RESUMEN
We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.
Asunto(s)
Linaje de la Célula , Modelos Biológicos , Teratoma/patología , Animales , Células HEK293 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Teratoma/genéticaRESUMEN
The metabolic pathways fueling tumor growth have been well characterized, but the specific impact of transforming events on network topology and enzyme essentiality remains poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway (PPP). This high-throughput methodology enabled systems-level interrogation of metabolic gene dispensability, interactions, and compensation across multiple cell types. The metabolic impact of specific combinatorial knockouts was validated using 13C and 2H isotope tracing, and these assays together revealed key nodes controlling redox homeostasis along the KEAP-NRF2 signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP genes mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate how our integrated framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation of metabolic network alterations and guide precision targeting of metabolic vulnerabilities based on tumor genetics.
Asunto(s)
Sistemas CRISPR-Cas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Redes y Vías Metabólicas , Factor 2 Relacionado con NF-E2/metabolismo , Transcriptoma , Glucólisis , Células HeLa , Homeostasis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Vía de Pentosa Fosfato , Transducción de SeñalRESUMEN
Based on the typical similar repeat units (abcdefg)n of α-helical structure, the peptide H was designed to self-assemble into an organohydrogel in response to pH. Depending on the different pH, the proportions of secondary structure, microstructure, and mechanical properties of the gel were investigated. Circular dichroism (CD) and Fourier transform infrared (FT-IR) showed that the proportion of α-helical structure gradually increased to become dominant with the increase of pH. Combining transmission electron microscopy (TEM) and atomic force microscopy (AFM), it was found that the increase of the ordered α-helix structure promoted fiber formation. The further increase in pH changed the intermolecular forces, resulting in an increase in the α-helix content and the enhancement of helix-helix interaction, causing the gel fibers to converge into thicker and more dense ones. The temperature test showed the stable rheological properties of the organohydrogel between 20-60 °C. Drug release and cytotoxicity showed that the DOX-loaded organohydrogel could have a better release in an acidic environment, indicating its potential application as a drug local delivery carrier.
RESUMEN
Self-assembled peptide-based hydrogels have shown great potential in bio-related applications due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization. Herein, the structure and characteristics of hydrogels and the mechanism of action of several regular secondary structures during gelation are investigated. The factors influencing the formation of peptide hydrogels, especially the pH responsiveness and salt ion induction are analyzed and summarized. Finally, the biomedical applications of peptide hydrogels, such as bone tissue engineering, cell culture, antigen presentation, antibacterial materials, and drug delivery are reviewed.
Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Sistemas de Liberación de Medicamentos , Antibacterianos/química , Técnicas de Cultivo de CélulaRESUMEN
We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies.
Asunto(s)
Mapeo Cromosómico/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas Químicas Combinatorias , Epistasis Genética/genética , Proteínas de Neoplasias/genética , Células A549 , Línea Celular Tumoral , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
BRCA2 is an important tumor suppressor gene that plays a critical role in preserving the stability of cellular genetic information, participating in DNA repair by engaging in binding interactions with RAD51 proteins. However, the lack of structural data on BRCA2 and RAD51 makes the study of their interaction mechanism still a great challenge. We characterize the structure of the BRC8-RAD51 complex using ZDOCK protein docking software and identify the potential non-conserved active site of BRC8 via virtual alanine scanning, utilizing the obtained results to synthesize BRC8, its six analogous peptides (BRC8-1 to BRC8-6), and critical peptide fragment of RAD51 (RAD51(231-260)) by Fmoc solid-phase synthesis. The analogous peptides are found to exhibit a secondary structure significantly different from that of BRC8 by circular dichroism spectroscopy, which indicates that mutation sites determined by computer-aided simulation correspond to key amino acid residues substantially affecting polypeptide structure. On the other hand, the secondary structure of RAD51(231-260) was also considerably influenced by its interaction with BRC8 and analogs, e.g., the fraction of the α-helical structure in RAD51(231-260) increased to 23.6, 15.1, and 13.5% upon interaction with BRC8-1, BRC8-3, and BRC8-6, respectively. The results show that the properties of C-terminal amino acid residues significantly influence peptide-peptide interactions, in agreement with the results of virtual alanine scanning. Therefore, computer-aided simulation was confirmed to be a technique that is useful for narrowing down the range of sites responsible for interactions between peptides or proteins, and provides new inspirations for the design of peptides with strong interactions.
Asunto(s)
Proteína BRCA2/química , Diseño de Fármacos , Fragmentos de Péptidos/química , Recombinasa Rad51/química , Proteína BRCA2/metabolismo , Humanos , Conformación Proteica , Recombinasa Rad51/metabolismoRESUMEN
In this work, cobalt magnetic nanoporous carbon (Co-MNPC) is employed as an alternative to intensively used Fe3O4 cores for the preparation of magnetic molecularly imprinted polymers (Co-MNPC@MIPs) for the first time. Co-MNPC was prepared by one-step carbonization of Zeolitic Imidazolate Framework-67 (ZIF-67). Compared with the traditional Fe3O4 core, Co-MNPC showed a high specific surface area and large pore volumes. The prepared adsorbents, which could be rapidly collected from a matrix by external magnetic field, were applied for solid-phase extraction of phthalate plasticizers in edible oil. Several requisite extraction parameters were optimized to achieve desired extraction performance. Under the optimum extraction conditions, Co-MNPC@MIPs displayed better performance than commercialized columns. An analysis method based on Co-MNPC@MIPs coupled with gas chromatography (GC) was established. The linear range was 1-150 µg mL-1, and the detection limit range was 0.010-0.025 µg mL-1. The spiked recovery rate of the five phthalate plasticizers was 81.6-102.2%, with a relative standard deviation of 3.25-12.02%. Finally, the proposed method showed good feasibility for phthalate plasticizer extraction from edible oil.
Asunto(s)
Carbono/química , Cobalto/química , Magnetismo , Impresión Molecular , Nanopartículas/química , Aceites de Plantas/química , Plastificantes/química , Polímeros/química , Extracción en Fase Sólida/métodos , Adsorción , Cromatografía de Gases/métodos , Límite de Detección , Reproducibilidad de los ResultadosRESUMEN
Zinc finger protein ZNF191(243-368), the zinc finger region of ZNF191, is potentially associated with cell proliferation in hepatocellular carninoma. A His-tag expression system was used to express and purify proteins with mutations in the zinc finger 3 of ZNF191(243-368) for analysis of protein properties, structure, and functions. The purification of the His-tag fusion proteins was simpler and faster than that of the ZNF191(243-368) inclusion bodies. The properties and structures of the His-tag fusion mutant proteins were investigated using spectrographic techniques and DNA hydrolysis experiment. The His6-tag system could be used to express ZNF191(243-368). The presence of the His6-tag at the N-terminus of ZNF191(243-368) did not evidently affect its properties and structure. However, the site-directed mutations in zinc finger 3 affected the structure of the protein. The DNA hydrolase activity of His6-ZF-F3/H4 suggested that four histidines in zinc finger 3 might form a structure similar to that of the active center in a hydrolase. This work reports that continuous histidines need to form a certain structure for specific functions, and provides new insights into the design of an artificial nuclease.
Asunto(s)
Factores de Transcripción de Tipo Kruppel , Mutación , Proteínas Recombinantes de Fusión , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificaciónRESUMEN
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Asunto(s)
Materiales Biocompatibles , Hidrogeles , Péptidos , Humanos , Materiales Biocompatibles/química , Hidrogeles/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Electricidad Estática , AnimalesRESUMEN
Aspergillus oryzae ß-D-galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.
Asunto(s)
Aspergillus oryzae , Enzimas Inmovilizadas , Glutaral , Dióxido de Silicio , beta-Galactosidasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Aspergillus oryzae/enzimología , Dióxido de Silicio/química , Glutaral/química , Dioxoles/química , Dioxoles/farmacología , Nanopartículas de Magnetita/química , Porosidad , Temperatura , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , FuranosRESUMEN
A series of Andricin B derivatives were designed and synthesized using fatty acid modification at N-terminus of the antimicrobial peptides. The hydrophobicity of Andricin B was altered through fatty acid modification, and the bioactivity was investigated. The interaction between Andricin B and its derivatives with DNA was measured using multi-spectroscopy. Spectroscopic analysis revealed that Andricin B and its derivatives can interact with ct-DNA and G-quadruplexes DNA, and the interaction related with the length of fatty acid chain. Antimicrobial activity tests showed a significant increase using peptides with 8-10 carbons fatty acid chain. C10-Andricin B exhibited the highest antimicrobial activity, with up to a 16-fold enhancement compared to the original peptide Andricin B. Meanwhile, the protease hydrolysis stability test showed that fatty acid modification improved the stability of Andricin B against protease. Scanning electron microscopy results distinctly showed that C8-Andricin B could rupture the cell wall of bacteria. All results indicated that fatty acid modification peptides are an effective strategy for enhancing activity and stability of antimicrobial peptides. This research provides valuable insights for further research on antimicrobial peptides.
RESUMEN
Retinal segmentation is a crucial step in the early warning of human health conditions. However, retinal blood vessels possess complex curvature, irregular distribution, and contain multi-scale fine structures, which make the limited receptive field of regular convolution challenging to process their vascular details efficiently. Additionally, the encoder-decoder based network leads to irreversible spatial information loss because of multiple downsampling, resulting in over-segmentation and missed segmentation of the vessels. For this reason, we develop a high-resolution network based on Deformable Convolution v3, called HRD-Net. By constructing a high-resolution representation, the network allows special attention to be paid to the details of tiny blood vessels. The proposed feature enhancement cascade module based on Deformable Convolution v3 can flexibly adapt and capture the ever-changing morphology and intricate connections of retinal blood vessels, ensuring the continuity of vessel segmentation. In the output phase of the network, the proposed global aggregation module integrates full-resolution feature maps while suppressing redundant features, achieving an effective fusion of high-level semantic information and spatial detail information. In addition, we have re-examined the selection criteria for activation and normalization methods, and also refine the network architectures from a spatial domain perspective to release redundant computational loads. Testing on the DRIVE, STARE, and CHASE_DB1 datasets indicates that HRD-Net, with fewer parameters, outperforms existing segmentation methods on several evaluation metrics such as F1, ACC, SE, SP, AUC, and IOU.
Asunto(s)
Aprendizaje , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagen , Benchmarking , Retina/diagnóstico por imagen , Salarios y Beneficios , Procesamiento de Imagen Asistido por Computador , AlgoritmosRESUMEN
Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105 L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104 L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.
Asunto(s)
Dicroismo Circular , ADN , Escherichia coli , Escherichia coli/efectos de los fármacos , ADN/química , ADN/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Pruebas de Sensibilidad MicrobianaRESUMEN
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms.
RESUMEN
Various peptide drugs have entered the market with the development of molecular biology. Peptide drugs are used for treat diseases such as diabetes, breast cancer, and HIV infection. In this study, three nicotinamide-modified peptides were synthesized by modifying the N-terminus of BRCA1 (856-871, Y856R, K862Y, R866W) peptide with three nicotinic acid derivatives using solid-phase peptide synthesis. The results of calf thymus DNA (ctDNA) binding activity indicated that binding constants of BRCA1 (856-871, Y856R, K862Y, R866W) (P0) and three nicotinamide-modified peptides (P1, P2, and P3) to ctDNA were 1.89 × 103, 2.97 × 104, 7.61 × 104, and 8.09 × 104 L·mol-1, respectively. The binding affinity of the modified peptides was superior to that of BRCA1 (856-871, Y856R, K862Y, R866W). ΔHθ < 0 and ΔSθ < 0 indicated that van der Waals force and hydrogen bond contributed most to peptide-ctDNA binding. Results obtained by Circular dichroism (CD) indicated that peptide binding interaction led to conformational changes in ctDNA. Ultraviolet-visible (UV) spectroscopy, ethidium bromide (EB) competition experiments, DNA melting experiments, and viscosity measurements verified that peptides interacted with ctDNA via groove binding. Ionic strength experiments manifested that electrostatic binding was also involved in peptide-ctDNA binding.
Asunto(s)
Infecciones por VIH , Niacinamida , Humanos , Termodinámica , Dicroismo Circular , Péptidos , Espectrometría de Fluorescencia/métodos , Simulación del Acoplamiento Molecular , Espectrofotometría Ultravioleta , Proteína BRCA1RESUMEN
Precise dissection of DNA-protein interactions is essential for elucidating the recognition basis, dynamics and gene regulation mechanism. However, global profiling of weak and dynamic DNA-protein interactions remains a long-standing challenge. Here, we establish the light-induced lysine (K) enabled crosslinking (LIKE-XL) strategy for spatiotemporal and global profiling of DNA-protein interactions. Harnessing unique abilities to capture weak and transient DNA-protein interactions, we demonstrate that LIKE-XL enables the discovery of low-affinity transcription-factor/DNA interactions via sequence-specific DNA baits, determining the binding sites for transcription factors that have been previously unknown. More importantly, we successfully decipher the dynamics of the transcription factor subproteome in response to drug treatment in a time-resolved manner, and find downstream target transcription factors from drug perturbations, providing insight into their dynamic transcriptional networks. The LIKE-XL strategy offers a complementary method to expand the DNA-protein profiling toolbox and map accurate DNA-protein interactomes that were previously inaccessible via non-covalent strategies, for better understanding of protein function in health and disease.
Asunto(s)
ADN , Factores de Transcripción , Factores de Transcripción/química , ADN/química , Aminas/química , Unión Proteica , Reactivos de Enlaces Cruzados/químicaRESUMEN
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
RESUMEN
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Asunto(s)
Células Endoteliales , Quercetina , Ratones , Animales , Quercetina/farmacología , Cabello , Folículo Piloso , AlopeciaRESUMEN
As a bridge of human-computer communication, the color design of intelligent vehicle HMI interactive interface is particularly important. It is also the first guide to the driver during the driving process. The quality of its design will also directly affect the driver's senses and the driving safety of the vehicle. Therefore, this paper introduces the current situation, design principle, and future development of the vehicle interaction interface from multiple perspectives. Through the neural network system (condition generation countermeasure network model) of visual recognition, the color of the intelligent vehicle HMI interactive interface under the user experience is analyzed. According to the analysis of the psychological cognition and behavior operation of the automobile user, the correlation analysis of the human, vehicle, environment, and various elements of the interface is carried out, and how the vehicle interactive interface can meet the expected physiological and psychological needs of the user more and improve the operability is discussed in order to design an on-board HMI interactive interface that can be intelligently perceived according to weather, driver's interests, and other factors and then improve the current backward operation mode of the on-board interactive interface, so that the interaction between people and vehicles is more smooth and pleasant.
Asunto(s)
Conducción de Automóvil , Percepción de Color , Humanos , Conducción de Automóvil/psicología , Automóviles , Redes Neurales de la ComputaciónRESUMEN
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.