Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 167(2): 281-297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492894

RESUMEN

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.


Asunto(s)
Quimiocina CXCL1 , Resistencia a Antineoplásicos , Infiltración Neutrófila , Neutrófilos , Neoplasias Pancreáticas , Receptores de Interleucina-8B , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Humanos , Infiltración Neutrófila/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Ratones , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Línea Celular Tumoral , Ratones Noqueados , Microambiente Tumoral , Inmunoterapia/métodos , Ratones Desnudos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Transducción de Señal , Mutación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología
2.
BMC Ophthalmol ; 24(1): 195, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664615

RESUMEN

BACKGROUND: Analyzing the glaucoma burden in "Belt and Road" (B&R) countries based on age, gender, and risk factors from 1990 to 2019 in order to provide evidence for future prevention strategies. METHODS: We applied global burden of disease(GBD) 2019 to compare glaucoma prevalence and Years lived with disabilities (YLDs) from 1990 to 2019 in the B&R countries. Trends of disease burden between 1990 and 2019 were evaluated using the average annual percent change and the 95% uncertainty interval (UI) were reported. RESULTS: From 1990 to 2019, most B&R countries showed a downward trend in age-standardized prevalence and YLDs (all P < 0.05). Additionally, only the age-standardized YLDs in males of Pakistan has a 0.35% increase (95%CI:0.19,0.50,P < 0.001), and most B&R countries has a decline(all P < 0.05) in age-standardized YLDs in every 5 years age group after 45 years old except for Pakistan(45-79 years and > 85 years), Malaysia(75-84 years), Brunei Darussalam(45-49 years), Afghanistan(70-79 years). Finally, in all Central Asian countries, the age-standardized YLDs due to glaucoma caused by fasting hyperglycemia demonstrated have an increase between 1990 and 2019 (all P < 0.05), but Armenia and Mongolia have a decrease between 2010 and 2019 (all P < 0.05). CONCLUSION: The prevalence of glaucoma continues to pose a significant burden across regions, ages, and genders in countries along the "B&R". It is imperative for the "B&R" nations to enhance health cooperation in order to collaboratively tackle the challenges associated with glaucoma.


Asunto(s)
Glaucoma , Humanos , Glaucoma/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Prevalencia , Anciano de 80 o más Años , Adulto , Factores de Riesgo , Distribución por Edad , Carga Global de Enfermedades/tendencias , Distribución por Sexo , Adulto Joven , Adolescente , Costo de Enfermedad , Años de Vida Ajustados por Discapacidad/tendencias
3.
Biomed Chromatogr ; : e5932, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922712

RESUMEN

Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.

4.
Plant J ; 111(3): 836-848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673966

RESUMEN

Lilacs (Syringa L.), a group of well-known ornamental and aromatic woody plants, have long been used for gardening, essential oils and medicine purposes in East Asia and Europe. The lack of knowledge about the complete genome of Syringa not only hampers effort to better understand its evolutionary history, but also prevents genome-based functional gene mining that can help in the variety improvement and medicine development. Here, a chromosome-level genome of Syringa oblata is presented, which has a size of 1.12 Gb including 53 944 protein coding genes. Synteny analysis revealed that a recent duplication event and parallel evolution of two subgenomes formed the current karyotype. Evolutionary analysis, transcriptomics and metabolic profiling showed that segment and tandem duplications contributed to scent formation in the woody aromatic species. Moreover, phylogenetic analysis indicated that S. oblata shared a common ancestor with Osmanthus fragrans and Olea europaea approximately 27.61 million years ago (Mya). Biogeographic reconstruction based on a resequenced data set of 26 species suggested that Syringa originated in the northern part of East Asia during the Miocene (approximately 14.73 Mya) and that the five Syringa groups initially formed before the Late Miocene (approximately 9.97 Mya). Furthermore, multidirectional dispersals accompanied by gene introgression among Syringa species from Northern China during the Miocene were detected by biogeographic reconstruction. Taken together, the results showed that complex gene introgression, which occurred during speciation history, greatly contributed to Syringa diversity.


Asunto(s)
Oleaceae , Syringa , Cromosomas , Oleaceae/genética , Filogenia , Syringa/genética , Transcriptoma
5.
J Am Chem Soc ; 145(41): 22366-22373, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37769215

RESUMEN

Understanding and controlling molecular orientations in self-assembled organic nanostructures are crucial to the development of advanced functional nanodevices. Scanning tunneling microscopy (STM) provides a powerful toolbox to recognize molecular orientations and to induce orientation changes on surfaces at the single-molecule level. Enormous effort has been devoted to directly controlling the molecular orientations of isolated single molecules in free space. However, revealing and further controlling molecular orientation selectivity in constrained environments remain elusive. In this study, by a combination of STM imaging/manipulations and density functional theory calculations, we report the orientation selectivity of tetrapyridyl-substituted porphyrins in response to various local molecular environments in artificially constructed molecular "Klotski puzzles" on Au(111). With the assistance of STM lateral manipulations, "sliding-block" molecules were able to enter predefined positions, and specific molecular orientations were adopted to fit the local molecular environments, in which the intermolecular interaction was revealed to be the key to achieving the eventual molecular orientation selectivity. Our results demonstrate the essential role of local molecular environments in directing single-molecule orientations, which would shed light on the design of molecular structures to control preferred orientations for further applications in molecular nanodevices.

6.
Opt Lett ; 48(7): 1702-1705, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221745

RESUMEN

Optical resonant cavities with high quality factor (Q-factor) are widely used in science and technology for their capabilities of strong confinement of light and enhanced light-matter interaction. The 2D photonic crystal structure with bound states in the continuum (BICs) is a novel concept for resonators with ultra-compact device size, which can be used to generate surface emitting vortex beams based on symmetry-protected BICs at the Γ point. Here, to the best of our knowledge, we demonstrate the first photonic crystal surface emitter with a vortex beam by using BICs monolithically grown on CMOS-compatible silicon substrate. The fabricated quantum-dot BICs-based surface emitter operates at 1.3 µm under room temperature (RT) with a low continuous wave (CW) optically pumped condition. We also reveal the BIC's amplified spontaneous emission with the property of a polarization vortex beam, which is promising to provide a novel degree of freedom in classical and quantum realms.

7.
Nano Lett ; 22(22): 9062-9070, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36331177

RESUMEN

Severe Zn dendrite growth and side reactions greatly limit the application of aqueous zinc-ion batteries. Herein, we design a layer of polyionic liquid (PCAVImBr) film with a tunable pore size and charge density on the Zn anode to endow homogenized distribution of an electronic field, acerated Zn2+ permeation, and inhabitation of water entry. Such an optimal combination is achieved via a polymerization induced phase separation strategy, where the enhanced cross-linking density arrests the phase separation in a shallow depth and vice versa. Furthermore, the Zn@PCAVImBr electrode has good plating/stripping reversibility, which retains a 99.6% CE efficiency after 3000 cycles. The symmetric cells can achieve a cycle life of more than 2400 h at different current densities. It is worth mentioning that the NVO//Zn@PCAVImBr full cell can still reach a 91.2% capacity retention after nearly 4000 cycles at a high current of 10 A g-1, and provides new insights for the future research of zinc-ion battery anodes.


Asunto(s)
Líquidos Iónicos , Polimerizacion , Electrónica , Zinc
8.
Molecules ; 28(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836620

RESUMEN

The widespread prevalence of infectious bacteria is one of the greatest threats to public health, and consequently, there is an urgent need for efficient and broad-spectrum antibacterial materials that are antibiotic-free. In this study, 2-pyridinecarboxaldehyde (PCA) was grafted onto chitosan (CS) and the modified CS coordinated with silver ions to prepare PCA-CS-Ag complexes with antibacterial activity. To obtain complexes with a high silver content, the preparation process was optimized using single-factor experiments and response surface methodology. Under the optimal preparation conditions (an additional amount of silver nitrate (58 mg), a solution pH of 3.9, and a reaction temperature of 69 °C), the silver content of the PCA-CS-Ag complex reached 13.27 mg/g. The structure of the PCA-CS-Ag complex was subsequently verified using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. Furthermore, three possible complexation modes of the PCA-CS-Ag complex were proposed using molecular mechanics calculations. The results of the antibacterial assay in vitro showed that the PCA-CS-Ag complex exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria, exerting the synergistic antibacterial effect of modified chitosan and silver ions. Therefore, the PCA-CS-Ag complex is expected to be developed as an effective antibacterial material with promising applications in food films, packaging, medical dressings, and other fields.


Asunto(s)
Quitosano , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Bacterias Gramnegativas , Bacterias Grampositivas , Espectroscopía Infrarroja por Transformada de Fourier , Iones , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana
9.
Angew Chem Int Ed Engl ; 62(44): e202311032, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37691598

RESUMEN

The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+ -conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm-2 , presenting a record-high cumulative capacity up to 45 Ah cm-2 . The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3 O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.

10.
Angew Chem Int Ed Engl ; 62(5): e202215385, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36437231

RESUMEN

The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2 (SO4 )3 is proposed as decent electrolyte additive to manipulate OH- -mediated cross-communication between Zn anode and NaV3 O8 ⋅ 1.5H2 O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH- accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH- toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH- -mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.

11.
Chem Biodivers ; 19(5): e202100936, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35502889

RESUMEN

Phlomis medicinalis Diels, an important perennial herbal plant unique to the Qinghai-Tibet Plateau, is often used as Tibetan Materia Medicine Radix Phlomii for the treatment of cold, cough, and convergence trauma. In order to efficiently extract the iridoid glycosides from P. medicinalis, an ultrasound-assisted deep eutectic solvent extraction technique was employed. The main parameters influencing the extraction process were studied through single-factor tests and the extraction was optimized by using response surface methodology. The hemostasis activity of total iridoid glycosides (TIG) from P. medicinalis was evaluated in vitro and in mice. The optimization results revealed that the optimal process parameters were liquid-solid ratio 20 : 1, choline chloride-lactic acid concentration 79 %, and sonication time 34 min, under which a TIG extraction yield of 20.73 % was obtained. Meanwhile, high-performance liquid chromatography-photodiode array/mass spectrometry (HPLC-PDA/MS) was employed to characterize the optimized extract and indicated that TIG from P. medicinalis mainly consisted of sixteen reported iridoid glycosides with a total content of 91.22 %. The experimental results in vivo and in vitro indicated that TIG from P. medicinalis had strong hemostasis activities, which may be achieved by increasing the fibrinogen levels. Therefore, the ultrasound-assisted deep eutectic solvent extraction is an effective method to extract iridoid glycosides from P. medicinalis and they will be promising candidates to be developed for medical hemostasis agents.


Asunto(s)
Glicósidos Iridoides , Phlomis , Animales , Cromatografía Líquida de Alta Presión/métodos , Disolventes Eutécticos Profundos , Glicósidos/farmacología , Hemostasis , Glicósidos Iridoides/química , Glicósidos Iridoides/farmacología , Ratones , Phlomis/química
12.
Zhongguo Zhong Yao Za Zhi ; 47(2): 385-391, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178980

RESUMEN

This study aimed to analyze aflatoxins content and fungal community distribution in the harvesting and processing of Platycladi Semen, and explore the key link that affects aflatoxins contamination. The related Platycladi Semen samples of different maturity periods(cone non-rupture period, early rupture, and complete rupture period) and different processing periods(before drying, during 2-d drying, during 7-d drying, before and after seed scale removal, before and after peeling, 1 d after color sorting, and 7 d after color sorting) were collected for identifying the fungal community composition on sample surface by ITS amplicon sequencing. Then the content of aflatoxins B_1, B_2, G_1 and G_2 was determined by HPLC-MS/MS. The results showed that during the harvesting of Platycladi Semen from cone non-rupture to complete rupture, aflatoxins were only detected in the seed scale and seed coat, with aflatoxin G_2 in the seed scale and aflatoxin B_1 in the seed coat. During the drying, with the prolongation of drying time, aflatoxins B_1 and G_2 were detected simultaneously in the seed scale, aflatoxin B_1 in the seed coat, and low-content aflatoxin B_1 in the seed kernel. During subsequent processing, the aflatoxin content in seed kernel during subsequent processing was slighted increased. As demonstrated by fungal detection, Aspergillus flavus was not present during the harvesting of Platycladi Semen, but present during the drying and processing. Its content in the seed coat during the drying process was relatively higher. In short, Platycladi Semen should be harvested as soon as possible after it becomes fully mature. Drying process is the key link of preventing aflatoxin contamination. It is advised to build a sunlight room or adopt similar settings, standardize the operations in other processes, and keep the surrounding environment clean to minimize aflatoxin contamination.


Asunto(s)
Aflatoxinas , Micobioma , Aflatoxinas/análisis , Aspergillus flavus , Contaminación de Alimentos/prevención & control , Semen/química , Espectrometría de Masas en Tándem
13.
Toxicol Appl Pharmacol ; 422: 115556, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932463

RESUMEN

Many researchers have studied the relationship between lead (Pb) and testis injury, but the underlying mechanisms are still unknown. The participation of long non-coding RNAs (lncRNAs) in biological processes has been proposed. To comprehensively gain insight into the molecular toxicity of Pb, expression patterns are analysed through RNA sequencing (RNA-seq) in male mice treated with 200 mg/L of Pb through the drinking water for 90 days at the onset of puberty. A total of 614 differentially expressed (DE) lncRNAs were included (p ≤ 0.05 and fold change ≥2), of which 288 were up-regulated, and 326 were down-regulated. A total of 2295 DE mRNAs (p ≤ 0.05 and fold change ≥2), including 1202 up-regulated and 1093 down-regulated ones, were found in the testes of Pb-exposed group. Functional analysis results showed that several lncRNAs might be implicated in the bio-pathway of mitogen-activated protein kinase (MAPK) signaling pathway. Finally, seven pairs of lncRNA-mRNA co-expression were established in mice testes and confirmed by RT-qPCR. Moreover, the DE genes were also altered in Sertoli cells. Therefore, our research might be helpful for future exploring the effects of Pb exposure on lncRNA in testis, as well as its function.


Asunto(s)
Compuestos Organometálicos/toxicidad , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Testículo/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Animales , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Masculino , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Células de Sertoli/ultraestructura , Desarrollo Sexual , Transducción de Señal , Testículo/metabolismo , Testículo/ultraestructura
14.
Mar Drugs ; 19(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199126

RESUMEN

Chitosan is a linear polysaccharide produced by deacetylation of natural biopolymer chitin. Owing to its good biocompatibility and biodegradability, non-toxicity, and easy processing, it has been widely used in many fields. After billions of years of survival of the fittest, many organisms have already evolved a nearly perfect structure. This paper reviews the research status of biomimetic functional materials that use chitosan as a matrix material to mimic the biological characteristics of bivalves, biological cell matrices, desert beetles, and honeycomb structure of bees. In addition, the application of biomimetic materials in wound healing, hemostasis, drug delivery, and smart materials is briefly overviewed according to their characteristics of adhesion, hemostasis, release, and adsorption. It also discusses prospects for their application and provides a reference for further research and development.


Asunto(s)
Materiales Biomiméticos , Quitosano , Animales
15.
Neurocomputing (Amst) ; 403: 153-166, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32501365

RESUMEN

Prediction of individual mobility is crucial in human mobility related applications. Whereas, existing research on individual mobility prediction mainly focuses on next location prediction and short-term dependencies between traveling locations. Long-term location sequence prediction is of great importance for long-time traffic planning and location advertising, and long-term dependencies exist as individual mobility regularity typically occurs daily and weekly. This paper proposes a novel hierarchical temporal attention-based LSTM encoder-decoder model for individual location sequence prediction. The proposed hierarchical attention mechanism captures both long-term and short-term dependencies underlying in individual longitudinal trajectories, and uncovers frequential and periodical mobility patterns in an interpretable manner by incorporating the calendar cycle of individual travel regularities into location prediction. More specifically, the hierarchical attention consists of local temporal attention to identify highly related locations in each day, and global temporal attention to discern important travel regularities over a week. Experiments on individual trajectory datasets with varying degree of traveling uncertainty demonstrate that our method outperforms four baseline methods on three evaluation metrics. In addition, we explore the interpretability of the proposed model in understanding individual daily, and weekly mobility patterns by visualizing the temporal attention weights and frequent traveling patterns associated with locations.

16.
Opt Express ; 26(13): 16797-16804, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119500

RESUMEN

Microscale local strain gauges with low-power consumption and large strain range were demonstrated by integrating microdisk lasers in a deformable and flexible polymer substrate. The lasing spectra of microdisk lasers were sensitive to substrate deformation and can be modulated by strains. The measured relative wavelength tuning under strains of the novel strain sensors illustrated a linear behavior with the gauge factor being ~4.0 nm and ~6.7 nm per stretching unit for microdisk lasers with the diameter of 1.2 µm and 1.5 µm, which corresponding to a smooth wavelength tuning of 1.5 nm and 2.6 nm under 36% strain, respectively. In addition, to being used as microscale strain gauges, the visible lasers on the deformable substrate can also function as a tunable light source for the photonic integrated circuits and flexible laser projection displays.

17.
Opt Express ; 25(24): A1072-A1078, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29220985

RESUMEN

In this paper, we report the design, fabrication, and characterization of a tungsten-based metamaterial selective solar absorber (SSA) combining a metal-insulator-metal (MIM) structure and simple nanodisk array. The as-fabricated absorber absorbs strongly and selectively in the wavelength range of 0.5-1.75 µm with a characterized absorptance of more than 90%, which drops abruptly to less than 12.6% beyond 2.5 µm. In addition, this broadband and highly selective absorber is polarization-insensitive under incidence of normal plane waves. Moreover, the solar selectivity remains invariable up to 40°, which is beneficial for solar thermal applications. These properties are verified theoretically and experimentally in the present work. Further analysis on energy dissipation reveals the underlying physics and optical performances.

18.
Opt Express ; 25(20): 23645-23653, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041315

RESUMEN

A flexible photonic crystal cavity, consisting of a III-V active layer embedded in a flexible medium, with a line-defect by removing three air holes for nanoscale structural deformation detection is proposed and optimized. The cavity can hold the photonic band-gap modes with the fundamental mode located at approximately 686 nm, overlapping with the photoluminescence spectrum of the InGaP/InGaAlP quantum wells. Results of finite-difference time-domain simulations indicate that the L3 cavity features an ultra-compact mode volume of 10-3 µm3 and high quality factor of 104 at a sub-micron footprint within the studied visible wavelength. Theoretical optical strain sensitivities of approximately 4.5 and 3 nm per ε (1% strain for both) for the x and y directions are predicted, respectively. When the cavity is under large bending curvatures, the Q factor rapidly decreases from 8000 to 2000.

19.
ACS Nano ; 18(12): 9082-9091, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466951

RESUMEN

On-surface dehalogenative reactions have been promising in the construction of nanostructures with diverse morphologies and intriguing electronic properties, while halogen (X), as the main byproduct, often impedes the formation of extended nanostructures and property characterization, and the reaction usually requires high C-X activation temperatures, especially on relatively inert Au(111). Enormous efforts in precursor design, halogen-to-halide conversion, and the introduction of extrinsic metal atoms have been devoted to either eliminating dissociated halogens or reducing reaction barriers. However, it is still challenging to separate halogens from molecular systems while facilitating C-X activation under mild conditions. Herein, a versatile halogen separation strategy has been developed based on the introduction of extrinsic sodium (Na) into dehalogenative reactions on Au(111) as model systems that both isolates the dissociated halogens and facilitates the C-Br activation under mild conditions. Moreover, the combination of scanning tunneling microscopy imaging and density functional theory calculations reveals the formation of sodium halides (NaX) from halogens in these separation processes as well as the reduction in reaction temperatures and barriers, demonstrating the versatility of extrinsic sodium as an effective "cleaner" and "dehalogenator" of surface halogens. Our study demonstrates a valuable strategy to facilitate the on-surface dehalogenative reactions, which will assist in the precise fabrication of low-dimensional carbon nanostructures.

20.
Int J Food Microbiol ; 410: 110442, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37984213

RESUMEN

The raw and processed roots of Polygonum multiflorum Thunb is a popular traditional Chinese medicine. However, Polygoni Multiflori Radix is easily contaminated by toxigenic fungi and mycotoxins during harvesting, processing, and transportation, thereby posing a health risk for consumers. This study aims to investigate the presence of fungi on the surface of raw and processed Polygoni Multiflori Radix collected from four producing areas using high-throughput sequencing. Results showed that the phyla Ascomycota and Basidiomycota, the genera Xeromyces, Cystofilobasidium, Eurotium, and Aspergillus were the dominant fungus, and significant differences are presented in four areas and two processed products. Three potential mycotoxin-producing fungi were detected, namely Trichosporon cutaneum, Aspergillus restrictus, and Fusarium oxysporum. The α-diversity and network complexity showed significant differences in four areas. Chao 1 and Shannon were highest in Yunnan (YN), then incrementally decreased from SC (Sichuan) to AH (Anhui) and GD (Guangdong) areas. Meanwhile, α-diversity was also strongly influenced by processing. Chao 1 and Shannon indices were higher in the raw group, however, the network complexity and connectivity were higher in the processed group. In conclusion, the assembly and network of the surface microbiome on Polygoni Multiflori Radix were influenced by sampling location and processing. This work provides details on the surface microbiome of Polygoni Multiflori Radix samples, which could ensure the drug and consumers' safety.


Asunto(s)
Medicamentos Herbarios Chinos , Micotoxinas , Polygonum , China , Medicina Tradicional China , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA