Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632554

RESUMEN

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Triticum/genética , Ligamiento Genético , Fitomejoramiento , Fenotipo
2.
BMC Cancer ; 24(1): 537, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678238

RESUMEN

BACKGROUND: The tripartite motif (TRIM) proteins have been reported to play crucial roles in various malignancies. However, the clinical significance of TRIM proteins in colorectal cancer (CRC) remains controversial. This study aimed to evaluate the association between TRIM proteins and the clinicopathological features and survival outcomes in patients with CRC. METHODS: We performed a meta-analysis to investigate whether TRIM is a prognostic factor in CRC. PubMed, Embase, Web of Science, CNKI and Weipu databases were searched to identify eligible studies that evaluated the association between TRIM proteins and overall survival (OS), as well as the clinicopathological features of patients with CRC. Hazard ratios (HR) or odds ratios (OR) with 95% confidence interval (CI) were derived and pooled using a fixed-effects model. RESULTS: From inception to March 2023, we extracted study characteristics and prognostic data for each identified study. Twelve studies enrolling 1608 patients were eligible for inclusion. Data on OS and recurrence-free survival (RFS) were available for 12 and 2 studies, respectively. The pooled analysis results showed a significant correlation between the elevated TRIM proteins and shorter OS (HR = 2.42, 95% CI: 1.96-2.99) and worse RFS (HR = 2.51, 95% CI: 1.78-3.54) in patients with CRC. The combined ORs indicated that TRIM protein over-expression was significantly associated with advanced TNM stage (OR = 2.26, 95% CI: 1.25-4.10), deep tumor invasion (OR = 2.01, 95% CI: 1.04-3.88), lymph node metastasis (OR = 2.99, 95% CI: 2.19-4.09) and perineural invasion (OR = 1.95, 95% CI: 1.18-3.23). CONCLUSIONS: Our findings suggest that TRIM proteins can predict tumor progression and poor prognosis in CRC. Therefore, TRIM proteins may be promising therapeutic targets for patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Motivos Tripartitos , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Pronóstico , Biomarcadores de Tumor/metabolismo , Estadificación de Neoplasias
3.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512468

RESUMEN

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico/métodos , Ligamiento Genético , Fitomejoramiento , Fenotipo
4.
Theor Appl Genet ; 137(6): 131, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748046

RESUMEN

KEY MESSAGE: Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.


Asunto(s)
Fenotipo , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Alelos , Fitomejoramiento , Genoma de Planta , Estudios de Asociación Genética , Selección Genética , Genotipo , Marcadores Genéticos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo
5.
Theor Appl Genet ; 137(3): 67, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441674

RESUMEN

KEY MESSAGE: A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Humanos , Triticum/genética , Mapeo Cromosómico , Alelos , Barajamiento de ADN
6.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737910

RESUMEN

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Barajamiento de ADN , Anotación de Secuencia Molecular , Fenotipo
7.
J Org Chem ; 88(4): 2393-2403, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36715636

RESUMEN

A novel and convenient K2S2O8-mediated diiodo cyclization of 1,6-enynes for the facile synthesis of functionalized γ-lactam derivatives has been developed. This reaction features mild and transition-metal-free conditions, which offer a green and efficient entry to synthetically important γ-lactam scaffolds. Mechanistic studies suggest that iodide radicals initiate the cascade cyclic transformation.

8.
Theor Appl Genet ; 135(7): 2531-2541, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35680741

RESUMEN

KEY MESSAGE: A major stable QTL for flag leaf width was narrowed down to 2.5 Mb region containing two predicated putative candidate genes, and its effects on yield-related traits was characterized. Flag leaf width (FLW) is important to production in wheat. In a previous study, a major quantitative trait locus for FLW (QFlw-5B) was detected on chromosome 5B, within an interval of 6.5 cM flanked by the markers of XwPt-9103 and Xbarc142, using a mapping population of recombinant inbred lines derived from a cross between Kenong9204 (KN9204) and Jing411 (J411) (denoted as KJ-RILs). The aim of this study was to fine map QFlw-5B and characterize its genetic effects on yield-related traits. Multiple near-isogenic lines (NILs) were developed using one residual heterozygous line for QFlw-5B. Five recombinants for QFlw-5B were identified, and its location was narrowed to a 2.5 Mb region based on combined phenotypic and genotypic data analysis. This region contained 27 predicted genes, two of which were considered as the most likely candidate genes for QFlw-5B. The FLW of NIL-KN9204 was significantly higher than that of NIL-J411 across all the tested environments. Meanwhile, significant increases in plant height, grain width and 1000-grain weight were observed in NIL-KN9204 compared with that in NIL-J411. These results indicate that QFlw-5B has great potential for marker-assisted selection in wheat breeding programs designed to improve both plant architecture and yield. This study also provides a basis for the map-based cloning of QFlw-5B.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Hojas de la Planta/genética , Triticum/genética
9.
Theor Appl Genet ; 135(8): 2907-2923, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35794218

RESUMEN

KEY MESSAGE: TaD11-2A affects grain size and root length and its natural variations are associated with significant differences in yield-related traits in wheat. Brassinosteroids (BRs) control many important agronomic traits and therefore the manipulation of BR components could improve crop productivity and performance. However, the potential effects of BR-related genes on yield-related traits and stress tolerance in wheat (Triticum aestivum L.) remain poorly understood. Here, we identified TaD11 genes in wheat (rice D11 orthologs) that encoded enzymes involved in BR biosynthesis. TaD11 genes were highly expressed in roots (Zadoks scale: Z11) and grains (Z75), while expression was significantly suppressed by exogenous BR (24-epiBL). Ectopic expression of TaD11-2A rescued the abnormal panicle structure and plant height (PH) of the clustered primary branch 1 (cpb1) mutant, and also increased endogenous BR levels, resulting in improved grain yields and grain quality in rice. The tad11-2a-1 mutant displayed dwarfism, smaller grains, sensitivity to 24-epiBL, and reduced endogenous BR contents. Natural variations in TaD11-2A were associated with significant differences in yield-related traits, including PH, grain width, 1000-grain weight, and grain yield per plant, and its favorable haplotype, TaD11-2A-HapI was subjected to positive selection during wheat breeding. Additionally, TaD11-2A influenced root length and salt tolerance in rice and wheat at seedling stages. These results indicated the important role of BR TaD11 biosynthetic genes in controlling grain size and root length, and also highlighted their potential in the molecular biological analysis of wheat.


Asunto(s)
Oryza , Triticum , Brasinoesteroides , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Haplotipos , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
10.
Soft Matter ; 17(12): 3494-3502, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33657203

RESUMEN

As tailorable solvents, the physiochemical properties of ionic liquids can be tuned by the structure of ions. Herein, we investigate the structural effects of ILs on the self-assembly of surfactants. It has been confirmed that the cationic surfactant 1-hexadecyl-3-methylimidazolium bromide (C16mimBr) can self-assemble into micellar and lamellar lyotropic liquid crystal phases in the aprotic ionic liquid (AIL) 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4). In this work, we explore the aggregation behaviours in AILs with different alkyl chains on the imidazolium group, i.e., 1-propyl-3-methylimidazolium tetrafluoroborate ([Pmim]BF4), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim]BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4). With the increase of the cation chain length, AILs have better solubility of the solvophobic part of the surfactants and hence a weaker driving force for self-assembly. Therefore, the critical micellization concentration of C16mimBr in AILs increases as confirmed by the surface tension and small angle X-ray scattering characterizations. More interesting things happen to the phase behaviours. Besides the micellar and lamellar lyotropic liquid crystal phases, a hexagonal lyotropic liquid crystal phase is formed in [Pmim]BF4 while hexagonal and bicontinuous cubic lyotropic liquid crystal phases are formed in [Bmim]BF4, [Hmim]BF4 and [Omim]BF4. It is surprising to observe richer phase behaviours in solvents of lower cohesive energy. The detailed structural information of various aggregates has been obtained by small-angle X-ray scattering. It is demonstrated that AILs work as not only solvents but also co-surfactants.

11.
Microb Cell Fact ; 20(1): 149, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34325704

RESUMEN

BACKGROUND: The intracellular ATP level is an indicator of cellular energy state and plays a critical role in regulating cellular metabolism. Depletion of intracellular ATP in (facultative) aerobes can enhance glycolysis, thereby promoting end product formation. In the present study, we examined this s trategy in anaerobic ABE (acetone-butanol-ethanol) fermentation using Clostridium acetobutylicum DSM 1731. RESULTS: Following overexpression of atpAGD encoding the subunits of water-soluble, ATP-hydrolyzing F1-ATPase, the intracellular ATP level of 1731(pITF1) was significantly reduced compared to control 1731(pIMP1) over the entire batch fermentation. The glucose uptake was markedly enhanced, achieving a 78.8% increase of volumetric glucose utilization rate during the first 18 h. In addition, an early onset of acid re-assimilation and solventogenesis in concomitant with the decreased intracellular ATP level was evident. Consequently, the total solvent production was significantly improved with remarkable increases in yield (14.5%), titer (9.9%) and productivity (5.3%). Further genome-scale metabolic modeling revealed that many metabolic fluxes in 1731(pITF1) were significantly elevated compared to 1731(pIMP1) in acidogenic phase, including those from glycolysis, tricarboxylic cycle, and pyruvate metabolism; this indicates significant metabolic changes in response to intracellular ATP depletion. CONCLUSIONS: In C. acetobutylicum DSM 1731, depletion of intracellular ATP significantly increased glycolytic rate, enhanced solvent production, and resulted in a wide range of metabolic changes. Our findings provide a novel strategy for engineering solvent-producing C. acetobutylicum, and many other anaerobic microbial cell factories.


Asunto(s)
Adenosina Trifosfato/metabolismo , Clostridium acetobutylicum/metabolismo , Fermentación , Glucólisis , Solventes/metabolismo , Acetona/metabolismo , Anaerobiosis , Biocombustibles , Butanoles/metabolismo , Clostridium acetobutylicum/genética , Etanol/metabolismo , Hidrólisis
12.
Nanotechnology ; 32(39)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153959

RESUMEN

Highly oriented Co-MOF nanoneedle arrays arein situconstructed on Co foam (Co-MOF@Co) by using a one-pot solvothermal strategy. As-prepared Co-MOF@Co can be directly served as a binder-free electrode for supercapacitor, which exhibits wonderful electrochemical performances, i.e. high specific capacitance (12783.0 mF cm-2or 1164.2 F g-1), exceptional cycling stability (90.5% retention over 10 000 cycles at 250 mA cm-2) with a loading of 10.98 mg cm-2. Meanwhile, an asymmetric supercapacitor of AC//Co-MOF@Co delivers a high ratability (87% retention upon ten-fold current density) and high energy density of 43.4 W h kg-1at the power density of 145.1 W kg-1.

13.
Biochem Soc Trans ; 48(5): 2283-2293, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32897293

RESUMEN

Butanol is an important chemical and potential fuel. For more than 100 years, acetone-butanol-ethanol (ABE) fermentation of Clostridium strains has been the most successful process for biological butanol production. In recent years, other microbes have been engineered to produce butanol as well, among which Escherichia coli was the best one. Considering the crude oil price fluctuation, minimizing the cost of butanol production is of highest priority for its industrial application. Therefore, using cheaper feedstocks instead of pure sugars is an important project. In this review, we summarized butanol production from different renewable resources, such as industrial and food waste, lignocellulosic biomass, syngas and other renewable resources. This review will present the current progress in this field and provide insights for further engineering efforts on renewable butanol production.


Asunto(s)
Biocombustibles , Butanoles/metabolismo , Ingeniería Metabólica/métodos , Eliminación de Residuos/métodos , Acetona/metabolismo , Biomasa , Biotecnología/métodos , Butanoles/química , Carbono/química , Clostridium/metabolismo , Electrones , Escherichia coli/metabolismo , Etanol/metabolismo , Fermentación , Alimentos , Hexosas/química , Hidrólisis , Modelos Biológicos , Pentosas/química , Petróleo , Sacarosa/química , Biología Sintética
14.
Angew Chem Int Ed Engl ; 59(24): 9478-9484, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32160364

RESUMEN

While halogenated nucleosides are used as common anticancer and antiviral drugs, naturally occurring halogenated nucleosides are rare. Adechlorin (ade) is a 2'-chloro nucleoside natural product first identified from Actinomadura sp. ATCC 39365. However, the installation of chlorine in the ade biosynthetic pathway remains elusive. Reported herein is a Fe2+ -α-ketoglutarate halogenase AdeV that can install a chlorine atom at the C2' position of 2'-deoxyadenosine monophosphate to afford 2'-chloro-2'-deoxyadenosine monophosphate. Furthermore, 2',3'-dideoxyadenosine-5'-monophosphate and 2'-deoxyinosine-5'-monophosphate can also be converted, albeit 20-fold and 2-fold, respectively, less efficiently relative to the conversion of 2'-deoxyadenosine monophosphate. AdeV represents the first example of a Fe2+ -α-ketoglutarate-dependent halogenase that converts nucleotides into chlorinated analogues.


Asunto(s)
Hidrolasas/metabolismo , Hierro/química , Ácidos Cetoglutáricos/metabolismo , Nucleótidos/metabolismo , Halogenación , Unión Proteica
15.
Metab Eng ; 55: 111-119, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31251983

RESUMEN

Microbial production of chemicals from lignocellulosic biomass is usually hampered by the low efficiency of the simultaneous utilization of C5 and C6 sugars. In nature, this is not a problem because different C5- and C6-utilizing microorganisms cooperate. Nevertheless, the diverse metabolism of microorganisms in nature makes it difficult to synchronize the utilization of biomass sugars toward a specific goal. To address this problem, we sought to develop a novel microbial consortium that can mimic nature's ability of efficiently use biomass sugars, while synchronizing this capability toward a useful goal to maximize the power of nature and engineering. Starting from a completely chromosomally engineered butanol hyper-producing Escherichia coli strain that we developed previously, we developed a consortium comprising two E. coli strains with nearly identical genomic backgrounds, thus creating a "Y-shaped" consortium with two different "heads" (using xylose or glucose) but the same "body" (from glycolysis to butanol production). This "Y-shaped" chimeric consortium achieved the most efficient butanol production from mixed sugars reported to date, by equally efficient and orthogonal consumption of C5 and C6 sugars. Furthermore, we show that the consortium structure is not only adaptive to environmental perturbations, but can be arbitrarily changed to simultaneously utilize C5/C6 sugars in different ratio. The design and development of such a "Y-shaped" chimeric consortium provides a novel approach to address the need for simultaneous efficient utilization of different biomass sugars for the production of useful chemicals.


Asunto(s)
Biomasa , Butanoles/metabolismo , Escherichia coli/crecimiento & desarrollo , Glucosa/metabolismo , Consorcios Microbianos , Xilosa/metabolismo , Escherichia coli/genética , Glucosa/genética , Xilosa/genética
16.
BMC Genet ; 20(1): 23, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819111

RESUMEN

BACKGROUND: Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat spike-layer uniformity related traits (SLURTs) were complex traits that directly affect yield potential and appearance. In this study, quantitative trait locus (QTL) for five SLURTs among inter-tillers were first documented using a recombinant inbred line (RIL) mapping population derived from a cross between Kenong9204 and Jing411 (represented by KJ-RILs). Genetic relationships between SLURTs and yield were characterized in detail. RESULTS: The trait phenotypic performances for the 188 KJ-RILs and their parents were evaluated in eight different environments. The genetic data included in a high-density genetic map derived from the Affymetrix 660 K SNP Array and the corresponding genotypes in each lines. Of 99 putative additive QTL 11 were stable across environments and 57 showed significant additive-by-environment interaction effects. These QTL individually explained 1.05-39.62% of the phenotypic variance, with log of odds (LOD) values ranging from 2.00 to 34.01. Genetic relationships between SLURTs and yield indicated that plants with slight uneven spike spatial distribution should be an ideotype for super high-yield in wheat. CONCLUSIONS: The present study will provide assistance in understanding the genetic relationships between SLURTs and yield potential. The 11 stable QTL for SLURTs identified herein may facilitate breeding new wheat varieties with scientifically reasonable spike-layer distribution by marker assisted selection.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Triticum/anatomía & histología , Triticum/genética , Cruzamiento , Fenotipo , Triticum/crecimiento & desarrollo
17.
Wei Sheng Yan Jiu ; 48(4): 664-667, 2019 Jul.
Artículo en Zh | MEDLINE | ID: mdl-31601356

RESUMEN

OBJECTIVE: To explore the average blood glucose construction method based on the multi-level Bayes model and evaluate the example application. METHODS: We generate simulated data with multi-level Bayes model. Three methods were utilized to construct the average blood glucose at the same time, then we compared the result with each other. A cohort study method was used to select 12321 participants aged over 45 y who without stroke in a community in Suzhou and was followed up from 2011 to 2018, of which 53. 7% were male. Mean blood glucose calculated by the most accurate complete Bayesian method was divided into six groups. The Cox regression model was used to analyze the effect of mean blood glucose on the incidence of fatal stroke. RESULTS: 1000 times of simulation result showed that the average mean blood glucose estimation calculated by the complete Bayesian method was 0. 278, the average of blood glucose estimation was 0. 527 mmol/L, and the average correlation coefficient with the actual blood glucose was r=0. 898. During the follow-up period, 153 fatal strokes occurred. Association was found between the mean blood glucose and the risk of fatal stroke(P<0. 05). The average risk of blood glucose over 140 mg/dL was 2. 304 times that of 90-99 mg/dL(HR=2. 304, 95%CI 1. 151-4. 613) after the adjustment of effects. CONCLUSION: The complete Bayesian multi-level latent variable model can accurately estimate the average blood glucose.


Asunto(s)
Teorema de Bayes , Glucemia , Estudios de Cohortes , Humanos , Incidencia
18.
Theor Appl Genet ; 131(12): 2677-2698, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30255337

RESUMEN

KEY MESSAGE: QTL for a wheat ideotype root system and its plasticity to nitrogen deficiency were characterized. Root system architecture-related traits (RRTs) and their plasticity to nitrogen availability are important for nitrogen acquisition and yield formation in wheat (Triticum aestivum L.). In this study, quantitative trait loci (QTL) analysis was conducted under different nitrogen conditions, using the seedlings of 188 recombinant inbred lines derived from a cross between Kenong 9204 and Jing 411. Fifty-three QTL for seven RRTs and fourteen QTL for the plasticity of these RRTs to nitrogen deficiency were detected. Thirty of these QTL were mapped in nine clusters on chromosomes 2B, 2D, 3A, 3D, 6B, 6D, 7A and 7B. Six of these nine clusters were also colocated with loci for nitrogen use efficiency (NUE)-related traits (NRTs). Among them, three QTL clusters (C2B, C6D and C7B) were highlighted, considering that they individually harbored three stable robust QTL (i.e., QMrl-2B.1, QdRs-6D and QMrl-7B). C2B and C7B stably contributed to the optimal root system, and C6D greatly affected the plasticity of RRTs in response to nitrogen deficiency. However, strong artificial selection was only observed for C7B in 574 derivatives of Kenong 9204. Covariance analysis identified QMrl-7B as the major contributor in C7B that affected the investigated NRTs in mature plants. Phenotypic analysis indicated that thousand kernel weight might represent a "concomitant" above-ground trait of the "hidden" RRTs controlled by C7B, which are used for breeding selection. Dissecting these QTL regions with potential breeding value will ultimately facilitate the selection of donor lines with both high yield and NUE in wheat breeding programs.


Asunto(s)
Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Triticum/genética , Fenotipo , Fitomejoramiento , Raíces de Plantas/genética , Plantones/genética , Plantones/metabolismo , Triticum/metabolismo
19.
World J Microbiol Biotechnol ; 34(11): 171, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413889

RESUMEN

Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/fisiología , Riboswitch/fisiología , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Péptidos/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Genes Bacterianos/genética , Genes Bacterianos/fisiología , Glicina/metabolismo , Ligandos , Pirimidinonas/metabolismo , Pirroles/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , Riboswitch/genética
20.
Metab Eng ; 44: 284-292, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29102594

RESUMEN

Biotechnological production of butanol in heterologous hosts has recently attracted many interests. Of the heterologous hosts investigated to date, engineered Escherichia coli has shown a superior butanol yield than the natural butanol-producing clostridial strains. However, all reported butanol-producing E. coli strains contain vectors and inducible promoters, which means antibiotics and inducers are required in the fermentation. The aim of this study was to develop a completely chromosomally engineered E. coli strain capable of producing butanol efficiently in the absence of vectors, antibiotics, and inducers. The challenges are the expression strength of chromosomally engineered genes under constitutive promoters is much weaker than the vector engineered genes under inducible promoters. To address these challenges, the butanol pathway was engineered into the chromosome in the first place, then the host and the butanol pathway was iteratively engineered through rational and non-rational strategies to develop an efficient butanol producer where the heterologous butanol pathway fits the host well. Finally, a systematically chromosomally engineered E. coli strain EB243, in which 33 native genes were deleted and 5 heterologous genes were introduced, was developed. Strain EB243 could produce 20g/L butanol with a yield of 34% (w/w, 83% of theoretical yield) in batch fermentation without any antibiotics and inducers, thus showed great potential for industrial application. This work also demonstrated a procedure on how to integrate the existing knowledge to engineer a strain with industrial application potential.


Asunto(s)
Butanoles/metabolismo , Cromosomas Bacterianos/genética , Escherichia coli , Genes Bacterianos , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Escherichia coli/genética , Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA