Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Immunol ; 44(7): 166, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060684

RESUMEN

Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Pruebas Genéticas , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Pruebas Genéticas/métodos , Femenino , Masculino , Niño , Preescolar , Lactante , Adolescente , Receptor fas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Predisposición Genética a la Enfermedad , Hospitales Pediátricos , Mutación/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38871151

RESUMEN

BACKGROUND & AIMS: Acute pancreatitis (AP) is increasingly recognized as a risk factor for diabetes mellitus (DM). We aimed to study the association of pancreatitis genes with pancreatic endocrine insufficiency (pre-DM and DM) development post-AP in children. METHODS: This was an observational cohort study that enrolled subjects ≤21 years with their first episode of AP and followed them for 12 months for the development of pancreatic endocrine insufficiency. Pancreatitis risk genes (CASR, CEL, CFTR, CLDN2, CPA1, CTRC, PRSS1, SBDS, SPINK1, and UBR1) were sequenced. A genetic risk score was derived from all genes with univariable P < .15. RESULTS: A total 120 subjects with AP were genotyped. Sixty-three subjects (52.5%) had at least 1 reportable variant identified. For modeling the development of pancreatic endocrine insufficiency at 1 year, 6 were excluded (2 with DM at baseline, 3 with total pancreatectomy, and 1 death). From this group of 114, 95 remained normoglycemic and 19 (17%) developed endocrine insufficiency (4 DM, 15 pre-DM). Severe AP (58% vs 20%; P = .001) and at least 1 gene affected (79% vs 47%; P = .01) were enriched among the endocrine-insufficient group. Those with versus without endocrine insufficiency were similar in age, sex, race, ethnicity, body mass index, and AP recurrence. A model for pre-DM/DM development included AP severity (odds ratio, 5.17 [1.66-16.15]; P = .005) and genetic risk score (odds ratio, 4.89 [1.83-13.08]; P = .002) and had an area under the curve of 0.74. CONCLUSIONS: In this cohort of children with AP, pancreatitis risk genes and AP disease severity were associated with pre-DM or DM development post-AP.

3.
Small ; 20(3): e2305567, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702141

RESUMEN

Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.


Asunto(s)
Nanopartículas , Neoplasias , Nitrilos , Humanos , Porosidad , Dióxido de Silicio/química , Inmunoterapia , Nanopartículas/química , Neoplasias/terapia , Esqueleto
4.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38124464

RESUMEN

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Asunto(s)
Hordeum , Oryza , Hordeum/genética , Hordeum/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Genes de Plantas , Melaninas/genética , Melaninas/metabolismo , Fitomejoramiento , Sistemas de Transporte de Aminoácidos/genética
5.
Genet Med ; 26(3): 101036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054408

RESUMEN

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Asunto(s)
Variación Genética , Humanos , Alelos , Variación Genética/genética , Penetrancia , Frecuencia de los Genes
6.
BMC Cancer ; 24(1): 369, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519889

RESUMEN

CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.


Asunto(s)
Glioblastoma , Glioma , Humanos , Apoptosis , Antígenos CD13/genética , Antígenos CD13/metabolismo , Línea Celular Tumoral , Glioblastoma/genética , Glioma/genética
7.
Pancreatology ; 24(5): 690-697, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876922

RESUMEN

BACKGROUND: Chymotrypsin C (CTRC) protects the pancreas against unwanted intrapancreatic trypsin activity through degradation of trypsinogen. Loss-of-function CTRC variants increase the risk for chronic pancreatitis (CP). The aim of the present study was to characterize novel CTRC variants found during genetic testing of CP cases at a pediatric pancreatitis center. METHODS: We used next-generation sequencing to screen patients. We analyzed the functional effects of CTRC variants in HEK 293T cells and using purified enzymes. RESULTS: In 5 separate cases, we detected 5 novel heterozygous CTRC variants: c.407C>T (p.Thr136Ile), c.550G>A (p.Ala184Thr), c.627Cdup (p.Ser210Leufs∗?, where the naming indicates a frame shift with no stop codon), c.628T>C (p.Ser210Pro), and c.779A>G (p.Asp260Gly). Functional studies revealed that with the exception of p.Ser210Leufs∗?, the CTRC variants were secreted normally from transfected cells. Enzyme activity of purified variants p.Thr136Ile, p.Ala184Thr, and p.Asp260Gly was similar to that of wild-type CTRC, whereas variant p.Ser210Pro was inactive. The frame-shift variant p.Ser210Leufs∗? was not secreted but accumulated intracellularly, and induced endoplasmic reticulum stress, as judged by elevated mRNA levels of HSPA5 and DDIT3, and increased mRNA splicing of XBP1. CONCLUSIONS: CTRC variants p.Ser210Pro and p.Ser210Leufs∗? abolish CTRC function and should be classified as pathogenic. Mechanistically, variant p.Ser210Pro directly affects the amino acid at the bottom of the substrate-binding pocket while the frame-shift variant promotes misfolding and thereby blocks enzyme secretion. Importantly, 3 of the 5 novel CTRC variants proved to be benign, indicating that functional analysis is indispensable for reliable determination of pathogenicity and the correct interpretation of genetic test results.


Asunto(s)
Quimotripsina , Chaperón BiP del Retículo Endoplásmico , Pruebas Genéticas , Pancreatitis Crónica , Humanos , Pancreatitis Crónica/genética , Quimotripsina/genética , Quimotripsina/metabolismo , Células HEK293 , Masculino , Niño , Femenino , Adolescente , Mutación , Factor de Transcripción CHOP
8.
Physiol Plant ; 176(4): e14424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973627

RESUMEN

Drought is one of the most common abiotic stresses that affect barley productivity. Long noncoding RNA (lncRNA) has been reported to be widely involved in abiotic stress, however, its function in the drought stress response in wild barley remains unclear. In this study, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNA) among two wild barley and two cultivated barley genotypes. Then, the cis-regulatory networks were according to the chromosome position and the expression level correction. The GO annotation indicates that these cis-target genes are mainly involved in "ion transport transporter activity" and "metal ion transport transporter activity". Through weighted gene co-expression network analysis (WGCNA), 10 drought-related modules were identified to contract trans-regulatory networks. The KEGG annotation demonstrated that these trans-target genes were enriched for photosynthetic physiology, brassinosteroid biosynthesis, and flavonoid metabolism. In addition, we constructed the lncRNA-mediated ceRNA regulatory network by predicting the microRNA response elements (MREs). Furthermore, the expressions of lncRNAs were verified by RT-qPCR. Functional verification of a candidate lncRNA, MSTRG.32128, demonstrated its positive role in drought response and root growth and development regulation. Hormone content analysis provided insights into the regulatory mechanisms of MSTRG.32128 in root development, revealing its involvement in auxin and ethylene signal transduction pathways. These findings advance our understanding of lncRNA-mediated regulatory mechanisms in barley under drought stress. Our results will provide new insights into the functions of lncRNAs in barley responding to drought stress.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hordeum , ARN Largo no Codificante , Estrés Fisiológico , Hordeum/genética , Hordeum/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés Fisiológico/genética , Redes Reguladoras de Genes , ARN de Planta/genética
9.
Cardiology ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053435

RESUMEN

INTRODUCTION: Heart failure is a common chronic illness associated with high readmission rates and death. Comprehensive nursing care, management of symptoms, and psychological support are increasingly seen as critical components of successful heart failure therapy. OBJECTIVE: This systematic review and meta-analysis aimed to determine the effect of comprehensive nursing care on clinical outcomes and quality of life in heart failure patients. METHODS: We searched electronic databases (Pubmed, PROSPERO, and Web of Science) for randomised controlled trials and observational studies on comprehensive nursing care treatments for heart failure patients. Data on readmission rates, mortality rates and quality of life were obtained and examined. RESULTS: 693 studies satisfied the inclusion criteria. A meta-analysis found that comprehensive nursing care reduced heart failure-related readmissions considerably when compared to conventional therapy (odds ratio (OR) 0.77 (95% CI 0.66-0.88, P =.0002). There was a significant difference in all-cause mortality (OR 0.76 (95% CI: 0.60-0.97, P=.03), but comprehensive treatment enhanced quality of life and functional status (Standardised Mean Difference -0.05, 95% CI -0.21 to 0.10, P =.49). CONCLUSION: Comprehensive nursing care improves clinical outcomes and quality of life for heart failure patients. This study stresses the need to add comprehensive nurse interventions in normal heart failure treatment programmes.

10.
Mol Biol Rep ; 51(1): 731, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869677

RESUMEN

BACKGROUND: Chitinase (Chi) is a pathogenesis-related protein, also reported to play an important role in plant responses to abiotic stress. However, its role in response to abiotic stress in barley is still unclear. RESULTS: In this study, a total of 61 Chi gene family members were identified from the whole genome of wild barley EC_S1. Phylogenetic analysis suggested that these family genes were divided into five groups. Among these genes, four pairs of collinearity genes were discovered. Besides, abundant cis-regulatory elements, including drought response element and abscisic acid response element were identified in the promoter regions of HvChi gene family members. The expression profiles revealed that most HvChi family members were significantly up-regulated under drought stress, which was also validated by RT-qPCR measurements. To further explore the role of Chi under drought stress, HvChi22 was overexpressed in Arabidopsis. Compared to wild-type plants, overexpression of HvChi22 enhanced drought tolerance by increasing the activity of oxidative protective enzymes, which caused less MDA accumulation. CONCLUSION: Our study improved the understanding of the Chi gene family under drought stress in barley, and provided a theoretical basis for crop improvement strategies to address the challenges posed by changing environmental conditions.


Asunto(s)
Quitinasas , Sequías , Regulación de la Expresión Génica de las Plantas , Hordeum , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Hordeum/genética , Quitinasas/genética , Quitinasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regiones Promotoras Genéticas/genética , Plantas Modificadas Genéticamente/genética , Perfilación de la Expresión Génica/métodos , Resistencia a la Sequía
11.
Pediatr Crit Care Med ; 25(7): e318-e327, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619330

RESUMEN

OBJECTIVES: Placement of a ventricular assist device (VAD) improves outcomes in children with advanced heart failure, but adverse events remain important consequences. Preoperative mechanical ventilation (MV) increases mortality, but it is unknown what impact prolonged postoperative MV has. DESIGN: Advanced Cardiac Therapies Improving Outcomes Network (ACTION) and Pediatric Cardiac Critical Care Consortium (PC 4 ) registries were used to identify and link children with initial VAD placement admitted to the cardiac ICU (CICU) from August 2014 to July 2020. Demographics, cardiac diagnosis, preoperative and postoperative CICU courses, and outcomes were compiled. Univariable and multivariable statistics assessed association of patient factors with prolonged postoperative MV. Multivariable logistic regression sought independent associations with outcomes. SETTING: Thirty-five pediatric CICUs across the United States and Canada. PATIENTS: Children on VADs included in both registries. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Two hundred forty-eight ACTION subjects were linked to a matching patient in PC 4 . Median (interquartile) age 7.7 years (1.5-15.5 yr), weight 21.3 kg (9.1-58 kg), and 56% male. Primary diagnosis was congenital heart disease (CHD) in 35%. Pre-VAD explanatory variables independently associated with prolonged postoperative MV included: age (incidence rate ratio [IRR], 0.95; 95% CI, 0.93-0.96; p < 0.01); preoperative MV within 48 hours (IRR, 2.76; 95% CI, 1.59-4.79; p < 0.01), 2-7 days (IRR, 1.82; 95% CI, 1.15-2.89; p = 0.011), and greater than 7 days before VAD implant (IRR, 2.35; 95% CI, 1.62-3.4; p < 0.01); and CHD (IRR, 1.96; 95% CI, 1.48-2.59; p < 0.01). Each additional day of postoperative MV was associated with greater odds of mortality (odds ratio [OR], 1.09 per day; p < 0.01) in the full cohort. We identified an associated greater odds of mortality in the 102 patients with intracorporeal devices (OR, 1.24; 95% CI, 1.04-1.48; p = 0.014), but not paracorporeal devices (77 patients; OR, 1.04; 95% CI, 0.99-1.09; p = 0.115). CONCLUSIONS: Prolonged MV after VAD placement is associated with greater odds of mortality in intracorporeal devices, which may indicate inadequacy of cardiopulmonary support in this group. This linkage provides a platform for future analyses in this population.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Sistema de Registros , Respiración Artificial , Humanos , Niño , Masculino , Femenino , Respiración Artificial/estadística & datos numéricos , Preescolar , Lactante , Adolescente , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/mortalidad , Estados Unidos/epidemiología , Canadá/epidemiología , Unidades de Cuidado Intensivo Pediátrico , Resultado del Tratamiento , Complicaciones Posoperatorias/epidemiología
12.
BMC Public Health ; 24(1): 1211, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693482

RESUMEN

PURPOSE: To investigate the correlation between socioeconomic status (SES) and the incidence of hypertension among adults aged 18 or above in southwest China. METHODS: A multistage proportional stratified cluster sampling method was employed to recruited 9280 adult residents from 12 counties in southwest China, with all participants in the cohort tracked from 2016 to 2020. The questionnaire survey gathered information on demographics, lifestyle habits, and household income. The physical exam recorded height, weight, and blood pressure. Biochemical tests measured cholesterol levels. The chi-square test was employed to assess the statistical differences among categorical variables, while the Cox proportional hazards regression model was applied to evaluate the association between socioeconomic status (SES) and the incidence of hypertension. RESULTS: The finally effective sample size for the cohort study was 3546 participants, after excluding 5734 people who met the exclusion criteria. Adults in the highest household income group had a significantly lower risk of hypertension compared to those in the lowest income group (HR = 0.636, 95% CI: 0.478-0.845). Besides, when compared to individuals in the illiterate population, the risk of hypertension among adults with elementary school, junior high school, senior high school and associate degree educational level decreased respectively by 34.4% (HR = 0.656, 95%CI: 0.533-0.807), 44.9% (HR = 0.551, 95%CI: 0.436-0.697), 44.9% (HR = 0.551, 95%CI: 0.405-0.750), 46.1% (HR = 0.539, 95%CI: 0. 340-0.854). After conducting a thorough analysis of socioeconomic status, compared with individuals with a score of 6 or less, the risk of hypertension in participants with scores of 8, 10, 11, 12, and greater than 12 decreased respectively by 23.9% (HR = 0.761, 95%CI: 0.598-0.969), 29.7% (HR = 0.703, 95%CI: 0.538-0.919), 34.0% (HR = 0.660, 95%CI: 0.492-0.885), 34.3% (HR = 0.657, 95%CI: 0.447-0.967), 43.9% (HR = 0.561, 95%CI: 0.409-0.769). CONCLUSION: The findings indicate a negative correlation between socioeconomic status and hypertension incidence among adults in southwest China, suggesting that individuals with higher socioeconomic status are less likely to develop hypertension.


Asunto(s)
Hipertensión , Clase Social , Humanos , China/epidemiología , Hipertensión/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Incidencia , Estudios de Cohortes , Adulto Joven , Adolescente , Anciano , Factores de Riesgo , Encuestas y Cuestionarios
13.
BMC Pediatr ; 24(1): 34, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212754

RESUMEN

BACKGROUND: Familial hemophagocytic lymphohistiocytosis (FHL) is an immunological disorder characterized by overactivation of macrophages and T lymphocytes. This autosomal recessive condition has been characterized into multiple types depending on the genetic etiology. FHL type 3 is associated with bi-allelic pathogenic variants in the UNC13D gene. CASE PRESENTATION: We present a 12-year diagnostic odyssey for a family with FHL that signifies the advances of FHL genetic testing in a clinical genetic diagnostic laboratory setting. We describe the first case of a large UNC13D gross deletion in trans to a nonsense variant in a family with FHL3, which may have been mediated by Alu elements within introns 12 and 25 of the UNC13D gene. CONCLUSIONS: This case highlights the importance of re-evaluating past genetic testing for a patient and family as test technology evolves in order to end a diagnostic odyssey.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Alelos , Pruebas Genéticas , Intrones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Proteínas de la Membrana/genética , Mutación , Niño
14.
Cardiol Young ; 34(2): 373-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37434511

RESUMEN

BACKGROUND: The National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) lacks a rigorous enrollment audit process, unlike other collaborative networks. Most centers require individual families to consent to participate. It is unknown whether there is variation across centers or biases in enrollment. METHODS: We used the Pediatric Cardiac Critical Care Consortium (PC4) registry to assess enrollment rates in NPC-QIC for those centers participating in both registries using indirect identifiers (date of birth, date of admission, gender, and center) to match patient records. All infants born 1/1/2018-12/31/2020 and admitted 30 days of life were eligible. In PC4, all infants with a fundamental diagnosis of hypoplastic left heart or variant or who underwent a surgical or hybrid Norwood or variant were eligible. Standard descriptive statistics were used to describe the cohort and center match rates were plotted on a funnel chart. RESULTS: Of 898 eligible NPC-QIC patients, 841 were linked to 1,114 eligible PC4 patients (match rate 75.5%) in 32 centers. Match rates were lower in patients of Hispanic/Latino ethnicity (66.1%, p = 0.005), and those with any specified chromosomal abnormality (57.4%, p = 0.002), noncardiac abnormality (67.8%, p = 0.005), or any specified syndrome (66.5%, p = 0.001). Match rates were lower for patients who transferred to another hospital or died prior to discharge. Match rates varied from 0 to 100% across centers. CONCLUSIONS: It is feasible to match patients between the NPC-QIC and PC4 registries. Variation in match rates suggests opportunities for improvement in NPC-QIC patient enrollment.


Asunto(s)
Cardiología , Síndrome del Corazón Izquierdo Hipoplásico , Procedimientos de Norwood , Lactante , Humanos , Niño , Mejoramiento de la Calidad , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Sistema de Registros
15.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338852

RESUMEN

Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard "Wuqi" and brown seed mustard "Wugong" was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G' analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome "T84-66" (brown-seed) and "AU213" (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Planta de la Mostaza/genética , Fitomejoramiento , Brassica napus/genética , Brassica rapa/genética , Semillas/genética , Semillas/metabolismo , Flavonoides/metabolismo , Análisis de Secuencia de ARN
16.
Physiol Mol Biol Plants ; 30(5): 687-704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846458

RESUMEN

Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01455-4.

17.
Angew Chem Int Ed Engl ; 63(18): e202402397, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38389036

RESUMEN

Single-atom nanozyme (SAzyme) has sparked increasing interest for catalytic antitumor treatment due to their more tunable and diverse active sites than natural metalloenzymes in complex physiological conditions. However, it is usually a hard task to precisely conduct catalysis at tumor sites after intravenous injection of those SAzyme with high reactivity. Moreover, the explorations of SAzymes in the anticancer application are still in its infancy and need to be developed. Herein, an in situ synthesis strategy for Cu SAzyme was constructed to convert adsorbed copper ions into isolated atoms anchored by oxygen atoms (Cu-O2/Cu-O4) via GSH-responsive deformability of supports. Our results suggest that the in situ activation process could further facilitate the dissociation of copper ions and the consumption of glutathione, thereby leading to copper deposition in cytoplasm and triggering cuproptosis. Moreover, the in situ synthesis of Cu SAzyme with peroxidase-like activity enabled the intracellular reactive oxygen species production, resulting in specifically disturbance of copper metabolism pathway. Meanwhile, the in situ exposed glucose transporter (GLUT) inhibitor phloretin (Ph) can block the glycose uptake to boost cuproptosis efficacy. Overall, this in situ activation strategy effectively diminished the off-target effects of SACs-induced catalytic therapies and introduced a promising treatment paradigm for advancing cuproptosis-associated therapies.


Asunto(s)
Cobre , Glutatión , Anaerobiosis , Catálisis , Glucólisis , Oxígeno , Iones
18.
J Am Chem Soc ; 145(13): 7205-7217, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958054

RESUMEN

The desirable curative effect in clinical immunotherapy has been challenging due to the immunosuppressive tumor microenvironment (TME) with high lactic acid (LA) metabolism in solid tumors. Although targeting metabolic reprogramming of tumor cells can restore the survival and function of immune cells in the TME, it is also plagued by insufficient immunogenicity. Herein, an activatable immunomodulatory nanoadjuvant CuSe/CoSe2@syrosingopine (CSC@Syro) is constructed for simultaneously relieving immunosuppressive TME and boosting tumor immune response. Specifically, CuSe/CoSe2 (CSC) exhibits TME-activated glutathione (GSH) depletion and hydroxyl radical (•OH) generation for potential ferroptosis. Meanwhile, the remarkable photothermal conversion efficiency and elevated photocatalytic ROS level both promote CSC heterostructures to induce robust immunogenic cell death (ICD). Besides, the loaded syrosingopine inhibitor achieves LA metabolism blockade in cancer cells by downregulating the expression of monocarboxylate transporter 4 (MCT4), which could sensitize ferroptosis by intracellular milieu acidification and neutralize the acidic TME to alleviate immunosuppression. Hence, advanced metabolic modulation confers the potentiated immune infiltration of ICD-stimulated T lymphocytes and further reinforces antitumor therapy. In brief, CSC@Syro-mediated synergistic therapy could elicit potent immunogenicity and suppress tumor proliferation and metastasis effectually by integrating the tumor metabolic regulation and ferroptosis with immunotherapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Ácido Láctico , Inmunoterapia , Transporte Biológico , Fototerapia , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
19.
Plant Cell Physiol ; 63(12): 1857-1872, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35323970

RESUMEN

Drought significantly affects stomatal regulation, leading to the reduced growth and productivity of plants. Plant 14-3-3 proteins were reported to participate in drought response by regulating the activities of a wide array of target proteins. However, the molecular evolution, expression pattern and physiological functions of 14-3-3s under drought stress remain unclear. In this study, a comparative genomic analysis and the tissue-specific expression of 14-3-3s revealed the highly conserved and early evolution of 14-3-3s in green plants and duplication and expansion of the 14-3-3s family members in angiosperms. Using barley (Hordeum vulgare) for the functional characterization of 14-3-3 proteins, the transcripts of five members out of six Hv14-3-3s were highly induced by drought in the drought-tolerant line, XZ141. Suppression of the expression of Hv14-3-3A through barley stripe mosaic virus-virus induced gene silencing resulted in significantly increased drought sensitivity and stomatal density as well as significantly reduced net CO2 assimilation (A) and stomatal conductance (gs) in barley. Moreover, we showed the functional interactions between Hv14-3-3s and key proteins in drought and stomatal responses in plants-such as Open Stomata 1 (HvOST1), Slow Anion Channel 1 (HvSLAC1), three Heat Shock Proteins (HvHSP90-1/2/5) and Dehydration-Responsive Element-Binding 3 (HvDREB3). Taken together, we propose that 14-3-3s are highly evolutionarily conserved proteins and that Hv14-3-3s represent a group of the core regulatory components for the rapid stomatal response to drought in barley. This study will provide important evolutionary and molecular evidence for future applications of 14-3-3 proteins in breeding drought-tolerant crops in a changing global climate.


Asunto(s)
Proteínas 14-3-3 , Resistencia a la Sequía , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/metabolismo , Sequías , Evolución Molecular , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
20.
Am J Hum Genet ; 107(6): 1149-1156, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186543

RESUMEN

The Congenital Dyserythropoietic Anemia (CDA) Registry was established with the goal to facilitate investigations of natural history, biology, and molecular pathogenetic mechanisms of CDA. Three unrelated individuals enrolled in the registry had a syndrome characterized by CDA and severe neurodevelopmental delay. They were found to have missense mutations in VPS4A, a gene coding for an ATPase that regulates the ESCRT-III machinery in a variety of cellular processes including cell division, endosomal vesicle trafficking, and viral budding. Bone marrow studies showed binucleated erythroblasts and erythroblasts with cytoplasmic bridges indicating abnormal cytokinesis and abscission. Circulating red blood cells were found to retain transferrin receptor (CD71) in their membrane, demonstrating that VPS4A is critical for normal reticulocyte maturation. Using proband-derived induced pluripotent stem cells (iPSCs), we have successfully modeled the hematologic aspects of this syndrome in vitro, recapitulating their dyserythropoietic phenotype. Our findings demonstrate that VPS4A mutations cause cytokinesis and trafficking defects leading to a human disease with detrimental effects to erythropoiesis and neurodevelopment.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Anemia Diseritropoyética Congénita/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adenosina Trifosfatasas/metabolismo , Anemia Diseritropoyética Congénita/patología , Médula Ósea/patología , Células de la Médula Ósea/metabolismo , Niño , Preescolar , Citocinesis , Endosomas/metabolismo , Eritroblastos/metabolismo , Eritrocitos/citología , Eritropoyesis , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Trastornos del Neurodesarrollo/metabolismo , Fenotipo , Transporte de Proteínas , Reticulocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA