Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut ; 68(11): 1994-2006, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30826748

RESUMEN

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Macrófagos/fisiología , Ratones , Transducción de Señal/fisiología
2.
Gastroenterology ; 155(4): 1233-1249.e22, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30009820

RESUMEN

BACKGROUND & AIMS: Agents designed to block or alter cytokinesis can kill or stop proliferation of cancer cells. We aimed to identify cytokinesis-related proteins that are overexpressed in hepatocellular carcinoma (HCC) cells and might be targeted to slow liver tumor growth. METHODS: Using the Oncomine database, we compared the gene expression patterns in 16 cancer microarray datasets and assessed gene enrichment sets using gene ontology. We performed immunohistochemical analysis of an HCC tissue microarray and identified changes in protein levels that are associated with patient survival times. Candidate genes were overexpressed or knocked down with small hairpin RNAs in SMMC7721, MHCC97H, or HCCLM3 cell lines; we analyzed their proliferation, viability, and clone-formation ability and their growth as subcutaneous or orthotopic xenograft tumors in mice. We performed microarray analyses to identify alterations in signaling pathways and immunoblot and immunofluorescence assays to detect and localize proteins in tissues. Yeast 2-hybrid screens and mass spectrometry combined with co-immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation and proximity ligation assays. Chromatin immunoprecipitation, promoter luciferase activity, and quantitative real-time polymerase chain reaction analyses were used to identify factors that regulate transcription of specific genes. RESULTS: The genes that were most frequently overexpressed in different types of cancer cells were involved in cell division processes. We identified 3 cytokinesis-regulatory proteins among the 10 genes most frequently overexpressed by all cancer cell types. Rac GTPase activating protein 1 (RACGAP1) was the cytokinesis-regulatory protein that was most highly overexpressed in multiple cancers. Increased expression of RACGAP1 in tumor tissues was associated with shorter survival times of patients with cancer. Knockdown of RACGAP1 in HCC cells induced cytokinesis failure and cell apoptosis. In microarray analyses, we found knockdown of RACGAP1 in SMMC7721 cells to reduce expression of genes regulated by yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1 or TAZ). RACGAP1 reduced activation of the Hippo pathway in HCC cells by increasing activity of RhoA and polymerization of filamentous actin. Knockdown of YAP reduced phosphorylation of RACGAP1 and redistribution at the anaphase central spindle. We found transcription of the translocated promoter region, nuclear basket protein (TPR) to be regulated by YAP and coordinately expressed with RACGAP1 to promote proliferation of HCC cells. TPR redistributed upon nuclear envelope breakdown and formed complexes with RACGAP1 during mitosis. Knockdown of TPR in HCC cells reduced phosphorylation of RACGAP1 by aurora kinase B and impaired their redistribution at the central spindle during cytokinesis. STAT3 activated transcription of RACGAP in HCC cells. CONCLUSIONS: In an analysis of gene expression patterns of multiple tumor types, we found RACGAP1 to be frequently overexpressed, which is associated with shorter survival times of patients. RACGAP1 promotes proliferation of HCC cells by reducing activation of the Hippo and YAP pathways and promoting cytokinesis in coordination with TPR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Citocinesis , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células A549 , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Células Hep G2 , Vía de Señalización Hippo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Factores de Transcripción , Carga Tumoral , Regulación hacia Arriba , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
4.
Gastroenterology ; 153(1): 277-291.e19, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28315323

RESUMEN

BACKGROUND & AIMS: Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. METHODS: We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from KrasG12D/+/Trp53R172H/+/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. RESULTS: In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. CONCLUSIONS: Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Serotonina/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Silenciador del Gen , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Indoles/uso terapéutico , Ácido Láctico/biosíntesis , Masculino , Ratones , Persona de Mediana Edad , Monoaminooxidasa/análisis , Trasplante de Neoplasias , Páncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor de Serotonina 5-HT2B/genética , Serotonina/análisis , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Análisis de Matrices Tisulares , Transcriptoma , Triptófano Hidroxilasa/análisis , Urea/análogos & derivados , Urea/uso terapéutico , Familia-src Quinasas/metabolismo
5.
Biochem Biophys Res Commun ; 499(3): 584-593, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29621546

RESUMEN

Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Transición Epitelial-Mesenquimal/genética , Calicreínas/genética , Neoplasias Pancreáticas/genética , Regulación hacia Arriba/genética , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Calicreínas/metabolismo , Ratones Endogámicos C57BL , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Fenotipo , Pronóstico , Transducción de Señal , Familia-src Quinasas/metabolismo , Neoplasias Pancreáticas
6.
Zhongguo Zhong Yao Za Zhi ; 41(12): 2235-2244, 2016 Jun.
Artículo en Zh | MEDLINE | ID: mdl-28901066

RESUMEN

A rapid and sensitive UHPLC-HR-MSn method was used for the identification of Kudiezi injection and its main metabolites in rat plasma. After the tail intravenous injection of Kudiezi, ACQUITY UHPLC BEH C18 (2.1 mm×100 mm, 1.7 µm) was used, with 0.1% formic acid-acetonitrile solution as the mobile phase for gradient elution. Kudiezi injection and plasma were detected by ESI-LTQ-Orbitrap equipped with an ESI ion source in a negative mode. Based on the accurate mass measurements, the retention time and the mass fragmentation patterns, a total of 53 compounds were tentatively identified and characterized. Furthermore, metabolites in rat plasma after the intravenous administration of Kudiezi injection were also analyzed. A total of 38 compounds were identified, including 27 prototypes and 11 metabolites through metabolic pathways of methylation, glucuronide conjugation, sulfate conjugation and hydrolysis. As a result, UHPLC-LTQ-Orbitrap technique was applied to comprehensively expound Kudiezi injection's chemical components and constituents migrating to rat plasma, and provide scientific basis for further studies on Kudiezi injection's in vivo metabolic process and effective material base.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Metaboloma , Animales , Cromatografía Líquida de Alta Presión , Glucurónidos , Inyecciones , Ratas
7.
J Transl Med ; 12: 282, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25269554

RESUMEN

BACKGROUND: Cervical lesions caused by integrated human papillomavirus (HPV) infection are highly dangerous because they can quickly develop into invasive cancers. However, clinicians are currently hampered by the lack of a quick, convenient and precise technique to detect integrated/mixed infections of various genotypes of HPVs in the cervix. This study aimed to develop a practical tool to determine the physical status of different HPVs and evaluate its clinical significance. METHODS: The target population comprised 1162 women with an HPV infection history of > six months and an abnormal cervical cytological finding. The multiple E1-L1/E6E7 ratio analysis, a novel technique, was developed based on determining the ratios of E1/E6E7, E2/E6E7, E4E5/E6E7, L2/E6E7 and L1/E6E7 within the viral genome. Any imbalanced ratios indicate integration. Its diagnostic and predictive performances were compared with those of E2/E6E7 ratio analysis. The detection accuracy of both techniques was evaluated using the gold-standard technique "detection of integrated papillomavirus sequences" (DIPS). To realize a multigenotypic detection goal, a primer and probe library was established. RESULTS: The integration rate of a particular genotype of HPV was correlated with its tumorigenic potential and women with higher lesion grades often carried lower viral loads. The E1-L1/E6E7 ratio analysis achieved 92.7% sensitivity and 99.0% specificity in detecting HPV integration, while the E2/E6E7 ratio analysis showed a much lower sensitivity (75.6%) and a similar specificity (99.3%). Interference due to episomal copies was observed in both techniques, leading to false-negative results. However, some positive results of E1-L1/E6E7 ratio analysis were missed by DIPS due to its stochastic detection nature. The E1-L1/E6E7 ratio analysis is more efficient than E2/E6E7 ratio analysis and DIPS in predicting precancerous/cancerous lesions, in which both positive predictive values (36.7%-82.3%) and negative predictive values (75.9%-100%) were highest (based on the results of three rounds of biopsies). CONCLUSIONS: The multiple E1-L1/E6E7 ratio analysis is more sensitive and predictive than E2/E6E7 ratio analysis as a triage test for detecting HPV integration. It can effectively narrow the range of candidates for colposcopic examination and cervical biopsy, thereby lowering the expense of cervical cancer prevention.


Asunto(s)
Técnicas de Genotipaje/métodos , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Neoplasias del Cuello Uterino/virología , Adulto , Factores de Edad , Secuencia de Bases , Femenino , Dosificación de Gen , Genotipo , Humanos , Reproducibilidad de los Resultados , Neoplasias del Cuello Uterino/patología , Integración Viral
8.
Nat Commun ; 14(1): 861, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792623

RESUMEN

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Movimiento Celular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
9.
Artículo en Zh | MEDLINE | ID: mdl-22804883

RESUMEN

OBJECTIVE: To study the effects of 50-Hz extremely low frequency electromagnetic field (ELF-EMF) exposure on the pH of the adult male semen and the motoricity and motoricity parameters of spermatozoa. METHODS: Healthy adult male fresh semen was exposed to a 50-Hz EMF at 0.4 mT for 15, 30 and 60 min, respectively. The pH value of the semen, the motoricity and motoricity parameter of spermatozoa were detected and recorded in real time using the WLJY-9000 pattern chromatic color spermatozoa quality detection system. RESULTS: Compared with parallel control group, the exposure of adult male fresh semen to a 50-Hz EMF at 0.4 mT for 15 min or 60 min could decrease significantly the motoricity (spermatozoa with a + b lever) and the activity ratio (spermatozoa with a + b + c lever)(P < 0.01). However, there were no significant differences of motoricity and the activity ratio between exposure group and control group (P > 0.05), and after exposure to a 50-Hz. EMF for 30 min the motoricity and the activity ratio of exposure group were inhibited, as compared with control group (P < 0.01 or P < 0.05). The pH value of the semen was not obvious changed (P > 0.05) when semen was exposed to a 50-Hz EMF of 0.4 mT for 15, 30 and 60 min. CONCLUSION: In present experiment, it is suggested that the exposure of adult male fresh semen to a 50-Hz EMF in vitro could inhibit the motoricity and the activity ratio, but not affect the pH value of the semen within 60 min.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Semen/fisiología , Motilidad Espermática , Adulto , Exposición a Riesgos Ambientales , Humanos , Masculino
10.
J Immunol Res ; 2022: 5665964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478937

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and the patients are generally diagnosed with distant metastasis. Liver is one of the preferred organs of distant metastasis, and liver metastasis is the leading cause of death in PDAC. Diet-induced obesity (DIO) is a risk factor for PDAC, and it remains unclear whether and how DIO contributes to liver metastasis of PDAC. In our study, we found that DIO significantly promoted PDAC liver metastasis compared with normal diet (ND) in intrasplenic injection mouse model. RNA-seq analysis for liver metastasis nodules showed that the various chemokines and several chemokine receptors were altered between ND and DIO samples. The expression levels of CX3CL1 and CX3CR1 were significantly upregulated in DIO-induced liver metastasis of PDAC compared to ND. Increased CX3CL1 promoted the recruitment of CX3CR1-expressing pancreatic tumor cells. Taken together, our data demonstrated that DIO promoted PDAC liver metastasis via CX3CL1/CX3CR1 axis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Receptor 1 de Quimiocinas CX3C , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Quimiocina CX3CL1/genética , Dieta , Humanos , Neoplasias Hepáticas/secundario , Ratones , Obesidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
11.
World J Clin Cases ; 10(15): 4886-4894, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35801029

RESUMEN

BACKGROUND: Nonfunctional pancreatic neuroendocrine tumours are difficult to diagnose in the early stage of disease due to a lack of clinical symptoms, but they can rarely manifest as autoimmune pancreatitis. Autoimmune pancreatitis is an uncommon disease that may cause recurrent acute pancreatitis and is therefore often regarded as a special type of chronic pancreatitis. CASE SUMMARY: We report a case of a 42-year-old female who had nonspecific upper abdominal pain for 4 years and radiological abnormalities of the pancreas that mimicked autoimmune pancreatitis. The symptoms and pancreatic imaging did not improve following 1 year of steroid therapy. Finally, pancreatic biopsy was performed through endoscopic ultrasonography-guided fine-needle aspiration biopsy, and nonfunctional pancreatic neuroendocrine tumours were ultimately diagnosed. Pancreatectomy has resolved her symptoms. CONCLUSION: Therefore, the differentiation of nonfunctional pancreatic neuroendocrine tumours from autoimmune pancreatitis is very important, although it is rare. We propose that endoscopic ultrasonography-guided fine-needle aspiration biopsy should be performed if imaging characteristics are equivocal or the diagnosis is in question.

12.
Light Sci Appl ; 11(1): 329, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414615

RESUMEN

The solar X-ray and Extreme Ultraviolet Imager (X-EUVI), developed by the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), is the first space-based solar X-ray and Extreme ultraviolet (EUV) imager of China loaded on the Fengyun-3E (FY-3E) satellite supported by the China Meteorological Administration (CMA) for solar observation. Since started work on July 11, 2021, X-EUVI has obtained many solar images. The instrument employs an innovative dual-band design to monitor a much larger temperature range on the Sun, which covers 0.6-8.0 nm in the X-ray region with six channels and 19.5 nm in the EUV region. X-EUVI has a field of view of 42', an angular resolution of 2.5″ per pixel in the EUV band and an angular resolution of 4.1″ per pixel in the X-ray band. The instrument also includes an X-ray and EUV irradiance sensor (X-EUVS) with the same bands as its imaging optics, which measures the solar irradiance and regularly calibrates the solar images. The radiometric calibration of X-EUVS on the ground has been completed, with a calibration accuracy of 12%. X-EUVI is loaded on the FY-3E satellite and rotates relative to the Sun at a uniform rate. Flat-field calibration is conducted by utilizing successive rotation solar images. The agreement between preliminarily processed X-EUVI images and SDO/AIA and Hinode/XRT images indicates that X-EUVI and the data processing algorithm operate properly and that the data from X-EUVI can be applied to the space weather forecast system of CMA and scientific investigations on solar activity.

13.
World J Gastroenterol ; 27(18): 2141-2159, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34025070

RESUMEN

BACKGROUND: Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis (SAP)-related acute lung injury (ALI). Inhibition of p38 by SB203580 blocked the inflammatory responses in SAP-ALI. However, the precise mechanism associated with p38 is unclear, particularly in pulmonary microvascular endothelial cell (PMVEC) injury. AIM: To determine its role in the tumor necrosis factor-alpha (TNF-α)-induced inflammation and apoptosis of PMVECs in vitro. We then conducted in vivo experiments to confirm the effect of SB203580-mediated p38 inhibition on SAP-ALI. METHODS: In vitro, PMVEC were transfected with mitogen-activated protein kinase kinase 6 (Glu), which constitutively activates p38, and then stimulated with TNF-α. Flow cytometry and western blotting were performed to detect the cell apoptosis and inflammatory cytokine levels, respectively. In vivo, SAP-ALI was induced by 5% sodium taurocholate and three different doses of SB203580 (2.5, 5.0 or 10.0 mg/kg) were intraperitoneally injected prior to SAP induction. SAP-ALI was assessed by performing pulmonary histopathology assays, measuring myeloperoxidase activity, conducting arterial blood gas analyses and measuring TNF-α, interleukin (IL)-1ß and IL-6 levels. Lung microvascular permeability was measured by determining bronchoalveolar lavage fluid protein concentration, Evans blue extravasation and ultrastructural changes in PMVECs. The apoptotic death of pulmonary cells was confirmed by performing a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis and examining the Bcl2, Bax, Bim and cle-caspase3 levels. The proteins levels of P-p38, NFκB, IκB, P-signal transducer and activator of transcription-3, nuclear factor erythroid 2-related factor 2, HO-1 and Myd88 were detected in the lungs to further evaluate the potential mechanism underlying the protective effect of SB203580. RESULTS: In vitro, mitogen-activated protein kinase (Glu) transfection resulted in higher apoptotic rates and cytokine (IL-1ß and IL-6) levels in TNF-α-treated PMVECs. In vivo, SB2035080 attenuated lung histopathological injury, decreased inflammatory activity (TNF-α, IL-1ß, IL-6 and myeloperoxidase) and preserved pulmonary function. Furthermore, SB203580 significantly reversed changes in the bronchoalveolar lavage fluid protein concentration, Evans blue accumulation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cell numbers, apoptosis-related proteins (cle-caspase3, Bim and Bax) and endothelial microstructure. Moreover, SB203580 significantly reduced the pulmonary P-p38, NFκB, P-signal transducer and activator of transcription-3 and Myd88 levels but increased the IκB and HO-1 levels. CONCLUSION: p38 inhibition may protect against SAP-ALI by alleviating inflammation and the apoptotic death of PMVECs.


Asunto(s)
Lesión Pulmonar Aguda , Pancreatitis , Enfermedad Aguda , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Células Endoteliales , Humanos , Pulmón , Pancreatitis/inducido químicamente , Factor de Necrosis Tumoral alfa , Proteínas Quinasas p38 Activadas por Mitógenos
14.
Materials (Basel) ; 13(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32284495

RESUMEN

Thermally reduced graphene oxide/carbon nanotube (rGO/CNT) composite films were successfully prepared by a high-temperature annealing process. Their microstructure, thermal conductivity and mechanical properties were systematically studied at different annealing temperatures. As the annealing temperature increased, more oxygen-containing functional groups were removed from the composite film, and the percentage of graphene continuously increased. When the annealing temperature increased from 1100 to 1400 °C, the thermal conductivity of the composite film also continuously increased from 673.9 to 1052.1 W m-1 K-1. Additionally, the Young's modulus was reduced by 63.6%, and the tensile strength was increased by 81.7%. In addition, the introduction of carbon nanotubes provided through-plane thermal conduction pathways for the composite films, which was beneficial for the improvement of their through-plane thermal conductivity. Furthermore, CNTs apparently improved the mechanical properties of rGO/CNT composite films. Compared with the rGO film, 1 wt% CNTs reduced the Young's modulus by 93.3% and increased the tensile strength of the rGO/CNT composite film by 60.3%, which could greatly improve its flexibility. Therefore, the rGO/CNT composite films show great potential for application as thermal interface materials (TIMs) due to their high in-plane thermal conductivity and good mechanical properties.

15.
Front Cell Dev Biol ; 8: 586757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117814

RESUMEN

The overarching view of current tumor therapies simplifies cancer to a cell-biology problem in which neoplasms are caused solely by malignant cells and the exploration of carcinogenesis and tumor progression largely focuses on somatic mutations and other genetic abnormalities of cancer cells. The limited therapeutic response indicates that cancer is driven not only by endogenous oncogenic factors and reciprocal interactions within the tumor microenvironment, but also by complex systemic processes. Homeostasis is the fundamental premise of health, and is maintained by systemic regulation of neuro-endocrine-immune axis. Cancer is also a systemic disease that manifested by dysfunction of the nervous, endocrine, and immune systems. Multiple axes of regulation exist in cancer, including central-, organ-, and microenvironment-level manipulation. At each specific regulatory level, the tridirectional communication among the nervous, endocrine, and immune factors transmit flexible signaling to induce proliferation, invasion, reprogrammed metabolism, therapeutic resistance, and other malignant phenotypes of cancer cells, resulting in the extremely poor prognosis of this lethal disease. Understanding this coordinated signaling network will enable the development of new approaches for cancer treatment via behavioral and pharmacological interventions.

16.
Front Oncol ; 10: 426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351881

RESUMEN

Purpose: It is very important to develop potential molecular associated with oral squamous cell carcinoma (OSCC) malignant transformation and progression. Thus, the aim of our study was to determine the amino acid metabolic characteristics of OSCC patients and test their diagnostic value. Experimental Design: Eight pairs of matched tumor and normal samples were collected for gas chromatography-mass spectrometry (GC-MS) high-throughput untargeted analysis. Another 20 cases (each case including tumor and normal tissues) were also enrolled for ultrahigh-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) amino acid quantitative analysis. T-test and receiver operating characteristic (ROC) curve analysis were used to determine candidate markers. Principal component analysis, partial least squares discriminant analysis, and heat map analysis were used to verify the ability of candidate markers to distinguish tumors from normal tissues. Results: A total of 10 amino acids biomarker were selected as OSCC candidate diagnostic biomarkers by GC-MS high-throughput untargeted metabolomics analyses [area under the curve (AUC) >0.80]. We further measured the specific concentration of these candidate amino acids biomarkers in another batch of 20 cases by UHPLC-MS/MS quantitative analysis. The result validated that nine amino acids had been detected, which had statistically significant difference (t-test, p < 0.05). Moreover, three of nine amino acid markers (glutamate, aspartic acid, and proline) displayed high sensitivity and specificity (AUC >0.90) by ROC curve analysis and obtained optimal sensitivity and specificity by binary logistic regression in the Glmnet package (AUC = 0.942). Conclusions: In conclusion, a panel including three amino acids (glutamate, aspartic acid, and proline) was identified as potential diagnostic biomarkers of OSCC by a combination of non-targeted and targeted metabolomics methods.

17.
Pathol Oncol Res ; 26(3): 1687-1695, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31606786

RESUMEN

Tumor-infiltrating immune cells engage in an extensive crosstalk with tumors and act as two-edged swords by inhibiting or promoting cancer growth. Therefore, identifying the density and prognostic values of tumor-infiltrating immune cells will provide valuable tips for cancer treatments. In this study, we identified the density of tumor inflammatory infiltrates and the number of tumor-infiltrating immune cells, including CD3+, CD4+, CD8+, FoxP3+ T cells and CD1a+ dendritic cells (DCs) in 153 tongue squamous cell carcinomas (TSCC). High inflammatory cell infiltration was associated with better overall survival (OS) and disease free survival (DFS). Moreover, the number of CD3+, CD4+, FoxP3+ and CD1a+ cells were associated with tumor differentiation (P<0.001) and the number of FoxP3+, CD1a+ cells and CD8+/FoxP3+ ratios were also associated with tumor stage (P<0.01, P<0.01, P<0.05). In addition, patients with higher CD1a+ DCs had better OS and increased CD8+/FoxP3+ ratios were associated with improved OS and DFS (P = 0.037; P = 0.047; P = 0.033). In conclusion, our results indicated that tumor-infiltrating CD1a+ DCs and CD8+/FoxP3+ ratios were associated with favorable clinical outcomes but not independent prognostic factors for TSCC patients.


Asunto(s)
Células Dendríticas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Subgrupos de Linfocitos T/inmunología , Neoplasias de la Lengua/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Lengua/patología , Adulto Joven
18.
Nat Commun ; 11(1): 1668, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245960

RESUMEN

Energy circulation in geospace lies at the heart of space weather research. In the inner magnetosphere, the steep plasmapause boundary separates the cold dense plasmasphere, which corotates with the planet, from the hot ring current/plasma sheet outside. Theoretical studies suggested that plasmapause surface waves related to the sharp inhomogeneity exist and act as a source of geomagnetic pulsations, but direct evidence of the waves and their role in magnetospheric dynamics have not yet been detected. Here, we show direct observations of a plasmapause surface wave and its impacts during a geomagnetic storm using multi-satellite and ground-based measurements. The wave oscillates the plasmapause in the afternoon-dusk sector, triggers sawtooth auroral displays, and drives outward-propagating ultra-low frequency waves. We also show that the surface-wave-driven sawtooth auroras occurred in more than 90% of geomagnetic storms during 2014-2018, indicating that they are a systematic and crucial process in driving space energy dissipation.

19.
Cancer Res ; 80(10): 1991-2003, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32098780

RESUMEN

Perineural invasion is a common feature of pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the effect of perineural invasion on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different perineural invasion status were compared, and the intratumoral T-cell density and levels of neurotransmitters in these tissues were assessed. Perineural invasion was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe perineural invasion. Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFNγ production by CD8+ T cells in a dose-dependent manner and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T-cell response in an orthotopic PDAC model. Conversely, blocking perineural invasion with bilateral subdiaphragmatic vagotomy in tumor-bearing mice was associated with an increase in CD8+ T cells, an elevated Th1/Th2 ratio, and improved survival. In conclusion, perineural invasion-triggered cholinergic signaling favors tumor growth by promoting an immune-suppressive microenvironment characterized by impaired CD8+ T-cell infiltration and a reduced Th1/Th2 ratio. SIGNIFICANCE: These findings provide a promising therapeutic strategy to modulate the immunosuppressive microenvironment of pancreatic ductal adenocarcinoma with severe perineural invasion.


Asunto(s)
Acetilcolina/metabolismo , Carcinoma Ductal Pancreático/patología , Invasividad Neoplásica/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Animales , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/fisiología
20.
World J Clin Cases ; 7(17): 2587-2596, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31559297

RESUMEN

BACKGROUND: The history of allogenic tooth transplantation can be traced back to the 16th century. Although there have been many successful cases, much needs to be better understood and researched prior to the technique being translated to everyday clinical practice. CASE SUMMARY: In the present report, we describe a case of allogenic tooth transplantation between a mother and her daughter. The first left maxillary molar of the mother was diagnosed with residual root resorption and needed to be extracted. The 3rd molar of the daughter was used as a donor tooth. Prior to transplantation, a 3D printing system was introduced to fabricate an individualized reamer drill specifically designed utilizing the donor's tooth as a template. The specific design of our 3D printed bur allowed for the recipient site to better match the donor tooth. With the ability to 3D print in layers, even the protuberance of the root can be matched and 3D printed, thereby minimizing unnecessary bone loss. CONCLUSION: Our study is a pioneering case combining 3D printing with allogenic tooth transplantation, which could be able to minimize unnecessary bone loss and improve the implant stability. This article aims to enhance our understanding of allogenic tooth transplantation and 3D printing, and may potentially lead to tooth transplantation being utilized more frequently - especially since transplantations are so commonly utilized in many other fields of medicine with high success rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA