Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(14): e2307950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990375

RESUMEN

The development of lithium-sulfur batteries (LSBs) is impeded by the shuttle effect of polysulfides (LiPSs) and the sluggish nucleation of Li2S. To address these challenges, incorporating electrocatalysts into sulfur host materials represents an effective strategy for promoting polysulfide conversion, in tandem with the rational design of multifunctional sulfur host materials. In this study, Pt nanoparticles are integrated into biomass-derived carbon materials by solution deposition method. Pt, as an electrocatalyst, not only enhances the electrical conductivity of sulfur cathodes and effectively immobilizes LiPSs but also catalyzes the redox reactions of sulfur species bidirectionally. Additionally, Pt helps regulate the 3D deposition and growth of Li2S while reducing the reaction energy barrier. Consequently, this accelerates the conversion of LiPSs in LSBs. Furthermore, the catalytic ability of Pt for the redox reactions of sulfur species, along with its influence on the 3D deposition and growth of Li2S, is elucidated using electrochemical kinetic analyses and classical models of electrochemical deposition. The cathodes exhibit a high initial specific capacity of 1019.1 mAh g-1 at 1 C and a low decay rate of 0.045% over 1500 cycles. This study presents an effective strategy to regulate Li2S nucleation and enhance the kinetics of polysulfide conversion in LSBs.

2.
Small ; 20(26): e2309655, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243851

RESUMEN

Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm-2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.

3.
Small ; : e2402756, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031869

RESUMEN

In traditional machine learning (ML)-based material design, the defects of low prediction accuracy, overfitting and low generalization ability are mainly caused by the training of a single ML model. Here, a Soft Voting Ensemble Learning (SVEL) approach is proposed to solve the above issues by integrating multiple ML models in the same scene, thus pursuing more stable and reliable prediction. As a case study, SVEL is applied to develop the broad chemical space of novel pyrochlore electrocatalysts with the molecular formula of A2B2O7, to explore promising pyrochlore oxides and accelerate predictions of unknown pyrochlore in the periodic table. The model successfully established the structure-property relationship of pyrochlore, and selected six cost-effective pyrochlore from the periodic table with a high prediction accuracy of 91.7%, all of which showed good electrocatalytic performance. SVEL not only effectively avoids the high costs of experimentation and lengthy computations, but also addresses biases arising from data scarcity in single models. Furthermore, it has significantly reduced the research cycle of pyrochlore by ≈ 22 years, offering broad prospects for accelerating the development of materials genomics. SVEL method is intended to integrate multiple AI models to provide broader model training clues for the AI material design community.

4.
Small ; 19(12): e2207197, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587968

RESUMEN

Hollow carbon spheres are potential candidates for lightweight microwave absorbers. However, the skin effect of pure carbon-based materials frequently induces a terrible impedance mismatching issue. Herein, small-sized NiO/Ni particles with heterojunctions on the N-doped hollow carbon spheres (NHCS@NiO/Ni) are constructed using SiO2 as a sacrificing template. The fabricated NHCS@NiO/Ni displayed excellent microwave absorbability with a minimum reflection loss of -44.04 dB with the matching thickness of 2 mm and a wider efficient absorption bandwidth of 4.38 GHz with the thickness of 1.7 mm, superior to most previously reported hollow absorbers. Experimental results demonstrated that the excellent microwave absorption property of the NHCS@NiO/Ni are attributed to balanced dielectric loss and optimized impedance matching characteristic due to the presence of NiO/Ni heterojunctions. Theoretical calculations suggested that the redistribution of charge at the interfaces and formation of dipoles induced by N dopants and defects are responsible for the enhanced conduction and polarization losses of NHCS@NiO/Ni. The simulations for the surface current and power loss densities reveal that the NHCS@NiO/Ni has- applicable attenuation ability toward microwave under the practical application scenario. This work paves an efficient way for the reasonable design of small-sized particles with well-defined heterojunctions on hollow nanostructures for high-efficiency microwave absorption.

5.
Angew Chem Int Ed Engl ; 62(34): e202303056, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37243514

RESUMEN

Exploiting dual-functional photoelectrodes to harvest and store solar energy is a challenging but efficient way for achieving renewable energy utilization. Herein, multi-heterostructures consisting of N-doped carbon coated MoS2 nanosheets supported by tubular TiO2 with photoelectric conversion and electronic transfer interfaces are designed. When a photo sodium ion battery (photo-SIB) is assembled based on the heterostructures, its capacity increases to 399.3 mAh g-1 with a high photo-conversion efficiency of 0.71 % switching from dark to visible light at 2.0 A g-1 . Remarkably, the photo-SIB can be recharged by light only, with a striking capacity of 231.4 mAh g-1 . Experimental and theoretical results suggest that the proposed multi-heterostructures can enhance charge transfer kinetics, maintain structural stability, and facilitate the separation of photo-excited carriers. This work presents a new strategy to design dual-functional photoelectrodes for efficient use of solar energy.

6.
Phys Chem Chem Phys ; 24(15): 8913-8922, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35373229

RESUMEN

The poor cycling abilities of S cathodes due to the dissolution of high-order lithium polysulfides and sluggish reaction kinetics of low-order solid Li2S hinder the commercial application of lithium-sulfur batteries. Although many hosts have been introduced into S electrodes to anchor high-order polysulfides, an effective procedure to select the hosts to improve the conversion kinetics of solid Li2S is scarce. Using density functional theory calculations, we proposed a procedure to screen catalytic hosts for solid and non-solid reactions of Li2S2/Li2S by employing the available functionalized Ti3C2T2 MXenes (T = H, O, F, S, Cl, Se, Te, Br, OH, and NH), under the precondition of good anchoring abilities for high-order polysulfides. For the solid-state reactions, it was found that Ti3C2Se2 is the optimal candidate for improving the reaction kinetics of solid Li2S. Suitable catalysts for different reaction processes between molecular Li2S2 and Li2S have also been proposed. We also proposed that sulfur cathodes doped with heavy atoms (Se or Te) belonging to the main group VI may significantly modify the reaction kinetics of Li2S. These results provide guidance on synthesizing MXenes with the given surface groups as the hosts and can accelerate the step of finding out other suitable host materials.

7.
Small ; 17(33): e2102032, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34250726

RESUMEN

Ordered porous carbon materials (PCMs) have potential applications in various fields due to their low mass densities and porous features. However, it yet remains extremely challenging to construct PCMs with multifunctionalization for electromagnetic wave absorption. Herein, the honeycombed-like carbon aerogels with embedded Co@C nanoparticles are fabricated by a directionally freeze-casting and carbonization method. The optimized aerogel possesses low density (0.017 g cm-3 ), fire-retardant, robust mechanical performance (compression moduli reach 1411 and 420 kPa in the longitudinal and transverse directions at 80% strain, respectively), and high thermal management (high thermal insulation capability and high-efficiency electrothermal conversion ability). Notably, the optimized aerogel exhibits the excellent electromagnetic wave absorption properties with broad effective absorption bandwidth (13.12-17.14 GHz) and strong absorption (-45.02 dB) at a thickness of only 1.5 mm. Density functional theory calculations and the experimental results demonstrate that the excellent electromagnetic wave absorption properties stem from the synergetic effects among high electrical conductivity, numerous interfaces and dipoles and unique ordered porous structure. Meanwhile, the computer simulation technology (CST) simulation confirms that the multifunctional aerogel can attenuate more electromagnetic energy in a practical environment. This work paves the way for rational design and fabrication of the next-generation electromagnetic wave absorbing materials.

8.
Protein Expr Purif ; 184: 105888, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33857600

RESUMEN

Anti-EGFR nanobodies have been successfully applied as antitumor moieties in the photodynamic therapy and drug delivery systems. But the yields of nanobodies were still limited due to the volumetric capacity of the periplasmic compartments and inclusion bodies of Escherichia coli. A comparative study of Pichia pastoris and Escherichia coli was done through characterizing their products. Nanobody 7D12 and 7D12-9G8 were successfully expressed in Pichia pastoris with 6-13.6-fold higher yield. Both two types of nanobodies had internalization ability to be developed as antitumor moieties.


Asunto(s)
Antineoplásicos Inmunológicos , Escherichia coli , Proteínas de Neoplasias , Saccharomycetales , Anticuerpos de Dominio Único , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/aislamiento & purificación , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/aislamiento & purificación , Anticuerpos de Dominio Único/farmacología
9.
Angew Chem Int Ed Engl ; 60(49): 25793-25798, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676649

RESUMEN

Mn-based oxides have sparked extensive scientific interest for aqueous Zn-ion batteries due to the rich abundance, plentiful oxidation states, and high output voltage. However, the further development of Mn-based oxides is severely hindered by the rapid capacity decay during cycling. Herein, a two-step metal-organic framework (MOF)-engaged templating strategy has been developed to rationally synthesize heterostructured Mn2 O3 -ZnMn2 O4 hollow octahedrons (MO-ZMO HOs) for stable zinc ion storage. The distinctive composition and hollow heterostructure endow MO-ZMO HOs with abundant active sites, enhanced electric conductivity, and superior structural stability. By virtue of these advantages, the MO-ZMO HOs electrode shows high reversible capacity, impressive rate performance, and outstanding electrochemical stability. Furthermore, ex situ characterizations reveal that the charge storage of MO-ZMO HOs mainly originates from the highly reversible Zn2+ insertion/extraction reactions.

10.
Angew Chem Int Ed Engl ; 60(15): 8515-8520, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33481323

RESUMEN

The application of lithium metal anodes for practical batteries is still impeded by safety issues and low Coulombic efficiency caused mainly by the uncontrollable growth of lithium dendrites. Herein, two types of free-standing nitrogen-doped amorphous Zn-carbon multichannel fibers are synthesized as multifunctional hosts for lithium accommodation. The 3D macroporous structures endow effectively reduced local current density, and the lithiophilic nitrogen-doped carbon and functional Zn nanoparticles serve as preferred deposition sites with low nucleation barriers to guide uniform lithium deposition. As a result, the developed anodes exhibit remarkable electrochemical properties in terms of high Coulombic efficiency for more than 500 cycles at various current densities from 1 to 5 mA cm-2 , and symmetric cells show long-term cycling duration over 2000 h. Moreover, full cells based on the developed anode and a LiFePO4 cathode also demonstrate superior rate capability and stable cycle life.

11.
Angew Chem Int Ed Engl ; 60(28): 15503-15509, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33913574

RESUMEN

The lithium-sulfur (Li-S) battery is regarded as a promising secondary battery. However, constant parasitic reactions between the Li anode and soluble polysulfide (PS) intermediates significantly deteriorate the working Li anode. The rational design to inhibit the parasitic reactions is plagued by the inability to understand and regulate the electrolyte structure of PSs. Herein, the electrolyte structure of PSs with anti-reductive solvent shells was unveiled by molecular dynamics simulations and nuclear magnetic resonance. The reduction resistance of the solvent shell is proven to be a key reason for the decreased reactivity of PSs towards Li. With isopropyl ether (DIPE) as a cosolvent, DIPE molecules tend to distribute in the outer solvent shell due to poor solvating power. Furthermore, DIPE is more stable than conventional ether solvents against Li metal. The reactivity of PSs is suppressed by encapsulating PSs into anti-reductive solvent shells. Consequently, the cycling performance of working Li-S batteries was significantly improved and a pouch cell of 300 Wh kg-1 was demonstrated. The fundamental understanding in this work provides an unprecedented ground to understand the electrolyte structure of PSs and the rational electrolyte design in Li-S batteries.

12.
Cancer Cell Int ; 20: 129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32336949

RESUMEN

BACKGROUND: Recent evidence of clinical trials highlights that the combination of two noncompetitive anti-EGFR antibodies can benefit patients with several cancers. Previous studies propose that a lattice complex assembled by antibodies and EGFR down-regulates surface EGFR by rapid internalization of the complex. However, there remains a paucity of evidence and understanding on the existence of a lattice complex on cell surface and its cellular processes of internalization. METHODS: Herein, we used three dimensions structured illumination microscopy to directly observe the actual morphology of the lattice complex formed on Hela cell membrane after noncompetitive anti-EGFR antibody combinations, and we explored the internalized mechanism of noncompetitive antibody combinations by constructing a PIP2 consumption system. RESULT: We observed the lattice complex (length > 1 µm) on the surface of living cell after preincubation with Cetuximab and H11, but combination of Cetuximab and single domain antibody 7D12 fails to assemble the lattice, these results demonstrates the importance of symmetrical structure of conventional antibody for lattice formation. Interestingly, the lattice complex assembles along with cytoskeletal fibers, and its internalization recruits a large amount of PIP2 and triggers the rearrangement of F-actin. CONCLUSIONS: The above data suggests that large-size lattice complex affects membrane fluidity and dynamic reorganization of cytoskeletal, which may be responsible for its rapid internalization. These new insight will aid in current rational combination design of anti-EGFR antibodies.

13.
Chemistry ; 23(42): 10187-10194, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28590063

RESUMEN

A noble-metal-free and highly efficient bifunctional catalyst for overall water splitting is greatly desirable to generate clean and sustainable energy carriers such as hydrogen, but enormous challenges remain. Herein, porous interconnected iron-nickel nitride nanosheets are designed and grown on carbon fiber cloth (FeNi-N/CFC); combining a facile electrodeposition method and in situ nitriding process. The as-synthesized FeNi-N/CFC, with a low mass loading of 0.25 mg cm-2 , exhibits excellent catalytic activities for both the oxygen evolution reaction (OER) with 20 mA cm-2 at an overpotential (η) of 232 mV and also the hydrogen evolution reaction (HER) with 10 mA cm-2 at η=106 mV. As a bifunctional electrocatalyst for overall water splitting FeNi-N/CFC only requires a cell voltage of 1.55 V to drive a current density (j) of 10 mA cm-2 and shows robust long-term durability at j>360 mA cm-2 with a negligible change in current density over 60 h; revealing its promising application in commercial electrolyzers.

14.
Phys Chem Chem Phys ; 19(14): 9509-9518, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28338131

RESUMEN

Although many studies have been focused on the characterization of MXenes, surface structures and formation mechanisms in terms of their experimental processes still remain controversial. Herein, we systematically investigated the structures formed from MX intercalated with different atoms from group IA to VIIA (A = H, Li, Na, K, Mg, Al, Si, P, O, S, F, and Cl) at different sites. An effective procedure based on first-principles calculations was developed to reveal the formation mechanisms of MAX, MXA2, MXTx, and MXTxAx' structures. The competition and matching mechanisms were introduced to determine the formation probabilities of the MAX phase. The transformation processes from MAX to MXA2 have been correlated with the energies and configurations of the transformed MX and the chemical potential of the A atom in terms of the experimental processes. The structure of MXTx obtained using different methods has been formulated as a function of the experimental conditions and the c lattice parameter. The experimental results can be well explained based on these results. As a representative, it was proved that the capacity of Ti3C2TxAx' (A = Li) depends on the c lattice parameter and the calculated allowable value can range from 130.3 mA h g-1 (Ti3C2F2Li) to 536.8 mA h g-1 (Ti3C2O2Li4). A higher value can be expected if the sample with a suitable c-axis value can be obtained. Energy storage mechanism should be classified into a double-layer capacitance process in the Ti3C2F2 units and a redox storage mechanism in the Ti3C2O2 units. The procedure can be employed to optimize the structures and compositions of the MXenes.

15.
Nanotechnology ; 27(7): 075703, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26763412

RESUMEN

It is generally accepted that the nonlinear I-V characteristics for semiconductor nanostructures are mainly induced by the Schottky contacts or by the space charge limited transport mechanism. We perform I-V measurements on undoped and doped In-Zn-O compound nanobelts and confirm that their intrinsic non-ohmic transport behaviors are not caused by these mechanisms. A model based on the hopping assisted trap state electrons transport process is introduced to explain the nonlinear I-V characteristics and to extract their electrical parameters. An understanding of this trap-state influenced carrier transport can advance the progress of nanomaterials applications and enable us to distinguish their intrinsic transport behaviors from contact effects. The results also indicate that the material has good electrical properties and can be used as a potential substitute for In2O3.

16.
J Colloid Interface Sci ; 661: 472-481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308887

RESUMEN

Lithium-sulfur batteries (LSBs) are considered to be one of the most promising energy storage systems because of the ultrahigh energy density. However, their shuttle effect and slow redox kinetics seriously hinder the development of LSBs. To solve these issues, the perovskite La1-xSrxMnO3-δ (x = 0-0.5) with different oxygen vacancy concentrations were prepared by a facile liquid-phase synthesis and followed by the thermal annealing. The La1-xSrxMnO3-δ can not only anchor lithium polysulfides (LiPSs), but also catalyze the conversion of LiPSs. The detailed kinetic analysis and density functional theory calculations reveal that the optimal level of oxygen vacancies can effectively increase the binding energy between perovskites and LiPSs, and effectively promote the LiPS conversion kinetics. The S/La0.6Sr0.4MnO3-δ cathode with a moderate oxygen vacancy concentration exhibits high rate performance and ultrahigh capacity retention of 93.2% after 150 cycles at 0.1 C, which provides a potential for practical applications of LSBs. This work reveals the application of perovskite materials in the development of advanced LSBs.

17.
Dalton Trans ; 53(10): 4753-4763, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363131

RESUMEN

The sluggish reaction kinetics and notorious shuttle effect of polysulfides significantly hinder the practical application of lithium-sulfur batteries (LSBs). Therefore, polysulfides are anchored and their conversion reactions are catalyzed to enhance the performance of LSBs. Herein, an exquisite hierarchical carbon nanoarchitecture decorated with sulfides is designed and introduced into LSBs. Systematic experiments show that the nanoarchitecture not only enables rapid electron/ion migration but also functions as an active catalyst to increase polysulfide conversion, thus effectively reducing the shuttle effect. As a result, LSBs with the nanoarchitecture modified separator exhibited outstanding rate capacity (724.9 mA h g-1 at 5C), low self-discharge capacity loss (4.1% capacity loss after 72 h), and exceptional reversible capacity (1518.3 mA h g-1 at 0.1C and 25.6% capacity loss after 100 cycles). Through the design of a multifunctional separator, this study offers an effective way to minimize the shuttle effect and speed up redox conversion. The strategy of constructing nanoarchitectures provides an innovative route for hierarchical heterocatalyst design for LSBs.

18.
J Colloid Interface Sci ; 657: 538-549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070339

RESUMEN

The exploitation of efficient, stable and cheap electrocatalyst for oxygen evolution reaction (OER) is very significant to the development of energy technology. In this study, Fe-based metal-organic frameworks (MIL-53(Fe)) self-supporting electrode with a 3D hierarchical open structure was developed through a semi-sacrificial strategy. The self-supporting electrode exhibits an excellent OER performance with an overpotential of 328 mV at 100 mA cm-2 in 1 M KOH, which is superior than that of IrO2 catalyst. Importantly, the optimized self-supporting electrode could operate at 100 mA cm-2 for 520 h without visible decrease in activity. It was also found that the structure of MIL-53(Fe) was in-situ self-reconstructed into oxyhydroxides during OER process. However, the 3D hierarchical open structure assembled with nano-microstructures kept well, which ensured the long-term stability of our self-supporting electrode for OER. Furthermore, density functional theory (DFT) calculations reveal that the FeOOH with rich oxygen vacancy transformed from MIL-53(Fe) plays a key role for the OER catalytic activity. And, the uninterrupted formation of oxygen vacancy during OER process ensures the continuous OER catalytic activity, which is the original source for the ultra-long stability of the self-supporting electrode toward OER. This work explores the way for the construction of efficient self-supporting oxygen electrodes based on MOFs.

19.
ACS Nano ; 18(23): 15167-15176, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808620

RESUMEN

High-entropy alloys (HEAs) have attracted considerable attention, owing to their exceptional characteristics and high configurational entropy. Recent findings demonstrated that incorporating HEAs into sulfur cathodes can alleviate the shuttling effect of lithium polysulfides (LiPSs) and accelerate their redox reactions. Herein, we synthesized nano Pt0.25Cu0.25Fe0.15Co0.15Ni0.2 HEAs on hollow carbons (HCs; denoted as HEA/HC) by a facile pyrolysis strategy. The HEA/HC nanostructures were further integrated into hypha carbon nanobelts (HCNBs). The solid-solution phase formed by the uniform mixture of the five metal elements, i.e., Pt0.25Cu0.25Fe0.15Co0.15Ni0.2 HEAs, gave rise to a strong interaction between neighboring atoms in different metals, resulting in their adsorption energy transformation across a wide, multipeak, and nearly continuous spectrum. Meanwhile, the HEAs exhibited numerous active sites on their surface, which is beneficial to catalyzing the cascade conversion of LiPSs. Combining density functional theory (DFT) calculations with detailed experimental investigations, the prepared HEAs bidirectionally catalyze the cascade reactions of LiPSs and boost their conversion reaction rates. S/HEA@HC/HCNB cathodes achieved a low 0.034% decay rate for 2000 cycles at 1.0 C. Notably, the S/HEA@HC/HCNB cathode delivered a high initial areal capacity of 10.2 mAh cm-2 with a sulfur loading of 9 mg cm-2 at 0.1 C. The assembled pouch cell exhibited a capacity of 1077.9 mAh g-1 at the first discharge at 0.1 C. The capacity declined to 71.3% after 43 cycles at 0.1 C. In this work, we propose to utilize HEAs as catalysts not only to improve the cycling stability of lithium-sulfur batteries, but also to promote HEAs in energy storage applications.

20.
J Colloid Interface Sci ; 677(Pt A): 842-852, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39126802

RESUMEN

The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA