104168, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987449

RESUMEN

Early detection of heart failure (HF) can provide patients with the opportunity for more timely intervention and better disease management, as well as efficient use of healthcare resources. Recent machine learning (ML) methods have shown promising performance on diagnostic prediction using temporal sequences from electronic health records (EHRs). In practice, however, these models may not generalize to other populations due to dataset shift. Shifts in datasets can be attributed to a range of factors such as variations in demographics, data management methods, and healthcare delivery patterns. In this paper, we use unsupervised adversarial domain adaptation methods to adaptively reduce the impact of dataset shift on cross-institutional transfer performance. The proposed framework is validated on a next-visit HF onset prediction task using a BERT-style Transformer-based language model pre-trained with a masked language modeling (MLM) task. Our model empirically demonstrates superior prediction performance relative to non-adversarial baselines in both transfer directions on two different clinical event sequence data sources.


Asunto(s)
Insuficiencia Cardíaca , Redes Neurales de la Computación , Registros Electrónicos de Salud , Insuficiencia Cardíaca/diagnóstico , Humanos , Almacenamiento y Recuperación de la Información , Lenguaje , Aprendizaje Automático
9.
J Craniofac Surg ; 32(2): 632-636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704998

RESUMEN

OBJECTIVE: Patients with classic trigeminal neuralgia (CTN) have abnormalities in white matter integrity of the corpus callosum (CC). However, in CTN patients, it is unclear whether the CC substructure region is affected to varying degrees. MATERIAL AND METHODS: A total of 22 patients with CTN and 22 healthy controls (HC) with matching age, gender, and education were selected. All subjects underwent 3.0 T magnetic resonance diffusion tensor imaging and high resolution T1-weighted imaging. The CC was reconstructed by DTI technology, which was divided into three substructure regions: genu, body, and splenium. Group differences in multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), were compared between CTN patients and HC, and correlations between the white matter change and disease duration and VAS in CTN patients were assessed. RESULTS: Compared with HC group, CTN patients had extensive damage to the CC white matter. The FA of the genu (P = 0.04) and body (P = 001) parts decreased, while RD (P = 0.003; P = 0.02) and MD (P = 0.002; P = 0.04) increased. In addition, the authors observed that the disease duration and VAS of CTN patients were negatively correlated with FA. CONCLUSION: The corpus callosum substructure region has extensive damage in chronic pain, and the selective microstructural integrity damage was particularly manifested by changes in axons and myelin sheath in the genu and body of corpus callosum.


Asunto(s)
Cuerpo Calloso , Neuralgia del Trigémino , Anisotropía , Cuerpo Calloso/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Humanos , Neuralgia del Trigémino/diagnóstico por imagen
10.
Nano Lett ; 20(11): 8273-8281, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108209

RESUMEN

A novel strategy has been proposed to produce in situ Li2S at the interfacial layer between lithium anode and the solid electrolyte, by using an amorphous-sulfide-LiTFSI-poly(vinylidene difluoride) (PVDF) composite solid electrolyte (SLCSE). Besides retarding the decomposition of PVDF in CSE, the Li2S-modified interfacial layer (SMIL) also improves the wettability between lithium metal and SLCSE which in turn optimizes the lithium deposition process. Our density functional theory calculation results reveal that the migration energy barrier of Li passing through SMIL is much lower than that of Li passing through LiF-modified interfacial layer (FMIL) formed from the decomposition of PVDF. The as-prepared SLCSE shows a Li ionic transference number of 0.44 and Li ion conductivity of 3.42 × 10-4 S/cm at room temperature, and the Li||SLCSE||LiFePO4 cell exhibits an outstanding rate performance with a capacity of 153, 144, 131, and 101 mAh/g at a current density of 0.05, 0.10, 0.25, and 0.50 mA/cm2, respectively.

11.
Bull Environ Contam Toxicol ; 107(3): 519-529, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34230988

RESUMEN

PM2.5 samples were collected from residential, commercial, plaza and public green spaces in Lin'an, Hangzhou, in spring (March and April) and winter (February and December) in 2017. PAHs were detected by gas chromatography-mass spectrometry (GC-MS), and their sources were identified using the diagnostic ratio (DR) and principal component analysis-multiple linear regression (PCA-MLR). The average PAH concentration in winter was 1.3 times that in spring (p < 0.01). The PAH concentrations in the green spaces decreased as commercial > residential > plaza > public green space (p < 0.05). The sources of PAHs were vehicle emissions and coal combustion pollution transported by northern Chinese air masses. Slightly higher excessive cancer risks were determined in the commercial and residential green spaces than in the plaza and public green spaces. Green coverage, pedestrian volume, traffic flow and building density greatly influenced the decrease in the PAH concentration in the green spaces. Among the 4 types of green spaces, public green space had the most ecological benefits and should be fully utilized in urban green space planning to improve public health in urban spaces.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Humanos , Parques Recreativos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
12.
J Mol Cell Cardiol ; 142: 39-52, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32268148

RESUMEN

Vascular calcification is a pathological process closely related to atherosclerosis, diabetic vascular diseases, vascular injury, hypertension, chronic kidney disease and aging. Lethal giant larvae 1 (LGL1) is known as a key regulator of cell polarity and plays an important role in tumorigenesis. However, whether LGL1 regulates vascular calcification remains unclear. In this study, we generated smooth muscle-specific LGL1 knockout (LGL1SMKO) mice by cross-breeding LGL1flox/flox mice with α-SMA-Cre mice. LGL1 level was significantly decreased during calcifying conditions. Overexpression of LGL1 restrained high phosphate-induced calcification in vascular smooth muscle cells (VSMCs). Mechanically, LGL1 could bind with high mobility group box 1 (HMGB1) and promote its degradation via the lysosomal pathway, thereby inhibiting calcification. Smooth muscle-specific deletion of LGL1 increased HMGB1 level and aggravated vitamin D3-induced vascular calcification, which was attenuated by an HMGB1 inhibitor. LGL1 may inhibit vascular calcification by preventing osteogenic differentiation via promoting HMGB1 degradation.


Asunto(s)
Calcinosis/etiología , Glicoproteínas/genética , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores , Calcinosis/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Glicoproteínas/deficiencia , Glicoproteínas/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Unión Proteica , Vitamina D/metabolismo
13.
Bioinformatics ; 35(14): i305-i314, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510705

RESUMEN

MOTIVATION: Sequence-based protein-protein interaction (PPI) prediction represents a fundamental computational biology problem. To address this problem, extensive research efforts have been made to extract predefined features from the sequences. Based on these features, statistical algorithms are learned to classify the PPIs. However, such explicit features are usually costly to extract, and typically have limited coverage on the PPI information. RESULTS: We present an end-to-end framework, PIPR (Protein-Protein Interaction Prediction Based on Siamese Residual RCNN), for PPI predictions using only the protein sequences. PIPR incorporates a deep residual recurrent convolutional neural network in the Siamese architecture, which leverages both robust local features and contextualized information, which are significant for capturing the mutual influence of proteins sequences. PIPR relieves the data pre-processing efforts that are required by other systems, and generalizes well to different application scenarios. Experimental evaluations show that PIPR outperforms various state-of-the-art systems on the binary PPI prediction problem. Moreover, it shows a promising performance on more challenging problems of interaction type prediction and binding affinity estimation, where existing approaches fall short. AVAILABILITY AND IMPLEMENTATION: The implementation is available at https://github.com/muhaochen/seq_ppi.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Redes Neurales de la Computación , Algoritmos , Secuencia de Aminoácidos , Unión Proteica , Proteínas
14.
Clin Chem ; 66(2): 373-378, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040575

RESUMEN

BACKGROUND: An inversion of intron 22 in the Factor VIII gene (Inv22) is the causative mutation for 45% of severe hemophilia A cases. Available methods for molecular diagnosis of Inv22 are generally tedious and not ideal for routine clinical use. METHODS: We report here a new method using a single closed-tube nested quantitative PCR (CN-qPCR) for rapid detection of Inv22. This method combines a 12-cycle long-distance PCR (LD-PCR) amplifying the int22h regions, followed by a duplex qPCR targeting two specific regions close to the int22h regions. All reagents were added to a single PCR mixture for the closed-tube assay. Sequential LD-PCR and qPCR was achieved by designing primers at substantially different melting temperatures and optimizing PCR conditions. RESULTS: Seventy-nine male hemophilia A patients of different disease severity were tested by both the CN-qPCR assay and the standard LD-PCR assay. CN-qPCR successfully made calls for all samples, whereas LD-PCR failed in eight samples. For the 71 samples where both methods made calls, the concordance was 100%. Inv22 was detected in 17 out of the 79 samples. Additionally, CN-qPCR achieved clear separation for 10 female carriers and 10 non-Inv22 females, suggesting the assay may also be useful for molecular diagnosis of female carriers. CONCLUSIONS: This new CN-qPCR method may provide a convenient and accurate F8 Inv22 test suitable for clinical use.


Asunto(s)
Factor VIII/genética , Hemofilia A/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Inversión Cromosómica/genética , Factor VIII/análisis , Factor VIII/metabolismo , Femenino , Genotipo , Hemofilia A/genética , Humanos , Intrones/genética , Masculino , Inversión de Secuencia/genética
16.
J Am Chem Soc ; 140(42): 13644-13653, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30215256

RESUMEN

The durability and reactivity of catalysts can be effectively and precisely controlled through the careful design and engineering of their surface structures and morphologies. Herein, we develop a novel "adsorption-calcination-reduction" strategy to synthesize spinel transitional metal oxides with a unique necklace-like multishelled hollow structure exploiting sacrificial templates of carbonaceous microspheres, including NiCo2O4 (NCO), CoMn2O4, and NiMn2O4. Importantly, benefiting from the unique structures and reduction treatment to offer rich oxygen vacancies, the unique reduced NCO (R-NCO) as a bifunctional electrocatalyst exhibits the dual characteristics of good stability as well as high electrocatalytic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). At 1.61 V cell voltage, a 10 mA cm-2 water splitting current density is obtained from the dual-electrode, alkaline water electrolyzer. Calculations based on density functional theory (DFT) reveal a mechanism for the promotion of the catalytic reactions based on a decrease in the energy barrier for the formation of intermediates resulting from the introduction of oxygen vacancies through the reduction process. This method could prove to be an effective general strategy for the preparation of complex, hollow structures and functionalities.

18.
Small ; 11(7): 809-13, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25273825

RESUMEN

Nickel foam-supported ε-MnO2 is synthesized through an oxygen-bubble template-assisted electrodeposition route and is applied as a new cathode catalyst for Li-O2 batteries. Owing to the 3D macro/micro/nano (multiscale) porous architecture, the prepared electrode exhibits low overpotential, high rate capability, and superior cycling durability.

19.
Nano Lett ; 14(1): 153-7, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24328829

RESUMEN

In this Letter, we reported on the preparation and Li-ion battery anode application of ultrasmall Sn nanoparticles (∼5 nm) embedded in nitrogen-doped porous carbon network (denoted as 5-Sn/C). Pyrolysis of Sn(Salen) at 650 °C under Ar atmosphere was carried out to prepare N-doped porous 5-Sn/C with the BET specific surface area of 286.3 m(2) g(-1). The 5-Sn/C showed an initial discharge capacity of 1014 mAh g(-1) and a capacity retention of 722 mAh g(-1) after 200 cycles at the current density of 0.2 A g(-1). Furthermore, a reversible capacity of ∼480 mAh g(-1) was obtained at much higher current density of 5 A g(-1). The remarkable electrochemical performance of 5-Sn/C was attributed to the effective combination of ultrasmall Sn nanoparticles, uniform distribution, and porous carbon network structure, which simultaneously solved the major problems of pulverization, loss of electrical contact, and particle aggregation facing Sn anode.

20.
Angew Chem Int Ed Engl ; 54(14): 4338-43, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25678148

RESUMEN

The ever-increasing consumption of a huge quantity of lithium batteries, for example, Li-MnO2 cells, raises critical concern about their recycling. We demonstrate herein that decayed Li-MnO2 cells can be further utilized as rechargeable lithium-air cells with admitted oxygen. We further investigated the effects of lithiated manganese dioxide on the electrocatalytic properties of oxygen-reduction and oxygen-evolution reactions (ORR/OER). The catalytic activity was found to be correlated with the composition of Li(x)MnO2 electrodes (0

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA