Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 106791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403247

RESUMEN

DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Eucariontes , Humanos , Eucariontes/genética , Eucariontes/metabolismo , Animales , ADN/metabolismo , ADN/genética , ADN/química
2.
Thromb J ; 22(1): 28, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504286

RESUMEN

BACKGROUND: Venous thromboembolism(VTE)is a common multifactorial disease. Anticoagulant protein deficiency is the most usual hereditary thrombophilia in the Chinese people, which includes protein C(PC), protein S and antithrombin deficiencies. CASE PRESENTATION: A retrospective analysis was conducted on clinical manifestations, laboratory tests, genetic information, and other relevant data of siblings diagnosed with VTE in 2020 at the Department of Pediatrics of Shenzhen Second People's Hospital. The proband, a 12-year-old female, was admitted to the hospital in December 2020 with a complaint of pain in the left lower limb for four days. The examination found that the PC activity was 53%, and B-ultrasound showed bilateral thrombosis of the great saphenous vein in the thigh segment. The proband's younger brother, a 10-year-old male, was admitted to the hospital in January 2021 due to right lower limb pain for two weeks. PC activity is 40%. B-ultrasound showed superficial venous thrombosis in the left lower limb and upper limb. Both siblings suffered from thalassemia and underwent splenectomy before recurrent thrombosis occurred. The proband's mother was asymptomatic, and her PC activity was 45%. Both cases were treated with warfarin anticoagulation, and their symptoms improved. The proband's mother was found to have a heterozygous mutation at this locus through Sanger sequencing. CONCLUSION: Protein C deficiency should be considered for venous thromboembolism in childhood. The heterozygous mutation 1204 A > G in PROC exon 9 in this family is reported for the first time.

3.
BMC Biol ; 21(1): 39, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36803965

RESUMEN

BACKGROUND: Adaptation to high-altitude hypobaric hypoxia has been shown to require a set of physiological traits enabled by an associated set of genetic modifications, as well as transcriptome regulation. These lead to both lifetime adaptation of individuals to hypoxia at high altitudes and generational evolution of populations as seen for instance in those of Tibet. Additionally, RNA modifications, which are sensitive to environmental exposure, have been shown to play pivotal biological roles in maintaining the physiological functions of organs. However, the dynamic RNA modification landscape and related molecular mechanisms in mouse tissues under hypobaric hypoxia exposure remain to be fully understood. Here, we explore the tissue-specific distribution pattern of multiple RNA modifications across mouse tissues. RESULTS: By applying an LC-MS/MS-dependent RNA modification detection platform, we identified the distribution of multiple RNA modifications in total RNA, tRNA-enriched fragments, and 17-50-nt sncRNAs across mouse tissues; these patterns were associated with the expression levels of RNA modification modifiers in different tissues. Moreover, the tissue-specific abundance of RNA modifications was sensitively altered across different RNA groups in a simulated high-altitude (over 5500 m) hypobaric hypoxia mouse model with the activation of the hypoxia response in mouse peripheral blood and multiple tissues. RNase digestion experiments revealed that the alteration of RNA modification abundance under hypoxia exposure impacted the molecular stability of tissue total tRNA-enriched fragments and isolated individual tRNAs, such as tRNAAla, tRNAval, tRNAGlu, and tRNALeu. In vitro transfection experiments showed that the transfection of testis total tRNA-enriched fragments from the hypoxia group into GC-2spd cells attenuated the cell proliferation rate and led to a reduction in overall nascent protein synthesis in cells. CONCLUSIONS: Our results reveal that the abundance of RNA modifications for different classes of RNAs under physiological conditions is tissue-specific and responds to hypobaric hypoxia exposure in a tissue-specific manner. Mechanistically, the dysregulation of tRNA modifications under hypobaric hypoxia attenuated the cell proliferation rate, facilitated the sensitivity of tRNA to RNases, and led to a reduction in overall nascent protein synthesis, suggesting an active role of tRNA epitranscriptome alteration in the adaptive response to environmental hypoxia exposure.


Asunto(s)
Hipoxia , Espectrometría de Masas en Tándem , Masculino , Ratones , Animales , Cromatografía Liquida , Hipoxia/genética , Ribonucleasa Pancreática , ARN de Transferencia/genética , ARN
4.
Ren Fail ; 46(1): 2300727, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189094

RESUMEN

Renal fibrosis is a common feature of various chronic kidney diseases. However, the underlying mechanism remains poorly understood. The CXC chemokine receptor (CXCR) family plays a role in renal fibrosis; however, the detailed mechanisms have not been elucidated. In this study, we investigated the potential role of CXCR7 in mediating renal fibrosis. CXCR7 expression is decreased in unilateral ischemia-reperfusion injury (UIRI) and unilateral ureteral obstruction mouse models. Furthermore, CXCR7 was specifically expressed primarily in the Lotus Tetragonolobus Lectin-expressing segment of tubules, was slightly expressed in the peanut agglutinin-expressing segment, and was barely expressed in the Dolichos biflorus agglutinin-expressing segment. Administration of pFlag-CXCR7, an overexpression plasmid for CXCR7, significantly inhibited the activation of ß-catenin signaling and protected against the progression of epithelial-to-mesenchymal transition (EMT) and renal fibrosis in a UIRI mouse model. Using cultured HKC-8 cells, we found that CXCR7 significantly downregulated the expression of active ß-catenin and fibrosis-related markers, including fibronectin, Collagen I, and α-SMA. Furthermore, CXCR7 significantly attenuated TGF-ß1-induced changes in ß-catenin signaling, EMT and fibrosis. These results suggest that CXCR7 plays a crucial role in inhibiting the activation of ß-catenin signaling and the progression of EMT and renal fibrosis. Thus, CXCR7 could be a novel therapeutic target for renal fibrosis.


Asunto(s)
Enfermedades Renales , Receptores CXCR , Animales , Ratones , beta Catenina , Modelos Animales de Enfermedad , Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Enfermedades Renales/etiología , Receptores CXCR/genética
5.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542154

RESUMEN

Leaf angle (LA) is one of the core agronomic traits of maize, which controls maize yield by affecting planting density. Previous studies have shown that the KN1 gene is closely related to the formation of maize LA, but its specific mechanism has not been fully studied. In this study, phenotype investigation and transcriptomic sequencing were combined to explore the mechanism of LA changes in wild type maize B73 and mutant kn1 under exogenous auxin (IAA) and abscisic acid (ABA) treatment. The results showed that the effect of exogenous phytohormones had a greater impact on the LA of kn1 compared to B73. Transcriptome sequencing showed that genes involved in IAA, gibberellins (GAs) and brassinosteroids (BRs) showed different differential expression patterns in kn1 and B73. This study provides new insights into the mechanism of KN1 involved in the formation of maize LA, and provides a theoretical basis for breeding maize varieties with suitable LA.


Asunto(s)
Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , RNA-Seq , Proteínas de Plantas/metabolismo , Fitomejoramiento , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Trends Biochem Sci ; 44(3): 185-189, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30297206

RESUMEN

tRNA-derived small RNAs (tsRNAs, or tRFs) are a new category of regulatory noncoding RNAs with versatile functions. Recent emerging studies have begun to unveil distinct features of tsRNAs based on their sequence, RNA modifications, and structures that differentially impact their functions towards regulating multiple aspects of translational control and ribosome biogenesis.


Asunto(s)
ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Animales , Humanos , Proteómica , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética
7.
Mol Plant Microbe Interact ; 36(3): 159-164, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36428245

RESUMEN

The role of a soybean 14-3-3 gene (Glyma05g29080) in defense against white mold and in nodulation was investigated by loss-of-gene-function with CRISPR-Cas9 editing and silencing of RNA interference (RNAi). Particle bombardment was used to introduce the CRISPR expression cassette to target the soybean 14-3-3 gene and an RNAi construct to silence gene transcription. Transmission of the edited 14-3-3 gene and the RNAi construct was confirmed in their respective progeny. The recovered transgenic plants and their progeny were significantly more susceptible to Sclerotinia sclerotiorum infection and showed a significant reduction in nodulation, thus confirming the role of the 14-3-3 gene (Glyma05g29080) in both nodulation and defense.


Asunto(s)
Sistemas CRISPR-Cas , Glycine max , Sistemas CRISPR-Cas/genética , Interferencia de ARN , Glycine max/genética
8.
Inflamm Res ; 72(8): 1567-1581, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438583

RESUMEN

BACKGROUND: Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis. METHODS: Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed. RESULTS:  In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs. CONCLUSIONS: These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.


Asunto(s)
Fenómenos Biológicos , Peritonitis , Ratones , Humanos , Animales , PPAR gamma/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Proteómica , Macrófagos/metabolismo , Peritonitis/inducido químicamente
9.
BMC Nephrol ; 24(1): 166, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308865

RESUMEN

OBJECTIVE: To investigate the risk factors of left ventricular diastolic dysfunction in maintenance hemodialysis (MHD) patients. METHOD: We retrospectively collected data from 363 hemodialysis patients who were on dialysis for at least 3 months at January 1, 2020. According to the echocardiogram results, these patients were divided into left ventricular diastolic dysfunction (LVDD) group and non-LVDD group. The differences in basic data, cardiac structure and functiona between the two groups were analyzed. Logistic regression analysis was used to analyze the risk factors of cardiac diastolic dysfunction in MHD patients. RESULTS: Compared with the non-LVDD group, patients in the LVDD group were older, with an increased proportion of coronary heart disease, more prone to chest tightness, shortness of breath. Simultaneously, they had a significantly increased (p < 0.05) proportion of cardiac structural abnormalities such as left ventricular hypertrophy, left heart enlargement and systolic dysfunction. Multivariate logistic regression analysis showed that the risk of LVDD was significantly increased in elderly MHD patients older than 60 years (OR = 3.86, 95%CI 1.429-10.429), and left ventricular hypertrophy was also significantly associated with LVDD (OR = 2.227, 95% CI 1.383-3.586). CONCLUSION: According to research, both age and left ventricular hypertrophy are risk factors for LVDD in MHD patients. It is recommended that early intervention for LVDD should be implemented to improve the quality of dialysis and reduce the incidence of cardiovascular events in MHD patients.


Asunto(s)
Hipertrofia Ventricular Izquierda , Disfunción Ventricular Izquierda , Anciano , Humanos , Estudios Retrospectivos , Diálisis Renal , Factores de Riesgo
10.
Mol Hum Reprod ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35959987

RESUMEN

RNA modifications, which are introduced post-transcriptionally, have recently been assigned pivotal roles in the regulation of spermatogenesis and embryonic development. However, the RNA modification landscape in human sperm is poorly characterized, hampering our understanding about the potential role played by RNA modification in sperm. Through our recently developed high-throughput RNA modification detection platform based on liquid chromatography with tandem mass spectroscopy, we are the first to have characterized the RNA modification signature in human sperm. The RNA modification signature was generated on the basis of 49 samples from participants, including 13 healthy controls, 21 patients with asthenozoospermia (AZS) and 15 patients with teratozoospermia (TZS). In total, we identified 13 types of RNA modification marks on the total RNA in sperm, and 16 types of RNA modification marks on sperm RNA fragments of different sizes. The levels of these RNA modifications on the RNA of patients with AZS or TZS were altered, compared to controls, especially on sperm RNA fragments > 80 nt. A few types of RNA modifications, such as m1G, m5C, m2G and m1A, showed clear co-expression patterns as well as high linear correlations with clinical sperm motility. In conclusion, we characterized the RNA modification signature of human sperm and identified its correlation with sperm motility, providing promising candidates for use in clinical sperm quality assessment and new research insights for exploring the underlying pathological mechanisms in human male infertility syndromes.

11.
Chemistry ; 28(5): e202102990, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34792222

RESUMEN

In recent years, molecular ferroelectrics have received great attention due to their low weight, mechanical flexibility, easy preparation and excellent ferroelectric properties. Among them, crown-ether-based molecular ferroelectrics, which are typically composed of the host crown ethers, the guest cations anchored in the crown ethers, and the counterions, are of great interest because of the host-guest structure. Such a structure allows the components to occur order-disorder transition easily, which is beneficial for inducing ferroelectric phase transition. Herein, we summarized the research progress of crown ether host-guest molecular ferroelectrics, focusing on their crystal structure, phase transition, ferroelectric-related properties. In view of the small spontaneous polarization and uniaxial nature, we outlook the chemical design strategies for obtaining high-performance crown-ether-based molecular ferroelectrics. This minireview will be of guiding significance for the future exploration of crown ether host-guest molecular ferroelectrics.

12.
Mol Cell Biochem ; 477(7): 1959-1971, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35380292

RESUMEN

OBJECTIVE: Peritoneal fibrosis (PF) is commonly induced by bioincompatible dialysate exposure during peritoneal dialysis, but the underlying mechanisms remain elusive. This study aimed to investigate the roles of peroxisome proliferator-activated receptor gamma (PPARγ) in PF pathogenesis. METHODS: Rat and cellular PF models were established by high glucose dialysate and lipopolysaccharide treatments. Serum creatinine, urea nitrogen, and glucose contents were detected by ELISA. Histological evaluation was done through H&E and Masson staining. GLUT1, PPARγ, and other protein expression were measured by qRT-PCR, western blotting, and IHC. PPARγ and GLUT1 subcellular distribution were detected using confocal microscopy. Cell proliferation was assessed by MTT and Edu staining. RESULTS: Serum creatinine, urea nitrogen and glucose, and PPARγ and GLUT1 expression in rat PF model were reduced by PPARγ agonists Rosiglitazone or 15d-PGJ2 and elevated by antagonist GW9662. Rosiglitazone or 15d-PGJ2 repressed and GW9662 aggravated peritoneal fibrosis in rat PF model. PPARγ and GLUT1 were mainly localized in nucleus and cytosols of peritoneal mesothelial cells, respectively, which were reduced in cellular PF model, enhanced by Rosiglitazone or 15d-PGJ2, and repressed by GW9662. TGF-ß and a-SMA expression was elevated in cellular PF model, which was inhibited by Rosiglitazone or 15d-PGJ2 and promoted by GW9662. PPARγ silencing reduced GLUT1, elevated a-SMA and TGF-b expression, and promoted peritoneal mesothelial cell proliferation, which were oppositely changed by PPARγ overexpression. CONCLUSION: PPARγ inhibited high glucose-induced peritoneal fibrosis progression through elevating GLUT1 expression and repressing peritoneal mesothelial cell proliferation.


Asunto(s)
Transportador de Glucosa de Tipo 1 , PPAR gamma , Fibrosis Peritoneal , Tiazolidinedionas , Animales , Proliferación Celular , Creatinina , Soluciones para Diálisis/farmacología , Glucosa/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , PPAR gamma/agonistas , PPAR gamma/genética , Fibrosis Peritoneal/inducido químicamente , Fibrosis Peritoneal/genética , Prostaglandina D2 , Ratas , Rosiglitazona/farmacología , Tiazolidinedionas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Urea
13.
J Cell Mol Med ; 25(18): 8957-8972, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34414658

RESUMEN

Kidney is one of the most important organs in maintaining the normal life activities. With the high abundance of mitochondria, renal tubular cell plays the vital role in functioning in the reabsorption and secretion of kidney. Reports have shown that mitochondrial dysfunction is of great importance to renal tubular cell senescence and subsequent kidney ageing. However, the underlying mechanisms are not elucidated. Cannabinoid receptor 2 is one of the two receptors responsible for the activation of endocannabinoid system. CB2 is primarily upregulated in renal tubular cells in chronic kidney diseases and mediates fibrogenesis. However, the role of CB2 in tubular mitochondrial dysfunction and kidney ageing has not been clarified. In this study, we found that CB2 was upregulated in kidneys in 24-month-old mice and d-galactose (d-gal)-induced accelerated ageing mice, accompanied by the decrease in mitochondrial mass. Furthermore, gene deletion of CB2 in d-gal-treated mice could greatly inhibit the activation of ß-catenin signalling and restore the mitochondrial integrity and Adenosine triphosphate (ATP) production. In CB2 knockout mice, renal tubular cell senescence and kidney fibrosis were also significantly inhibited. CB2 overexpression or activation by the agonist AM1241 could sufficiently induce the decrease in PGC-1α and a variety of mitochondria-related proteins and trigger cellular senescence in cultured human renal proximal tubular cells. CB2-activated mitochondrial dysfunction and cellular senescence could be blocked by ICG-001, a blocker for ß-catenin signalling. These results show CB2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. The intrinsic mechanism may be related to its activation in ß-catenin signalling.


Asunto(s)
Senescencia Celular , Riñón , Mitocondrias/metabolismo , Receptor Cannabinoide CB2/fisiología , beta Catenina/metabolismo , Animales , Línea Celular , Células Epiteliales , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/metabolismo
14.
Kidney Int ; 99(2): 364-381, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152447

RESUMEN

The endocannabinoid system has multiple effects. Through interacting with cannabinoid receptor type 1 and type 2, this system can greatly affect disease progression. Previously, we showed that activated cannabinoid receptor type 2 (CB2) mediated kidney fibrosis. However, the underlying mechanisms remain underdetermined. Here, we report that CB2 was upregulated predominantly in kidney tubular epithelial cells in unilateral urinary obstruction and ischemia-reperfusion injury models in mice, and in patients with a variety of kidney diseases. CB2 expression was closely correlated with the progression of kidney fibrosis and accompanied by the activation of ß-catenin. Furthermore, CB2 induced the formation of a ß-arrestin 1/Src/ß-catenin complex, which further triggered the nuclear translocation of ß-catenin and caused fibrotic injury. Incubation with XL-001, an inverse agonist to CB2, or knockdown of ß-arrestin 1 inhibited CB2-triggered activation of ß-catenin and fibrotic injury. Notably, CB2 potentiated Wnt1-induced ß-arrestin 1/ß-catenin activation and augmented the pathogenesis of kidney fibrosis in mice with unilateral ischemia-reperfusion injury or folic acid-induced nephropathy. Knockdown of ß-arrestin 1 inhibited the CB2 agonist AM1241-induced ß-catenin activation and kidney fibrosis. By promoter sequence analysis, putative transcription factor binding sites for T-cell factor/lymphoid enhancer factor were found in the promoter regions of the CB2 gene regardless of the species. Overexpression of ß-catenin induced the binding of T-cell factor/lymphoid enhancer factor-1 to these sites, promoted the expression of CB2, ß-arrestin 1, and the proto-oncogene Src, and triggered their accumulation. Thus, the CB2/ß-catenin pathway appears to create a reciprocal activation feedback loop that plays a central role in the pathogenesis of kidney fibrosis.


Asunto(s)
Enfermedades Renales , Receptores de Cannabinoides , beta Catenina , Animales , Fibrosis , Humanos , Riñón/patología , Enfermedades Renales/patología , Ratones , Proto-Oncogenes Mas , beta Catenina/genética
15.
Biol Reprod ; 105(5): 1171-1178, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34296257

RESUMEN

Hypobaric hypoxia as an extreme environment in a plateau may have deleterious effects on human health. Studies have indicated that rush entry into a plateau may reduce male fertility and manifest in decreased sperm counts and weakened sperm motility. RNA modifications are sensitive to environmental changes and have recently emerged as novel post-transcriptional regulators in male spermatogenesis and intergenerational epigenetic inheritance. In the present study, we generated a mouse hypoxia model simulating the environment of 5500 m in altitude for 35 days, which led to compromised spermatogenesis, decreased sperm counts, and an increased sperm deformation rate. Using this hypoxia model, we further applied our recently developed high-throughput RNA modification quantification platform based on liquid chromatography with tandem mass spectrometry, which exhibited the capacity to simultaneously examine 25 types of RNA modifications. Our results revealed an altered sperm RNA modifications signature in the testis (6 types) and mature sperm (11 types) under the hypoxia model, with 4 types showing overlap (Am, Gm, m7G, and m22G). Our data first drew the signature of RNA modification profiles and comprehensively analyzed the alteration of RNA modification levels in mouse testis and sperm under a mouse hypoxia model. These data may be highly related to human conditions under a similar hypoxia environment.


Asunto(s)
Hipoxia/metabolismo , ARN/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Cromatografía Liquida , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem
16.
Opt Express ; 28(10): 14263-14270, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403468

RESUMEN

A novel fiber-interface directional waveguide coupler was inscribed on the surface of a coreless fiber by femtosecond laser, and was successfully applied to highly sensitive refractive index (RI) measurements. The primary arm was first inscribed to couple light from a lead-in single mode fiber to the fiber interface, then back to a lead-out single mode fiber. A side arm was inscribed parallel and in close proximity to the primary arm. Light propagating in the primary arm could then be efficiently coupled into the side arm when a phase-matching condition was met, which produced a dramatic spectral dip at the coupling wavelength. The proposed device achieved a sensitivity as high as ∼8249 nm/RIU over an RI range of 1.44-1.45, due to strong evanescent fields excited in fiber-interface waveguides. The proposed in-fiber directional coupler exhibits high mechanical strength, a compact configuration, and excellent RI sensitivity. As such, it has significant potential for practical applications in biochemical sensing.

17.
Appl Microbiol Biotechnol ; 104(5): 2017-2028, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31930453

RESUMEN

This paper focuses on the production of a high-affinity monoclonal antibody (mAb) that can efficiently detect and block purinergic ligand-gated ion channel 7 receptor (P2X7R). To achieve this goal, the extracellular domain of human P2X7R, P2X7R-ECD, was used as an immunogen for BALB/c mice, inducing them to produce spleen lymphocytes that were subsequently fused with myeloma cells. Screening of the resultant hybridoma clones resulted in the selection of one stable positive clone that produced a qualified mAb, named 4B3A4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the purity of the purified 4B3A4 mAb was above 85%, with prominent bands corresponding to molecular weights of 55 kDa (heavy chain) and 25 kDa (light chain), and the BCA assay showed that the concentration of the purified 4B3A4 mAb was 0.3 mg/mL. Western blot analysis revealed that the 4B3A4 mAb could specifically recognize and bind both P2X7R-ECD and the full-length P2X7R protein. Laser scanning confocal microscopy (LSCM) revealed that the 4B3A4 mAb specifically bound to P2X7R on the membrane of human peripheral blood mononuclear cells (PBMCs). P2X7R expression was significantly different between healthy individuals and people with certain cancers as determined by flow cytometry (FCM). In addition, the 4B3A4 mAb significantly reduced ATP-stimulated Ca2+ entry and YO-PRO-1 uptake, which indicated that the 4B3A4 mAb effectively blocked P2X7R activity. These data indicate that the 4B3A4 mAb can be further used as not only an antibody to detect cell surface P2X7R but also as a therapeutic antibody to target P2X7R-related signaling pathways.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptores Purinérgicos P2X7/inmunología , Animales , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Benzoxazoles/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Dominios Proteicos , Compuestos de Quinolinio/metabolismo , Receptores Purinérgicos P2X7/química
18.
BMC Psychiatry ; 20(1): 369, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664880

RESUMEN

BACKGROUND: Depression is highly prevalent among Haemodialysis (HD) patients and is known to results in a series of adverse outcomes and poor quality of life (QoL). Although cognitive behavioural therapy (CBT) has been shown to improve depressive symptoms and QoL in other chronic illness, there is uncertainty in terms of the effectiveness of CBT in HD patients with depression or depressive symptoms. METHODS: All randomised controlled trials relevant to the topic were retrieved from the following databases: CINHAL, MEDLINE, PubMed, PsycINFO and CENTRAL. The grey literature, specific journals, reference lists of included studies and trials registers website were also searched. Data was extracted or calculated from included studies that had measured depression and quality of life using valid and reliable tools -this included mean differences or standardised mean differences and 95% confidence intervals. The Cochrane risk of bias tool was used to identify the methodological quality of the included studies. RESULTS: Six RCTs were included with varying methodological quality. Meta-analysis was undertaken for 3 studies that employed the CBT versus usual care. All studies showed that the depressive symptoms significantly improved after the CBT. Furthermore, CBT was more effective than usual care (MD = - 5.28, 95%CI - 7.9 to - 2.65, P = 0.37) and counselling (MD = - 2.39, 95%CI - 3.49 to - 1.29), while less effective than sertraline (MD = 2.2, 95%CI 0.43 to 3.97) in alleviating depressive symptoms. Additionally, the CBT seems to have a beneficial effect in improving QoL when compared with usual care, while no significant difference was found in QoL score when compared CBT with sertraline. CONCLUSIONS: CBT may improve depressive symptoms and QoL in HD patients with comorbid depressive symptoms. However, more rigorous studies are needed in this field due to the small quantity and varied methodological quality in the identified studies.


Asunto(s)
Terapia Cognitivo-Conductual , Calidad de Vida , Depresión/terapia , Humanos , Mantenimiento , Diálisis Renal
19.
Kidney Int ; 95(4): 830-845, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770219

RESUMEN

Podocyte injury is the major cause of proteinuria in primary glomerular diseases. Oxidative stress has long been thought to play a role in triggering podocyte damage; however, the underlying mechanism remains poorly understood. Here we show that the Wnt/ß-catenin pathway is involved in mediating oxidative stress-induced podocyte dysfunction. Advanced oxidation protein products, a marker and trigger of oxidative stress, were increased in the serum of patients with chronic kidney disease and correlated with impaired glomerular filtration, proteinuria, and circulating level of Wnt1. Both serum from patients with chronic kidney disease and exogenous advanced oxidation protein products induced Wnt1 and Wnt7a expression, activated ß-catenin, and reduced expression of podocyte-specific markers in vitro and in vivo. Blockade of Wnt signaling by Klotho or knockdown of ß-catenin by shRNA in podocytes abolished ß-catenin activation and the upregulation of fibronectin, desmin, matrix metalloproteinase-9, and Snail1 triggered by advanced oxidation protein products. Furthermore, conditional knockout mice with podocyte-specific ablation of ß-catenin were protected against podocyte injury and albuminuria after treatment with advanced oxidation protein products. The action of Wnt/ß-catenin was dependent on the receptor of advanced glycation end products (RAGE)-mediated NADPH oxidase induction, reactive oxygen species generation, and nuclear factor-κB activation. These studies uncover a novel mechanistic linkage of oxidative stress, Wnt/ß-catenin activation, and podocyte dysfunction.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas/metabolismo , Podocitos/patología , Proteinuria/patología , Insuficiencia Renal Crónica/patología , Vía de Señalización Wnt , Adolescente , Adulto , Productos Avanzados de Oxidación de Proteínas/sangre , Anciano , Animales , Femenino , Glucuronidasa/metabolismo , Voluntarios Sanos , Humanos , Proteínas Klotho , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , FN-kappa B/metabolismo , Estrés Oxidativo , Podocitos/metabolismo , Proteinuria/sangre , Proteinuria/orina , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/orina , Regulación hacia Arriba , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , Adulto Joven , beta Catenina/genética , beta Catenina/metabolismo
20.
Biol Chem ; 400(7): 951-963, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-30771276

RESUMEN

Gelsolin (GSN) is an actin filament-capping protein that plays a key role in cell migration. Here we show that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates GSN expression level by binding to the 3'-untranslated region (3'UTR) of GSN mRNA in non-small cell lung cancers (NSCLC) H1299 cells which are highly metastatic and express high level of GSN. We found that hnRNPK overexpression increased the mRNA and protein level of GSN, whereas hnRNPK knockdown by siRNA decreased the mRNA and protein level of GSN in both H1299 and A549 cells, indicating a positive role of hnRNPK in the regulation of GSN expression. Furthermore, hnRNPK knockdown affected the migration ability of H1299 and A549 cells which could be rescued by ectopic expression of GSN in those cells. Conversely, GSN knockdown in hnRNPK-overexpressing cells could abort the stimulatory effect of hnRNPK on the cell migration. These results suggest that hnRNPK function in the regulation of cell migration is GSN-dependent. Taken together, these data unveiled a new mechanism of regulation of the GSN expression by hnRNPK and provides new clues for the discovery of new anti-metastatic therapy.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Gelsolina/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Neoplasias Pulmonares/metabolismo , ARN Mensajero/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA