Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754363

RESUMEN

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
Small ; : e2402676, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847072

RESUMEN

Fluorescent lateral flow immunoassays (FLFIA) is a well-established rapid detection technique for quantitative analysis. However, achieving accurate analysis of biomarkers at the pg mL-1 level using FLFIA still poses challenges. Herein, an ultrasensitive FLFIA platform is reported utilizing a kiwi-type magneto-fluorescent silica nanohybrid (designated as MFS) that serves as both a target-enrichment substrate and an optical signal enhancement label. The spatially-layered architecture comprises a Fe3O4 core, an endocarp-fibers like dendritic mesoporous silica, seed-like quantum dots, and a kiwi-flesh like silica matrix. The MFS demonstrates heightened fluorescence brightness, swift magnetic response, excellent size uniformity, and dispersibility in water. Through liquid-phase capturing and fluorescence-enhanced signal amplification, as well as magnetic-enrichment sample amplification and magnetic-separation noise reduction, the MFS-based FLFIA is successfully applied to the detection of cardiac troponin I that achieved a limit of detection at 8.4 pg mL-1, tens of times lower than those of previously published fluorescent and colorimetric lateral flow immunoassays. This work offers insights into the strategic design of magneto-fluorescent synergetic signal amplification on LFIA platform and underscores their prospects in high-sensitive rapid and on-site diagnosis of biomarkers.

3.
Small ; 20(28): e2311182, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38332446

RESUMEN

Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.

4.
Inorg Chem ; 63(6): 3191-3198, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38294201

RESUMEN

An AA'3B4O12-type A-site-ordered quadruple perovskite oxide AgMn7O12 was prepared by high-pressure and high-temperature methods. At room temperature, the compound crystallizes into a cubic Im3̅ symmetry with a charge distribution of AgMn33+Mn43.5+O12. With the temperature decreasing to TCO,OO ≈ 180 K, the compound undergoes a structural phase transition toward a monoclinic C2/m symmetry, giving rise to a B-site charge- and orbital-ordered AgMn33+Mn23+Mn24+O12 phase. Moreover, this charge-/orbital-ordered main phase coexists with the initial cubic AgMn33+Mn43.5+O12 phase in the wide temperature range we measured. The charge-/orbital-ordered phase shows two antiferromagnetic phase transitions near 125 and 90 K, respectively. Short-range ferromagnetic correlations are found to occur for the initial B-site mixed cubic phase around 35 K. Because of the robust phase separation, considerable magnetoresistance effects are observed below TCO,OO in AgMn7O12.

5.
Inorg Chem ; 63(7): 3499-3505, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38320745

RESUMEN

An AA'3B2B'2O12-type quadruple perovskite oxide of CaCu3Cr2Re2O12 was synthesized at 18 GPa and 1373 K. Both an A- and B-site ordered quadruple perovskite crystal structure was observed, with the space group Pn-3. The valence states are verified to be CaCu32+Cr23+Re25+O12 by bond valence sum calculations and synchrotron X-ray absorption spectroscopy. The spin interaction among Cu2+, Cr3+, and Re5+ generates a ferrimagnetic transition with the Curie temperature (TC) at about 360 K. Moreover, electric transport properties and specific heat data suggest the presence of a half-metallic feature for this compound. The present study provides a promising quadruple perovskite oxide with above-room-temperature ferrimagnetism and possible half-metallic properties, which shows potential in the usage of spintronic devices.

6.
Angew Chem Int Ed Engl ; : e202405802, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837569

RESUMEN

Solid polymer electrolytes are promising electrolytes for safe and high-energy-density lithium metal batteries. However, traditional ether-based polymer electrolytes are limited by their low lithium-ion conductivity and narrow electrochemical window because of the well-defined and intimated Li+-oxygen binding topologies in the solvation structure. Herein, we proposed a new strategy to reduce the Li+-polymer interaction and strengthen the anion-polymer interaction by combining strong Li+-O (ether) interactions, weak Li+-O (ester) interactions with steric hindrance in polymer electrolytes. In this way, a polymer electrolyte with a high lithium ion transference number (0.80) and anion-rich solvation structure is obtained. This polymer electrolyte possesses a wide electrochemical window (5.5 V versus Li/Li+) and compatibility with both Li metal anode and high-voltage NCM cathode. Li||LiNi0.5Co0.2Mn0.3O2 full cells with middle-high active material areal loading (~7.5 mg cm-2) can stably cycle at 4.5 V. This work provides new insight into the design of polymer electrolytes for high-energy-density lithium metal batteries through the regulation of ion-dipole interactions.

7.
Angew Chem Int Ed Engl ; 63(10): e202318785, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38226740

RESUMEN

The cycle life of high-energy-density lithium-sulfur (Li-S) batteries is severely plagued by the incessant parasitic reactions between Li metal anodes and reactive Li polysulfides (LiPSs). Encapsulating Li-polysulfide electrolyte (EPSE) emerges as an effective electrolyte design to mitigate the parasitic reactions kinetically. Nevertheless, the rate performance of Li-S batteries with EPSE is synchronously suppressed. Herein, the sacrifice in rate performance by EPSE is circumvented while mitigating parasitic reactions by employing hexyl methyl ether (HME) as a co-solvent. The specific capacity of Li-S batteries with HME-based EPSE is nearly not decreased at 0.1 C compared with conventional ether electrolytes. With an ultrathin Li metal anode (50 µm) and a high-areal-loading sulfur cathode (4.4 mgS cm-2 ), a longer cycle life of 113 cycles was achieved in HME-based EPSE compared with that of 65 cycles in conventional ether electrolytes at 0.1 C. Furthermore, both high energy density of 387 Wh kg-1 and stable cycle life of 27 cycles were achieved in a Li-S pouch cell (2.7 Ah). This work inspires the feasibility of regulating the solvation structure of LiPSs in EPSE for Li-S batteries with balanced performance.

8.
Angew Chem Int Ed Engl ; : e202408996, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873975

RESUMEN

Two-dimensional Ti3C2Tx MXene materials, with metal-like conductivities and versatile terminals, have been considered to be promising surface modification materials for Zn-metal-based aqueous batteries (ZABs). However, the oxygen-rich and hybridized terminations caused by conventional methods limit their advantages in inhibiting zinc dendrite growth and reducing corrosion-related side reactions. Herein, -O-depleted, -Cl-terminated Ti3C2Tx was precisely fabricated by the molten salt electrochemical etching of Ti3AlC2, and controlled in-situ terminal replacement from -Cl to unitary -S or -Se was achieved. The as-prepared -O-depleted and unitary-terminal Ti3C2Tx as Zn anode coatings provided excellent hydrophobicity and enriched zinc-ionophilic sites, facilitating Zn2+ horizontal transport for homogeneous deposition and effectively suppressing water-induced side reactions. The as-assembled Ti3C2Sx@Zn symmetric cell achieved a cycle life of up to 4200 h at a current density and areal capacity of 2 mA cm-2 and 1 mAh cm-2, respectively, with an impressive cumulative capacity of up to 7.25 Ah cm-2 at 5 mA cm-2 // 2 mAh cm-2. These findings provide an effective electrochemical strategy for tailoring -O-depleted and unitary Ti3C2Tx surface terminals and advancing the understanding of the role of specific Ti3C2Tx surface chemistry in regulating the plating/stripping behaviors of metal ions.

9.
J Am Chem Soc ; 145(30): 16449-16457, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37427442

RESUMEN

Lithium-sulfur (Li-S) batteries afford great promise on achieving practical high energy density beyond lithium-ion batteries. Lean-electrolyte conditions constitute the prerequisite for achieving high-energy-density Li-S batteries but inevitably deteriorates battery performances, especially the sulfur cathode kinetics. Herein, the polarizations of the sulfur cathode are systematically decoupled to identify the key kinetic limiting factor in lean-electrolyte Li-S batteries. Concretely, an electrochemical impedance spectroscopy combined galvanostatic intermittent titration technique method is developed to decouple the cathodic polarizations into activation, concentration, and ohmic parts. Therein, activation polarization during lithium sulfide nucleation emerges as the dominant polarization as the electrolyte-to-sulfur ratio (E/S ratio) decreases, and the sluggish interfacial charge transfer kinetics is identified as the main reason for degraded cell performances under lean-electrolyte conditions. Accordingly, a lithium bis(fluorosulfonyl)imide electrolyte is proposed to decrease activation polarization, and Li-S batteries adopting this electrolyte provide a discharge capacity of 985 mAh g-1 under a low E/S ratio of 4 µL mg-1 at 0.2 C. This work identifies the key kinetic limiting factor of lean-electrolyte Li-S batteries and provides guidance on designing rational promotion strategies to achieve advanced Li-S batteries.

10.
Small ; 19(8): e2205315, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470676

RESUMEN

In recent years, the rapid development of modern society is calling for advanced energy storage to meet the growing demands of energy supply and generation. As one of the most promising energy storage systems, secondary batteries are attracting much attention. The electrolyte is an important part of the secondary battery, and its composition is closely related to the electrochemical performance of the secondary batteries. Lithium-ion battery electrolyte is mainly composed of solvents, additives, and lithium salts, which are prepared according to specific proportions under certain conditions and according to the needs of characteristics. This review analyzes the advantages and current problems of the liquid electrolytes in lithium-ion batteries (LIBs) from the mechanism of action and failure mechanism, summarizes the research progress of solvents, lithium salts, and additives, analyzes the future trends and requirements of lithium-ion battery electrolytes, and points out the emerging opportunities in advanced lithium-ion battery electrolytes development.

11.
Water Sci Technol ; 88(7): 1910-1925, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37831004

RESUMEN

To improve the visible light-induced catalytic activities of Ultrathin g-C3N4 (UCN), a promising photocatalyst WO3/UCN (WU) was synthesized. Its visible light-driven photocatalysis performance was controllable by adjusting the theoretical mass ratio of WO3/UCN. We have calibrated the optimal preparation conditions to be: WO3/UCN ratio as 1:1, the stirring time of the UCN and sodium tungstate mixture as 9 h and the volume of concentrated hydrochloric acid as 6 mL which was poured into the mixture solution with an extra stirring time of 1.5 h. The optimal photocatalyst WUopt had porous and wrinkled configurations. Its light absorption edge was 524 nm while that of UCN was 465 nm. The band gap of WUopt was 2.13 eV, 0.3 eV less than that of UCN. Therefore, the recombination rate of photo-generated electron-hole pairs of WUopt reduced significantly. The removal rate of WUopt on RhB was 97.3%. By contrast, the removal rate of UCN was much lower (53.4%). WUopt retained a high RhB removal rate, it was 5.5% lower than the initial one after being reused for five cycles. The photodegradation mechanism was facilitated through the strong oxidation behaviors from the active free radicals ·O2-, ·OH and h+ generated by WUopt under the visible light irradiation.


Asunto(s)
Nanoestructuras , Oxidación-Reducción , Fotólisis , Luz , Catálisis
12.
Angew Chem Int Ed Engl ; 62(43): e202309968, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37664907

RESUMEN

Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries.

13.
Angew Chem Int Ed Engl ; 62(42): e202306889, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37442815

RESUMEN

The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNx Oy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg-1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity.

14.
Angew Chem Int Ed Engl ; 62(32): e202305466, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37377179

RESUMEN

Practical lithium-sulfur (Li-S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5-trioxane (TO) and 1,2-dimethoxyethane (DME) as co-solvents is proposed to construct a high-mechanical-stability SEI by enriching organic components in Li-S batteries. The high-mechanical-stability SEI works compatibly in Li-S batteries. TO with high polymerization capability can preferentially decompose and form organic-rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li-S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO-based electrolyte. Furthermore, a 417 Wh kg-1 Li-S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li-S batteries.

15.
Angew Chem Int Ed Engl ; 62(30): e202303363, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37249483

RESUMEN

Lithium-sulfur (Li-S) batteries are regarded as promising high-energy-density energy storage devices. However, the cycling stability of Li-S batteries is restricted by the parasitic reactions between Li metal anodes and soluble lithium polysulfides (LiPSs). Encapsulating LiPS electrolyte (EPSE) can efficiently suppress the parasitic reactions but inevitably sacrifices the cathode sulfur redox kinetics. To address the above dilemma, a redox comediation strategy for EPSE is proposed to realize high-energy-density and long-cycling Li-S batteries. Concretely, dimethyl diselenide (DMDSe) is employed as an efficient redox comediator to facilitate the sulfur redox kinetics in Li-S batteries with EPSE. DMDSe enhances the liquid-liquid and liquid-solid conversion kinetics of LiPS in EPSE while maintains the ability to alleviate the anode parasitic reactions from LiPSs. Consequently, a Li-S pouch cell with a high energy density of 359 Wh kg-1 at cell level and stable 37 cycles is realized. This work provides an effective redox comediation strategy for EPSE to simultaneously achieve high energy density and long cycling stability in Li-S batteries and inspires rational integration of multi-strategies for practical working batteries.

16.
J Cell Mol Med ; 26(15): 4292-4304, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35789100

RESUMEN

Nonsyndromic cleft palate only (NSCP) is a common congenital malformation worldwide. In this study, we report a three-generation pedigree with NSCP following the autosomal-dominant pattern. Whole-exome sequencing and Sanger sequencing revealed that only the frameshift variant c.1012dupG [p. E338Gfs*26] in PARD3 cosegregated with the disease. In zebrafish embryos, ethmoid plate patterning defects were observed with PARD3 ortholog disruption or expression of patient-derived N-terminal truncating PARD3 (c.1012dupG), which implicated PARD3 in ethmoid plate morphogenesis. PARD3 plays vital roles in determining cellular polarity. Compared with the apical distribution of wild-type PARD3, PARD3-p. E338Gfs*26 mainly localized to the basal membrane in 3D-cultured MCF-10A epithelial cells. The interaction between PARD3-p. E338Gfs*26 and endogenous PARD3 was identified by LC-MS/MS and validated by co-IP. Immunofluorescence analysis showed that PARD3-p. E338Gfs*26 substantially altered the localization of endogenous PARD3 to the basement membrane in 3D-cultured MCF-10A cells. Furthermore, seven variants, including one nonsense variant and six missense variants, were identified in the coding region of PARD3 in sporadic cases with NSCP. Subsequent analysis showed that PARD3-p. R133*, like the insertion variant of c.1012dupG, also changed the localization of endogenous full-length PARD3 and that its expression induced abnormal ethmoid plate morphogenesis in zebrafish. Based on these data, we reveal PARD3 gene variation as a novel candidate cause of nonsyndromic cleft palate only.


Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Cromatografía Liquida , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Espectrometría de Masas en Tándem , Pez Cebra/genética
17.
J Am Chem Soc ; 144(1): 212-218, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34889609

RESUMEN

Lithium (Li) metal anodes are attractive for high-energy-density batteries. Dead Li is inevitably generated during the delithiation of deposited Li based on a conversion reaction, which severely depletes active Li and electrolyte and induces a short lifespan. In this contribution, a successive conversion-deintercalation (CTD) delithiation mechanism is proposed by manipulating the overpotential of the anode to restrain the generation of dead Li. The delithiation at initial cycles is solely carried out by a conversion reaction of Li metal. When the overpotential of the anode increases over the delithiation potential of lithiated graphite after cycling, a deintercalation reaction is consequently triggered to complete a whole CTD delithiation process, largely reducing the formation of dead Li due to a highly reversible deintercalation reaction. Under practical conditions, the working batteries based on a CTD delithiation mechanism maintain 210 cycles with a capacity retention of 80% in comparison to 110 cycles of a bare Li anode. Moreover, a 1 Ah pouch cell with a CTD delithiation mechanism operates for 150 cycles. The work ingeniously restrains the generation of dead Li by manipulating the delithiation mechanisms of the anode and contributes to a fresh concept for the design of practical composite Li anodes.

18.
J Am Chem Soc ; 144(32): 14638-14646, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35791913

RESUMEN

Lithium-sulfur (Li-S) batteries have great potential as high-energy-density energy storage devices. Electrocatalysts are widely adopted to accelerate the cathodic sulfur redox kinetics. The interactions among the electrocatalysts, solvents, and lithium salts significantly determine the actual performance of working Li-S batteries. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a commonly used lithium salt, is identified to aggravate surface gelation on the MoS2 electrocatalyst. In detail, the trifluoromethanesulfonyl group in LiTFSI interacts with the Lewis acidic sites on the MoS2 electrocatalyst to generate an electron-deficient center. The electron-deficient center with high Lewis acidity triggers cationic polymerization of the 1,3-dioxolane solvent and generates a surface gel layer that reduces the electrocatalytic activity. To address the above issue, Lewis basic salt lithium iodide (LiI) is introduced to block the interaction between LiTFSI and MoS2 and inhibit the surface gelation. Consequently, the Li-S batteries with the MoS2 electrocatalyst and the LiI additive realize an ultrahigh actual energy density of 416 W h kg-1 at the pouch cell level. This work affords an effective lithium salt to boost the electrocatalytic activity in practical working Li-S batteries and deepens the fundamental understanding of the interactions among electrocatalysts, solvents, and salts in energy storage systems.

19.
Allergol Immunopathol (Madr) ; 50(4): 137-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789413

RESUMEN

OBJECTIVE: To investigate the potential correlation of transforming growth factor-ß (TGF-ß), matrix metalloprotein 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1), Interleukin 1 (IL-1), IL-4, IL-6, IL-17, and tumor necrosis factor alpha (TNF-α) in refractory chronic rhinosinusitis. METHODS: A total of 150 participants were retrospectively included in this study from August 2018 to February 2020. The people enrolled were equally allocated into refractory group (patients with refractory chronic rhinosinusitis), chronic group (patients with chronic rhinosinusitis), and control group (normal people). The level of TGF-ß1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α were recorded. The unconditional multivariate binary logistic regression was used to analyze the factors affecting refractory chronic rhinosinusitis. RESULTS: The Davos score, T&T olfactometer threshold test, and Lund-Mackay CT scores in refractory group were significantly higher than the chronic group (P<0.05). The level of TGF-ß1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α in the refractory group were significantly higher than the chronic group and the control group (all P<0.05). Similarly, the level of the above mentioned indexes in the chronic group were significantly higher than the control group (P<0.05). The Davos score, T&T olfactometer threshold test score, Lund-Mackay CT score, and the level of TGF-ß1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α positively correlated with refractory chronic rhinosinusitis. Moreover, the unconditional multivariate binary logistic regression showed that the influencing factors of refractory chronic rhinosinusitis included TGF-ß1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α. CONCLUSION: The findings of the present study provide evidence for TGF-ß1, MMP-9, TIMP-1, IL-4, IL-6, IL-17, and TNF-α as the influencing factors of refractory chronic rhinosinusitis.


Asunto(s)
Metaloproteínas , Sinusitis , Humanos , Interleucina-1 , Interleucina-17 , Interleucina-4 , Interleucina-6 , Metaloproteinasa 1 de la Matriz , Metaloproteinasa 9 de la Matriz , Estudios Retrospectivos , Inhibidor Tisular de Metaloproteinasa-1 , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa
20.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1316-1326, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35343160

RESUMEN

This study was aimed to explore the effect of Zingiberis Rhizoma extract on rats with antibiotic-associated diarrhea(AAD), and reveal the modulation of gut microbiota during alleviation of AAD. AAD rat model was successfully established by exposing rats to appropriate antibiotic mixed solution. Peficon(70 mg·kg~(-1)·d~(-1)) was used as positive control, then rats were treated with 200 mg·kg~(-1)·d~(-1) and 400 mg·kg~(-1)·d~(-1) of Zingiberis Rhizoma extract for low and high dosage groups of Zingiberis Rhizoma extract, respectively. The weight changes of the rats were observed, and the degree of diarrhea were evaluated by fecal score, 120 min fecal weight and fecal water content. Colon tissues for histopathological examination were stained with hematoxylin and eosin(HE), and 16 S rRNA sequencing analysis of gut microbiota was performed. The results showed that compared with the model group, the degree of diarrhea, indicated by fecal water content, fecal score, and 120 min fecal weight of positive control group, Zingiberis Rhizoma low-dose group and Zingiberis Rhizoma high-dose group were significantly ameliorated. And the treatment of Zingiberis Rhizoma could significantly improve the pathological condition of colon tissue in AAD rats, especially the high dose of Zingiberis Rhizoma. In addition, 16 S rRNA sequencing analysis of gut microbiota showed that the diversity and abundance of gut microbiota were significantly improved and the reco-very of gut microbiota was accelerated after given high-dose of Zingiberis Rhizoma, while no significant changes of alterations were observed after given Pefikon. Of note, compared with the pefikon group, the abundance and diversity of gut microbiota in Zingi-beris Rhizoma high-dose group were significantly elevated. At the phylum level, the abundance of Firmicutes in AAD rats increased and the abundance of Proteobacteria was decreased after the Zingiberis Rhizoma intervention. At the genus level, the abundance of Bacillus spp., Lachnoclostridium and Escherichia coli-Shigella were decreased, and the abundance of Lactobacillus spp., Trichophyton spp., and Trichophyton spp., etc., were increased. While compared with the AAD model group, there was no significant difference of gut microbiota after given Peficon. The results showed that Zingiberis Rhizoma exerted beneficial health effects against AAD, and positively affected the microbial environment in the gut of rats with AAD.


Asunto(s)
Microbioma Gastrointestinal , Animales , Antibacterianos/efectos adversos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Zingiber officinale , Extractos Vegetales , Ratas , Rizoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA