Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(4): 709-721, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735615

RESUMEN

The fetal-to-adult hemoglobin switch is regulated in a developmental stage-specific manner and reactivation of fetal hemoglobin (HbF) has therapeutic implications for treatment of ß-thalassemia and sickle cell anemia, two major global health problems. Although significant progress has been made in our understanding of the molecular mechanism of the fetal-to-adult hemoglobin switch, the mechanism of epigenetic regulation of HbF silencing remains to be fully defined. Here, we performed whole-genome bisulfite sequencing and RNA sequencing analysis of the bone marrow-derived GYPA+ erythroid cells from ß-thalassemia-affected individuals with widely varying levels of HbF groups (HbF ≥ 95th percentile or HbF ≤ 5th percentile) to screen epigenetic modulators of HbF and phenotypic diversity of ß-thalassemia. We identified an ETS2 repressor factor encoded by ERF, whose promoter hypermethylation and mRNA downregulation are associated with high HbF levels in ß-thalassemia. We further observed that hypermethylation of the ERF promoter mediated by enrichment of DNMT3A leads to demethylation of γ-globin genes and attenuation of binding of ERF on the HBG promoter and eventually re-activation of HbF in ß-thalassemia. We demonstrated that ERF depletion markedly increased HbF production in human CD34+ erythroid progenitor cells, HUDEP-2 cell lines, and transplanted NCG-Kit-V831M mice. ERF represses γ-globin expression by directly binding to two consensus motifs regulating γ-globin gene expression. Importantly, ERF depletion did not affect maturation of erythroid cells. Identification of alterations in DNA methylation of ERF as a modulator of HbF synthesis opens up therapeutic targets for ß-hemoglobinopathies.


Asunto(s)
Epigénesis Genética , Perfilación de la Expresión Génica , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Talasemia beta/genética , gamma-Globinas/genética , Animales , Antígenos CD34/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Niño , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Femenino , Hemoglobina Fetal/genética , Edición Génica , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Sulfitos , Secuenciación Completa del Genoma , Talasemia beta/patología
2.
BMC Med ; 21(1): 491, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082312

RESUMEN

BACKGROUND: Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS: We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS: We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION: Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.


Asunto(s)
Esquizofrenia , Gemelos Monocigóticos , Humanos , Teorema de Bayes , Alelos , Gemelos Monocigóticos/genética , Células HEK293 , Metilación de ADN/genética , Esquizofrenia/genética , Predisposición Genética a la Enfermedad , Epigénesis Genética/genética
3.
Mol Psychiatry ; 26(8): 4511-4528, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32015466

RESUMEN

Schizophrenia is a complex genetic disorder, the non-Mendelian features of which are likely complicated by epigenetic factors yet to be elucidated. Here, we performed RNA sequencing of peripheral blood RNA from monozygotic twins discordant for schizophrenia, and identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA, AC006129.1) that participates in the inflammatory response by enhancing SOCS3 and CASP1 expression in schizophrenia patients and further validated this finding in AC006129.1-overexpressing mice showing schizophrenia-related abnormal behaviors. We find that AC006129.1 binds to the promoter region of the transcriptional repressor Capicua (CIC), facilitates the interactions of DNA methyltransferases with the CIC promoter, and promotes DNA methylation-mediated CIC downregulation, thereby ameliorating CIC-induced SOCS3 and CASP1 repression. Derepression of SOCS3 enhances the anti-inflammatory response by inhibiting JAK/STAT-signaling activation. Our findings reveal an epigenetic mechanism with etiological and therapeutic implications for schizophrenia.


Asunto(s)
Metilación de ADN , ARN Largo no Codificante , Esquizofrenia , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Regulación hacia Abajo , Humanos , Inflamación , Ratones , ARN Largo no Codificante/genética , Esquizofrenia/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
4.
Mol Psychiatry ; 26(11): 6630-6642, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963283

RESUMEN

The non-Mendelian features of phenotypic variations within monozygotic twins are likely complicated by environmental modifiers of genetic effects that have yet to be elucidated. Here, we performed methylome and genome analyses of blood DNA from psychiatric disorder-discordant monozygotic twins to study how allele-specific methylation (ASM) mediates phenotypic variations. We identified that thousands of genetic variants with ASM imbalances exhibit phenotypic variation-associated switching at regulatory loci. These ASMs have plausible causal associations with psychiatric disorders through effects on interactions between transcription factors, DNA methylations, and other epigenomic markers and then contribute to dysregulated gene expression, which eventually increases disease susceptibility. Moreover, we also experimentally validated the model that the rs4854158 alternative C allele at an ASM switching regulatory locus of EIPR1 encoding endosome-associated recycling protein-interacting protein 1, is associated with demethylation and higher RNA expression and shows lower TF binding affinities in unaffected controls. An epigenetic ASM switching induces C allele hypermethylation and then recruits repressive Polycomb repressive complex 2 (PRC2), reinforces trimethylation of lysine 27 on histone 3 and inhibits its transcriptional activity, thus leading to downregulation of EIPR1 in schizophrenia. Moreover, disruption of rs4854158 induces gain of EIPR1 function and promotes neural development and vesicle trafficking. Our study provides a powerful framework for identifying regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic variants in mediating psychiatric disorder susceptibility.


Asunto(s)
Metilación de ADN , Proteínas Nucleares/genética , Esquizofrenia , Alelos , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos , Regiones Promotoras Genéticas , Esquizofrenia/genética , Gemelos Monocigóticos/genética
5.
Br J Haematol ; 193(2): 401-405, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368182

RESUMEN

Krüppel-like factors (KLFs) are a highly conserved family of transcription factors. We analysed expression profile data of KLFs and identified KLF6 as a new potential regulator of erythropoiesis. Knocking down the expression of KLF6 significantly raised γ-globin mRNA and protein levels in the erythroid cell line HUDEP-2 and haematopoietic progenitor (CD34+ ) cells. We found that overexpression of microRNA (miR)-2355-5p in HUDEP-2 and CD34+ cells correlated with increased γ-globin synthesis by suppressing expression of KLF6. Our discovery that the interaction between miR-2355-5p and KLF6 affects the expression of γ-globin may provide more information for the clinical management of ß-thalassaemia patients.


Asunto(s)
Células Eritroides/metabolismo , Hemoglobina Fetal/genética , MicroARNs/genética , gamma-Globinas/genética , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Eritropoyesis/genética , Humanos , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción/genética , Talasemia beta/genética , Talasemia beta/terapia
6.
Am J Hum Genet ; 101(1): 130-138, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28669403

RESUMEN

A delayed fetal-to-adult hemoglobin (Hb) switch ameliorates the severity of ß-thalassemia and sickle cell disease. The molecular mechanism underlying the epigenetic dysregulation of the switch is unclear. To explore the potential cis-variants responsible for the Hb switching, we systematically analyzed an 80-kb region spanning the ß-globin cluster using capture-based next-generation sequencing of 1142 Chinese ß-thalassemia persons and identified 31 fetal hemoglobin (HbF)-associated haplotypes of the selected 28 tag regulatory single-nucleotide polymorphisms (rSNPs) in seven linkage disequilibrium (LD) blocks. A Ly1 antibody reactive (LYAR)-binding motif disruptive rSNP rs368698783 (G/A) from LD block 5 in the proximal promoter of hemoglobin subunit gamma 1 (HBG1) was found to be a significant predictor for ß-thalassemia clinical severity by epigenetic-mediated variant-dependent HbF elevation. We found this rSNP accounted for 41.6% of ß-hemoglobinopathy individuals as an ameliorating factor in a total of 2,738 individuals from southern China and Thailand. We uncovered that the minor allele of the rSNP triggers the attenuation of LYAR and two repressive epigenetic regulators DNA methyltransferase 3 alpha (DNMT3A) and protein arginine methyltransferase 5 (PRMT5) from the HBG promoters, mediating allele-biased γ-globin elevation by facilitating demethylation of HBG core promoter CpG sites in erythroid progenitor cells from ß-thalassemia persons. The present study demonstrates that this common rSNP in the proximal Aγ-promoter is a major genetic modifier capable of ameliorating the severity of thalassemia major through the epigenetic-mediated regulation of the delayed fetal-to-adult Hb switch and provides potential targets for the treatment of ß-hemoglobinopathy.


Asunto(s)
Epigénesis Genética , Hemoglobina Fetal/genética , Variación Genética , Talasemia beta/genética , Secuencia de Bases , Células Cultivadas , Preescolar , Estudios de Cohortes , Femenino , Hemoglobina Fetal/metabolismo , Humanos , Lactante , Células K562 , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas , Modelos de Riesgos Proporcionales , Transcripción Genética , Activación Transcripcional/genética
7.
Hum Genomics ; 10(1): 31, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27663196

RESUMEN

BACKGROUND: The change in epigenetic signatures, in particular DNA methylation, has been proposed as risk markers for various age-related diseases. However, the course of variation in methylation levels with age, the difference in methylation between genders, and methylation-disease association at the whole genome level is unclear. In the present study, genome-wide methylation levels in DNA extracted from peripheral blood for 2116 healthy Chinese in the 2-97 age range and 280 autistic trios were examined using the fluorescence polarization-based genome-wide DNA methylation quantification method developed by us. RESULTS: Genome-wide or global DNA methylation levels proceeded through multiple phases of variation with age, consisting of a steady increase from age 2 to 25 (r = 0.382) and another rise from age 41 to 55 to reach a peak level of ~80 % (r = 0.265), followed by a sharp decrease to ~40 % in the mid-1970s (age 56 to 75; r = -0.395) and leveling off thereafter. Significant gender effect in methylation levels was observed only for the 41-55 age group in which methylation in females was significantly higher than in males (p = 0.010). In addition, global methylation level was significantly higher in autistic children than in age-matched healthy children (p < 0.001). CONCLUSIONS: The multiphasic nature of changes in global methylation levels with age was delineated, and investigation into the factors underlying this profile will be essential to a proper understanding of the aging process. Furthermore, this first report of global hypermethylation in autistic children also illustrates the importance of age-matched controls in characterization of disease-associated variations in DNA methylation.

8.
Genome ; 58(7): 357-63, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26334496

RESUMEN

To quantify the methylation at individual CpG dinucleotide sites in large biological or clinical samples, we developed a bisulfite conversion-specific one-label extension (BS-OLE) method using visualization by fluorescence polarization (FP) measurement of methylation at single CpG sites in small amounts of genomic DNA. Genomic DNA was treated with sodium bisulfite to convert unmethylated cytosine to uracil leaving 5-methylcytosine unaltered, and BS-PCR was used to generate DNA template containing target CpG sites. BS-OLE uses a BS-primer hybridized immediately upstream of the target CpG site being examined and then fluorescent dCTP or dUTP is incorporated into the methylated (CpG) or unmethylated (TpG) form of the target site through single-nucleotide chain extension, yielding an FP ratio between the fluorescent dCTP- and dUTP-incorporated products as a measure of methylation. This provides stable estimates of the methylation level of human genomic DNA and of a 250-bp plasmid DNA segment containing a single TCGA TaqI cleavage site, in accordance with the results of a combined bisulfite restriction analysis method. We used BS-OLE to measure dose-dependent DNA hypomethylation in human embryonic kidney 293T cells treated with the DNA methyltransferase inhibitor 5-aza-dC. BS-OLE is well suited to high-throughput multi-sample applications in biological and medical studies.


Asunto(s)
Islas de CpG , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Línea Celular Tumoral , Fluorescencia , Células HEK293 , Humanos
9.
Blood Cells Mol Dis ; 53(4): 241-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24958328

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked incompletely dominant enzyme deficiency that results from G6PD gene mutations. Women heterozygous for G6PD mutations exhibit variation in the loss of enzyme activity but the cause of this phenotypic variation is unclear. We determined DNA methylation and X-inactivation patterns in 71 G6PD-deficient female heterozygotes and 68 G6PD non-deficient controls with the same missense mutations (G6PD Canton c.1376G>T or Kaiping c.1388G>A) to correlate determinants with variable phenotypes. Specific CpG methylations within the G6PD promoter were significantly higher in G6PD-deficient heterozygotes than in controls. Preferential X-inactivation of the G6PD wild-type allele was determined in heterozygotes. The incidence of preferential X-inactivation was 86.2% in the deficient heterozygote group and 31.7% in the non-deficient heterozygote group. A significant negative correlation was observed between X-inactivation ratios of the wild-type allele and G6PD/6-phosphogluconate dehydrogenase (6PGD) ratios in heterozygous G6PD Canton (r=-0.657, p<0.001) or Kaiping (r=-0.668, p<0.001). Multivariate logistic regression indicated that heterozygotes with hypermethylation of specific CpG sites in the G6PD promoter and preferential X-inactivation of the wild-type allele were at risk of enzyme deficiency.


Asunto(s)
Metilación de ADN , Variación Genética , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Mutación Missense , Inactivación del Cromosoma X , Adulto , Secuencia de Bases , Islas de CpG , Femenino , Genotipo , Deficiencia de Glucosafosfato Deshidrogenasa/patología , Heterocigoto , Humanos , Modelos Logísticos , Anotación de Secuencia Molecular , Fenotipo , Fosfogluconato Deshidrogenasa/genética , Regiones Promotoras Genéticas , Factores de Riesgo
10.
Appl Microbiol Biotechnol ; 98(9): 4095-105, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24449341

RESUMEN

Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis.


Asunto(s)
Farmacorresistencia Bacteriana , Polarización de Fluorescencia/métodos , Técnicas de Genotipaje/métodos , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa/métodos , Antituberculosos/farmacología , Genes Bacterianos , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
11.
Clin Epigenetics ; 16(1): 12, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218889

RESUMEN

The mechanism that drives the switch from fetal to adult hemoglobin (Hb) provides a therapeutic target for ß-thalassemia. We have previously identified that hypermethylation of transcription factor ERF promoter reactivated γ-globin expression. To uncover the mechanism underlying the hypermethylation of ERF promoter, we performed RNA sequencing in ß0/ß0-thalassemia patients and identified an upregulated long noncoding RNA (RP11-196G18.23) associated with HbF production. RP11-196G18.23 bound to the ERF promoter and recruited DNA methyltransferase 3A to promote DNA hypermethylation-mediated ERF downregulation, thereby ameliorating ERF-induced γ-globin inactivation. The identification of RP11-196G18.23 provides an epigenetic mechanism for the reactivation of fetal γ-globin expression for ß-hemoglobinopathies.


Asunto(s)
ARN Largo no Codificante , Talasemia beta , Adulto , Humanos , Talasemia beta/genética , Talasemia beta/terapia , gamma-Globinas/genética , gamma-Globinas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hemoglobina Fetal/genética , Metilación de ADN , Proteínas Represoras/genética
12.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757814

RESUMEN

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte-specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Ratones , Animales , Astrocitos/metabolismo , Depresión/genética , Transmisión Sináptica , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Antidepresivos , Glucosa , Acetilglucosamina/metabolismo
13.
Appl Microbiol Biotechnol ; 93(2): 797-805, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22113559

RESUMEN

Type B influenza virus is one of the major epidemic strains and responsible for considerable mortality and morbidity. Rapidly and accurately identifying different influenza B virus lineages, i.e., B/Yamagata (B/Y) and B/Victoria (B/V), is desirable during the flu season. However, the available rapid techniques lack sensitivity, and the usual methods for identifying influenza viruses require expansion of virus in tissue culture or embryonated hen's eggs. Thus, we developed several sets of primer pairs that were able to detect and distinguish B/Y and B/V in a single real-time PCR assay. Used in conjunction with two sets of specific primers that exhibited purine at 3' end of at least one primer targeting on HA gene of B/Y and B/V lineages allows us to accurately identify approximately 10(2) copies per microliter for B/Y and B/V with intra- and inter-assay coefficient of variation (CV) <4%. When it was used to test 17,765 throat swab specimens obtained in the 2006-2010 influenza surveillance season, this method was comparable to hemagglutination inhibition assay in detection, typing and subtyping of influenza viruses with 100% true-negative (specificity) and 100% true-positive (sensitivity). Taken together, this method provides sensitive and robust tool for routine diagnosis and on-time epidemiological examination for WHO decisions on vaccine composition.


Asunto(s)
Virus de la Influenza B/clasificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/diagnóstico , Gripe Humana/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virología/métodos , Cartilla de ADN/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza B/genética , Faringe/virología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Schizophrenia (Heidelb) ; 8(1): 11, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232977

RESUMEN

Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia. Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together, our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic implications for schizophrenia.

15.
Sci Adv ; 8(33): eabn7357, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984881

RESUMEN

Schizophrenia is a polygenetic disease, the heterogeneity of which is likely complicated by epigenetic modifications yet to be elucidated. Here, we performed transcriptomic analysis of peripheral blood RNA from monozygotic twins discordant for schizophrenia and identified a schizophrenia-associated down-regulated microRNA, miR-501-3p. We showed that the loss of miR-501-3p in germline knockout (KO) male mice resulted in dendritic structure defects, glutamatergic transmission enhancement, and sociability, memory, and sensorimotor gating disruptions, which were attenuated when miR-501 expression was conditionally restored in the nervous system. Combining the results of proteomic analyses with the known genes linked to schizophrenia revealed that metabotropic glutamate receptor 5 (mGluR5) was one of the miR-501-3p targets and was elevated in vivo upon loss of miR-501. Treatment with the mGluR5 negative allosteric modulator 3-2((-methyl-4-thiazolyl) ethynyl) pyridine or the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid ameliorated the deficits observed in Mir501-KO mice. The epigenetic and pathophysiological mechanism that links miR-501-3p to the modulation of glutamatergic transmission provides etiological implications for schizophrenia.


Asunto(s)
MicroARNs , Receptor del Glutamato Metabotropico 5 , Esquizofrenia , Animales , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Proteómica , Receptor del Glutamato Metabotropico 5/genética , Receptor del Glutamato Metabotropico 5/metabolismo , Esquizofrenia/genética
16.
BMC Genomics ; 12: 564, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-22087792

RESUMEN

BACKGROUND: To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. RESULTS: Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. CONCLUSIONS: AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.


Asunto(s)
Elementos Alu , Variación Genética , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Humanos , Masculino
17.
Schizophr Bull ; 47(3): 803-811, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33269797

RESUMEN

Schizophrenia is a serious neuropsychiatric disorder with abnormal age-related neurodevelopmental (or neurodegenerative) trajectories. Although an accelerated aging hypothesis of schizophrenia has been proposed, the quantitative study of the disruption of the physiological trajectory caused by schizophrenia is inconclusive. In this study, we employed 3 "epigenetic clock" methods to quantify the epigenetic age of a large sample size of whole blood (1069 samples from patients with schizophrenia vs 1264 samples from unaffected controls) and brain tissues (500 samples from patients with schizophrenia vs 711 samples from unaffected controls). We observed significant positive correlations between epigenetic age and chronological age in both blood and brain tissues from unaffected controls and patients with schizophrenia, as estimated by 3 methods. Furthermore, we observed that epigenetic age acceleration was significantly delayed in schizophrenia from the whole blood samples (aged 20-90 years) and brain frontal cortex tissues (aged 20-39 years). Intriguingly, the genes regulated by the epigenetic clock also contained schizophrenia-associated genes, displaying differential expression and methylation in patients with schizophrenia and involving in the regulation of cell activation and development. These findings were further supported by the dysregulated leukocyte composition in patients with schizophrenia. Our study presents quantitative evidence for a neurodevelopmental model of schizophrenia from the perspective of a skewed "epigenetic clock." Moreover, landmark changes in an easily accessible biological sample, blood, reveal the value of these epigenetic clock genes as peripheral biomarkers for schizophrenia.


Asunto(s)
Envejecimiento Prematuro/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Esquizofrenia/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
NPJ Schizophr ; 7(1): 27, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021155

RESUMEN

Genome-wide association studies (GWAS) have accelerated the discovery of numerous genetic variants associated with schizophrenia. However, most risk variants show a small effect size (odds ratio (OR) <1.2), suggesting that more functional risk variants remain to be identified. Here, we employed region-based multi-marker analysis of genomic annotation (MAGMA) to identify additional risk loci containing variants with large OR value from Psychiatry Genomics Consortium (PGC2) schizophrenia GWAS data and then employed summary-data-based mendelian randomization (SMR) to prioritize schizophrenia susceptibility genes. The top-ranked susceptibility gene ATP5MD, encoding an ATP synthase membrane subunit, is observed to be downregulated in schizophrenia by the risk allele of CNNM2-rs1926032 in the schizophrenia-associated 10q24.32 locus. The Atp5md knockout (KO) in mice was associated with abnormal startle reflex and gait, and ATP5MD knockdown (KD) in human induced pluripotent stem cell-derived neurons disrupted the neural development and mitochondrial respiration and ATP production. Moreover, CNNM2-rs1926032 KO could induce downregulation of ATP5MD expression and disruptions of mitochondrial respiration and ATP production. This study constitutes an important mechanistic component that links schizophrenia-associated CNNM2 regions to disruption in energy adenosine system modulation and neuronal function by long-distance chromatin domain downregulation of ATP5MD. This pathogenic mechanism provides therapeutic implications for schizophrenia.

19.
Clin Epigenetics ; 12(1): 187, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272312

RESUMEN

BACKGROUND: Reactivation of fetal hemoglobin (HbF, α2γ2) holds a therapeutic target for ß-thalassemia and sickle cell disease. Although many HbF regulators have been identified, the methylation patterns in ß-globin cluster driving the fetal-to-adult hemoglobin switch remains to be determined. RESULTS: Here, we evaluated DNA methylation patterns of the ß-globin cluster from peripheral bloods of 105 ß0/ß0 thalassemia patients and 44 normal controls. We also recruited 15 bone marrows and 4 cord blood samples for further evaluation. We identified that the CpG sites in the locus control region (LCR) DNase I hypersensitive site 4 and 3 (HS4-3) regions, and γ- and ß-globin promoters displayed hypomethylation in ß0/ß0-thalassemia patients, especially for the patients with high HbF level, as compared with normal controls. Furthermore, hypomethylations in most of CpG sites of the HS4-3 core regions were also observed in bone marrows (BM) of ß0/ß0-patients compared with normal controls; and methylation level of γ-globin promoter -50 and + 17 CpG sites showed lower methylation level in patients with high HbF level compared with those with low HbF level and a negative correlation with HbF level among ß0-thalassemia patients. Finally, γ-globin promoter + 17 and + 50 CpG sites also displayed significant hypomethylation in cord blood (CB) tissues compared with BM tissues from normal controls. CONCLUSIONS: Our findings revealed methylation patterns in ß-globin cluster associated with ß0 thalassemia disease and γ-globin expression, contributed to understand the epigenetic modification in ß0 thalassemia patients and provided candidate targets for the therapies of ß-hemoglobinopathies.


Asunto(s)
Hemoglobina Fetal/biosíntesis , Globinas beta/genética , Talasemia beta/sangre , Talasemia beta/genética , Adolescente , Adulto , Médula Ósea/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Islas de CpG/genética , Metilación de ADN , Epigénesis Genética , Sangre Fetal/metabolismo , Hemoglobina Fetal/análisis , Hemoglobina Fetal/genética , Humanos , Regiones Promotoras Genéticas , Globinas beta/química , Globinas beta/metabolismo , Talasemia beta/terapia , gamma-Globinas/genética , gamma-Globinas/metabolismo
20.
Biochem Soc Trans ; 37(Pt 6): 1415-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19909288

RESUMEN

The SCZ (schizophrenia)-associated GABA(A) receptor (gamma-aminobutyric acid type A receptor) beta(2) subunit gene GABRB2 was recently associated with BPD (bipolar disorder). Although weaker than its association with SCZ, significant association of GABRB2 with BPD was found in both German and Chinese, especially for the haplotypes rs1816071-rs187269 and rs1816072-rs187269 for which the M-M variants showed higher frequency in disease than the control. Significant genotype-dependent reduction in GABRB2 expression was shown for BPD, but to a lesser extent than that for SCZ. Temporal effects on GABRB2 expression were observed. Moreover, for the homozygous major genotypes of rs1816071, rs1816072 and rs187269, expression increased with time in CON but decreased in SCZ and BPD. The genotypes of these three SNPs (single nucleotide polymorphisms) were further correlated with antipsychotics dosage in SCZ cohorts. The findings highlight the importance of GABRB2 in neuropsychiatric disease aetiology, with respect to haplotype association, as well as reduction of and temporal effects on gene expression in both SCZ and BPD, but to a lesser extent in the latter, supporting the suggestion that functional psychosis can be conceptualized as a continuous spectrum of clinical phenotypes rather than as distinct categories.


Asunto(s)
Trastorno Bipolar/genética , Expresión Génica , Receptores de GABA-A/genética , Esquizofrenia/genética , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple , Trastornos Psicóticos/genética , Receptores de GABA-A/metabolismo , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA