Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983498

RESUMEN

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vesículas Extracelulares , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Macrófagos/metabolismo , Monocitos/metabolismo , Vesículas Extracelulares/metabolismo
2.
EMBO Rep ; 24(11): e57014, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37811674

RESUMEN

Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Ligasas , Caenorhabditis elegans/genética , Ácido Glutámico , Neurotransmisores , Ubiquitinas
3.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806818

RESUMEN

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Asunto(s)
Claudinas , Células Endoteliales , Pulmón , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Pulmón/metabolismo , Pulmón/virología , Pulmón/patología , Pulmón/irrigación sanguínea , Células Endoteliales/metabolismo , Células Endoteliales/virología , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Endotelio Vascular/patología , Células Cultivadas , Permeabilidad Capilar , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/virología , Lesión Pulmonar Aguda/patología , Citocinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(29): e2201169119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858300

RESUMEN

Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1ß. We show that nsp1ß is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1ß residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.


Asunto(s)
Factores de Restricción Antivirales , ADN Helicasas , Evasión Inmune , Proteínas de Unión a Poli-ADP-Ribosa , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Proteínas no Estructurales Virales , eIF-2 Quinasa , Animales , Factores de Restricción Antivirales/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés/virología , Porcinos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , eIF-2 Quinasa/metabolismo
5.
J Virol ; 97(3): e0168922, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916907

RESUMEN

Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1ß, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , China/epidemiología , Citocinas , Variación Genética , Genoma Viral , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Virulencia/genética
6.
Appl Microbiol Biotechnol ; 108(1): 173, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267794

RESUMEN

Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.


Asunto(s)
Anticuerpos Monoclonales , Gasderminas , Humanos , Porcinos , Animales , Ratones , Inmunosupresores , Porinas , Inmunoglobulina G , Ratones Endogámicos BALB C
7.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972423

RESUMEN

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/inmunología , Caenorhabditis elegans/inmunología , Inmunidad Innata/inmunología , Insulina/inmunología , Intestinos/inmunología , Receptores de GABA-A/inmunología , Sinapsis/inmunología , Adulto , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/inmunología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/microbiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Insulina/metabolismo , Intestinos/microbiología , Intestinos/fisiología , Mutación , Unión Neuromuscular/inmunología , Unión Neuromuscular/microbiología , Unión Neuromuscular/fisiología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/fisiología , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Transducción de Señal/inmunología , Sinapsis/microbiología , Sinapsis/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/inmunología , Transmisión Sináptica/fisiología
8.
Crit Rev Eukaryot Gene Expr ; 32(3): 83-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35695612

RESUMEN

MicroRNAs (miRNAs) act as critical biological factors in gastric cancer (GC). miR-1285 has been ascertained as a crucial antioncogene in some cancers. However, the effect of miR-1285 in GC and the regulatory mechanism are not clear. In this study, we revealed that miR-1285 expression was significantly reduced in GC. Overexpressing miR-1285 restrained GC cell multiplication and accelerated apoptosis, whereas suppressing miR-1285 facilitated cell growth and restrained apoptosis. The level of miR-1285 was negatively related to the RAB1A level in GC tissue specimens. RAB1A was verified by reporter gene assay as a target of miR-1285. Overexpression of miR-1285 suppressed the RAB1A level, whereas suppression of miR-1285 promoted the level of RAB1A expression. Knockdown of RAB1A resulted in analogical biological effect as that caused by overexpressing miR-1285. Moreover, both miR-1285 overexpression and RAB1A knockdown led to suppression of the mTOR/S6K1 pathway. By contrast, inhibition of miR-1285 promoted the mTOR/S6K1 pathway. In addition, miR-1285 also regulated the Bcl-2/Bax pathway. Taken together, our data indicate that miR-1285 suppresses GC cell multiplication by restraining the mTOR/S6K1 pathway and induces cell apoptosis by regulating the Bcl-2/Bax pathway via modulating RAB1A.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
9.
J Virol ; 95(17): e0051821, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34076477

RESUMEN

A critical step in replication of positive-stranded RNA viruses is the assembly of replication and transcription complexes (RTC). We have recently mapped the nonstructural protein (nsp) interaction network of porcine reproductive and respiratory syndrome virus (PRRSV) and provided evidence by truncation mutagenesis that the recruitment of viral core replicase enzymes (nsp9 and nsp10) to membrane proteins (nsp2, nsp3, nsp5, and nsp12) is subject to regulation. Here, we went further to discover an intramolecular switch within the helicase nsp10 that controls its interaction with the membrane-associated protein nsp12. Deletion of nsp10 linker region amino acids 124 to 133, connecting domain 1B to 1A, led to complete relocalization and colocalization in the cells coexpressing nsp12. Moreover, single-amino-acid substitutions (e.g., nsp10 E131A and I132A) were sufficient to enable the nsp10-nsp12 interaction. Further proof came from membrane floatation assays that revealed a clear movement of nsp10 mutants, but not wild-type nsp10, toward the top of sucrose gradients in the presence of nsp12. Interestingly, the same mutations were not able to activate the nsp10-nsp2/3 interaction, suggesting a differential requirement for conformation. Reverse genetics analysis showed that PRRSV mutants carrying the single substitutions were not viable and were defective in subgenomic RNA (sgRNA) accumulation. Together, our results provide strong evidence for a regulated interaction between nsp10 and nsp12 and suggest an essential role for an orchestrated RTC assembly in sgRNA synthesis. IMPORTANCE Assembly of replication and transcription complexes (RTC) is a limiting step for viral RNA synthesis. The PRRSV RTC macromolecular complexes are comprised of mainly viral nonstructural replicase proteins (nsps), but how they come together remains elusive. We previously showed that viral helicase nsp10 interacts nsp12 in a regulated manner by truncation mutagenesis. Here, we revealed that the interaction is controlled by single residues within the domain linker region of nsp10. Moreover, the activation mutations lead to defects in viral sgRNA synthesis. Our results provide important insight into the mechanisms of PRRSV RTC assembly and regulation of viral sgRNA synthesis.


Asunto(s)
Interacciones Huésped-Patógeno , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Animales , Mutación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Conformación Proteica , Mapas de Interacción de Proteínas , ARN Viral/genética , Porcinos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
10.
Appl Opt ; 61(4): 919-924, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35201060

RESUMEN

A linear self-reference spectral interferometry has been proposed to measure the distribution of polarization-maintaining photonic crystal fiber (PM-PCF) birefringence over a wide wavelength range combined with the soliton self-frequency shift and birefringence effect. The birefringence of PM-PCF is measured experimentally over the range of 800-970 nm, which is larger than 5×10-4 and shows a segmented change trend. The air micropore structure has a significant effect on the characteristics of PM-PCF, which makes it have a highly nonlinear coefficient, and at the same time, changes the dispersion and birefringence distributions of the PM-PCF. The distribution of PM-PCF birefringence, measured by experiment, provides a new dimension for the design of PM-PCF, which is helpful for a detailed fiber model and an iterative optimization of fiber structure.

11.
J Proteome Res ; 19(11): 4470-4485, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33045833

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emergent enteropathogenic coronavirus associated with swine diarrhea. Porcine small intestinal epithelial cells (IPEC) are the primary target cells of PDCoV infection in vivo. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively identify differentially expressed proteins (DEPs) in PDCoV-infected IPEC-J2 cells. A total of 78 DEPs, including 23 upregulated and 55 downregulated proteins, were identified at 24 h postinfection. The data are available via ProteomeXchange with identifier PXD019975. To ensure reliability of the proteomics data, two randomly selected DEPs, the downregulated anaphase-promoting complex subunit 7 (ANAPC7) and upregulated interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), were verified by real-time PCR and Western blot, and the results of which indicate that the proteomics data were reliable and valid. Bioinformatics analyses, including GO, COG, KEGG, and STRING, further demonstrated that a majority of the DEPs are involved in numerous crucial biological processes and signaling pathways, such as immune system, digestive system, signal transduction, RIG-I-like receptor, mTOR, PI3K-AKT, autophagy, and cell cycle signaling pathways. Altogether, this is the first study on proteomes of PDCoV-infected host cells, which shall provide valuable clues for further investigation of PDCoV pathogenesis.


Asunto(s)
Cromatografía Liquida/métodos , Infecciones por Coronavirus/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Línea Celular , Coronavirus , Células Epiteliales/química , Células Epiteliales/metabolismo , Células Epiteliales/virología , Proteoma/química , Proteoma/metabolismo , Proteómica , Porcinos
12.
Opt Express ; 28(21): 30570-30585, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115055

RESUMEN

A fiber laser refractometer based on an open microcavity Mach-Zehnder interferometer (OMZI) is proposed. The open microcavity is constructed by embedding a segment single-mode fiber (SMF) into two multi-mode fiber (MMF) joints with lateral offset for liquid sample, which has the advantages of micro sensing element and easy fabrication. The transmission characteristics of the MMF-assisted OMZI are investigated by simulating and manufacturing the OMZIs with different microcavity lengths and offset distances. By inserting the MMF-assisted OMZI into the erbium-doped fiber ring laser (FRL) cavity, the lasing wavelength can be used to detect the refractive index (RI) change of the medium in the microcavity. Experimental results show a high sensitivity of -2953.444 nm/RIU within the measurement range of 1.33302∼1.33402. More importantly, with the combination of OMZI and FRL, the proposed fiber laser refractometer realizes ultra-low detection limit (DL) and high-quality factor Q, which are two orders of magnitude better than that of previous reports.

13.
Opt Express ; 28(17): 24577-24585, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32906997

RESUMEN

A virtual-block-array phase analysis method is proposed for the fiber-optic distributed acoustic sensor. The sensing fiber is divided into a serial of discrete virtual blocks according to the pulse spatial length. The phase variation caused by acoustic events is obtained by combining the operation of the temporal differential process between traces and local spatial average in virtual blocks. The linear frequency-modulated probe pulse produces phase compensation effects at the event location. High signal-to-noise ratio (SNR) measurement is verified by simulation and experiment. The reconstructed waveform of 1.5 kHz sinusoidal signal showed a root mean square error of 0.0359 and an SNR of 47.28 dB.

14.
Prenat Diagn ; 40(10): 1228-1238, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32386258

RESUMEN

OBJECTIVE: To assess the value of chromosome microarray analysis (CMA) and whole exome sequencing (WES) in fetuses with cerebellar vermis defects (CVD). METHODS: From 2013 to 2019, we performed CMA on 43 fetuses with CVD, who were divided into cerebellar vermis hypoplasia (CVH) group and Dandy-Walker malformation (DWM) group according to morphological subtypes. Subsequently, WES was performed on 19 fetuses with normal CMA results to identify diagnostic genetic variants (DGVs). RESULTS: Chromosome aneuploidies and clinically significant copy number variants were identified in 23.3% (10/43) of fetuses, and a significantly higher positive rate was found in fetuses with multiple compared with isolated malformations (36% vs 5.6%, P = .028). STAG2 genes related to Xq25 duplication syndrome was possibly a novel candidate gene for CVD. WES detected eight DGVs in seven genes among the 19 fetuses tested. Autosomal recessive ciliopathies (4/8) caused by TMEM231, CSPP1, and CEP290 mutations, were the most frequent monogenetic diseases, followed by Opitz GBBB syndrome (2/8) caused by MID1 and SPECC1L variants. CONCLUSION: The combined use of CMA and WES has the potential to provide genetic diagnoses in 42% (18/43) of fetal CVD. WES should be offered when CMA results are normal.


Asunto(s)
Vermis Cerebeloso/anomalías , Asesoramiento Genético , Pruebas Genéticas , Malformaciones del Sistema Nervioso/diagnóstico , Diagnóstico Prenatal , Adulto , Aneuploidia , Vermis Cerebeloso/diagnóstico por imagen , China , Aberraciones Cromosómicas/embriología , Femenino , Feto/anomalías , Feto/diagnóstico por imagen , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis por Micromatrices/métodos , Malformaciones del Sistema Nervioso/genética , Embarazo , Resultado del Embarazo , Diagnóstico Prenatal/métodos , Estudios Retrospectivos , Ultrasonografía Prenatal , Secuenciación del Exoma/métodos , Adulto Joven
15.
Appl Opt ; 59(16): 5052-5057, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543503

RESUMEN

We present a wall-thickness-controlled microbubble fabrication model for whispering-gallery-mode (WGM)-based application. The process of fabricating the model is divided into three sequenced steps: geometry size change of the microcapillary during drawing, expanding the process under internal injection air pressure, and microcapillary waist swell into a microbubble. Experiments were carried out to verify the effectiveness of the model. Experiment results show that wall thickness can reach 1.28 µm-1.46 µm at different injection pressure ranges of 50 kPa. The expected wall thickness of the microbubble can be achieved by changing injection pressure while keeping the diameter, which helps to prepare the required microbubble for practical application.

16.
Mol Cell Probes ; 43: 50-57, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468765

RESUMEN

Porcine circovirus 3 (PCV3), a newly emerged circovirus, is associated with porcine dermatitis and nephropathy syndrome, reproductive failure and multi-systemic inflammation disease, and is widely distributed in pig populations worldwide. Therefore, developing specific diagnostic assays will be important for controlling this emerging pathogen. In this study, we developed a novel droplet digital PCR (ddPCR) assay targeting the PCV3 cap gene to improve the sensitivity of PCV3 detection. The established assay is highly specific to PCV3, and does not cross react with other important swine pathogens. The assay's detection limit was 1.68 ±â€¯0.29 copies of PCV3 DNA per reaction (n = 8), an approximately 10-fold greater sensitivity than that of our previously developed quantitative real-time PCR (qPCR) assay for the same virus. The ddPCR assay results were highly reproducible, with intra- and inter-assay coefficient of variation values of <9.0%. Of the 239 archived pig tissue and serum samples, 42 tested positive for PCV3 by the ddPCR assay. Among the 42 positive samples, 31 tested positive by the qPCR assay. Notably, PCV3 was detected in the serum samples collected from commercially imported healthy boars from the US, France and the UK during 2011-2017. The overall agreement between the two assays was 95.39% (228/239). Furthermore, the linear regression analysis showed that the ddPCR and the qPCR results were significantly correlated with an R2 value of 0.9945. Collectively, these results indicate that the ddPCR assay is a robust diagnostic tool for sensitive detection of PCV3, even in samples with low viral loads.


Asunto(s)
Circovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Porcinos/virología , Animales , Secuencia de Bases , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Mol Cell Probes ; 36: 58-61, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28958719

RESUMEN

The objective of this study was to develop a real-time recombinase polymerase amplification (rt-RPA) assay for the rapid detection of porcine circovirus 3 (PCV3). Specific RPA primers and exo probes were designed for the cap gene of PCV3 within the conserved region of viral genome. The amplification was performed at 38 °C for 20 min. The rt-RPA was specific for PCV3, as there was no cross-reaction with other pathogens tested. Using the recombinant plasmid pUC57-PCV3 as template, the analytical sensitivity was 23 copies. Of the 186 clinical samples, PCV3 DNA was identified in the 51 samples by the rt-RPA, and the positive rate was 27.4% (51/186). The diagnostic agreement between the rt-RPA and real-time PCR was 96.2%. The R2 value of rt-RPA and real-time PCR was 0.919 by linear regression analysis. The developed rt-RPA assay shows promise for rapid and sensitive detection of PCV3 in diagnostic laboratories and at point-of-need, thus facilitating the prevention and control of PCV3.


Asunto(s)
Circovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Recombinasas/metabolismo , Sus scrofa/virología , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Appl Opt ; 55(7): 1625-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974621

RESUMEN

In a power-over-fiber system, the key limiting factor for transmission light power is the stimulated Brillouin scattering effect, which leads to a decrease in transmission light power at the end of the optical fiber. Therefore, we propose and experimentally demonstrate a broadband laser generated by a noise-modulated distributed-feedback laser diode to suppress the stimulated Brillouin scattering effect in the optical fiber. Experimental results show that the linewidth of the noise-modulated distributed-feedback laser diode broadens from 2.43 to 379.89 MHz when the noise modulation amplitude is increased from 0 to 400 mV. Due to the broadening of the laser linewidth, the stimulated Brillouin scattering threshold raises 7.19 dB, and the peak power of the Brillouin Stokes light is reduced by 40.90 dB. At the same time, the output electrical power at the end of the optical fiber increases 13.55 dB.

19.
Parasitol Res ; 115(3): 987-96, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26584827

RESUMEN

Gastrointestinal nematodes within the subfamily Ostertagiinae (Teladorsagia, Ostertagia, and Marshallagia et al.) are among the most common infections of domesticated livestock. These parasites are of particular interest, as many of the species within this group are of economic importance worldwide. Traditionally, nematode species designations have been based on morphological criteria. However, this group possesses poorly defined species. There is an urgent need to develop a reliable technique that can distinguish species of Ostertagiinae. DNA barcoding has been proved to be a powerful tool to identify species of birds, mammals, and arthropods, but this technique has not yet been examined for identifying species of Ostertagiinae. In this study, a total of 138 mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) sequences from individuals representing 11 species of Ostertagiinae were acquired by PCR for the first time. The specimens were collected from pastoral area of northern China. Genetic divergence analyses showed that mean interspecific Kimura two-parameter distances of COI (13.61 %) were about four times higher than the mean value of the intraspecific divergence (3.69 %). Then, the performance of the COI to identify species of Ostertagiinae was evaluated by identification success rates using nearest neighbor (NN) and BLASTn. The results indicated that the rates of correct sequence identification for COI were high (>80 %) when using the NN and BLASTn methods. Besides, the deep lineage divergences are detected in Teladorsagia circumcincta. Meanwhile, the analyses also detected no genetic differentiation between some species such as Ostertagia hahurica and Ostertagia buriatica. These results indicate that the traditional status of species within Ostertagiinae should be closely examined based on the molecular data.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Enfermedades de las Ovejas/parasitología , Trichostrongyloidea/clasificación , Trichostrongyloidea/aislamiento & purificación , Tricostrongiloidiasis/veterinaria , Animales , Bovinos , China , Código de Barras del ADN Taxonómico/métodos , ADN de Helmintos/genética , ADN Mitocondrial/genética , Ovinos , Trichostrongyloidea/genética , Tricostrongiloidiasis/parasitología
20.
Mol Cell Probes ; 29(4): 244-53, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26013296

RESUMEN

Schmallenberg virus (SBV) is a newly emerged orthobunyavirus that predominantly infects livestock such as cattle, sheep, and goats. Its nucleocapsid (N) protein is an ideal target antigen for SBV diagnosis. In this study, a stable BHK-21 cell line, BHK-21-EGFP-SBV-N, constitutively expressing the SBV N protein was obtained using a lentivector-mediated gene transfer system combined with puromycin selection. To facilitate the purification of recombinant SBV N protein, the coding sequence for a hexa-histidine tag was introduced into the C-terminus of the SBV N gene during construction of the recombinant lentivirus vector pLV-EGFP-SBV-N. The BHK-21-EGFP-SBV-N cell line was demonstrated to spontaneously emit strong enhanced green fluorescent protein (EGFP) signals that exhibited a discrete punctate distribution throughout the cytoplasm. SBV N mRNA and protein expression in this cell line were detected by real-time RT-PCR and western blot, respectively. The expressed recombinant SBV N protein carried an N-terminal EGFP tag, and was successfully purified using Ni-NTA agarose by means of its C-terminal His tag. The purified SBV N protein could be recognized by SBV antisera and an anti-SBV monoclonal antibody (mAb) 2C8 in an indirect enzyme-linked immunosorbent assay and western blot analyses. Indirect immunofluorescence assays further demonstrated that the stable cell line reacts with SBV antisera and mAb 2C8. These results suggest that the generated cell line has the potential to be used in the serological diagnosis of SBV.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Orthobunyavirus/metabolismo , Línea Celular , Vectores Genéticos , Lentivirus/genética , Proteínas de la Nucleocápside/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA