Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Methods ; 21(2): 259-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049696

RESUMEN

Small extracellular vesicles (sEVs) are emerging as pivotal players in a wide range of physiological and pathological processes. However, a pressing challenge has been the lack of high-throughput techniques capable of unraveling the intricate heterogeneity of sEVs and decoding the underlying cellular behaviors governing sEV secretion. Here we leverage droplet-based single-cell RNA sequencing (scRNA-seq) and introduce an algorithm, SEVtras, to identify sEV-containing droplets and estimate the sEV secretion activity (ESAI) of individual cells. Through extensive validations on both simulated and real datasets, we demonstrate SEVtras' efficacy in capturing sEV-containing droplets and characterizing the secretion activity of specific cell types. By applying SEVtras to four tumor scRNA-seq datasets, we further illustrate that the ESAI can serve as a potent indicator of tumor progression, particularly in the early stages. With the increasing importance and availability of scRNA-seq datasets, SEVtras holds promise in offering valuable extracellular insights into the cell heterogeneity.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Transcriptoma , Algoritmos
3.
Nat Methods ; 20(8): 1159-1169, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443337

RESUMEN

The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation.


Asunto(s)
Benchmarking , ARN Circular , Humanos , ARN Circular/genética , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN/métodos
4.
Nucleic Acids Res ; 52(D1): D52-D60, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37739414

RESUMEN

Recent studies have demonstrated the important regulatory role of circRNAs, but an in-depth understanding of the comprehensive landscape of circRNAs across various species still remains unexplored. The current circRNA databases are often species-restricted or based on outdated datasets. To address this challenge, we have developed the circAtlas 3.0 database, which contains a rich collection of 2674 circRNA sequencing datasets, curated to delineate the landscape of circRNAs within 33 distinct tissues spanning 10 vertebrate species. Notably, circAtlas 3.0 represents a substantial advancement over its precursor, circAtlas 2.0, with the number of cataloged circRNAs escalating from 1 007 087 to 3 179 560, with 2 527 528 of them being reconstructed into full-length isoforms. circAtlas 3.0 also introduces several notable enhancements, including: (i) integration of both Illumina and Nanopore sequencing datasets to detect circRNAs of extended lengths; (ii) employment of a standardized nomenclature scheme for circRNAs, providing information of the host gene and full-length circular exons; (iii) inclusion of clinical cancer samples to explore the biological function of circRNAs within the context of cancer and (iv) links to other useful resources to enable user-friendly analysis of target circRNAs. The updated circAtlas 3.0 provides an important platform for exploring the evolution and biological implications of vertebrate circRNAs, and is freely available at http://circatlas.biols.ac.cn and https://ngdc.cncb.ac.cn/circatlas.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Neoplasias , ARN Circular , Animales , Humanos , Neoplasias/genética , Vertebrados/genética
5.
Nucleic Acids Res ; 52(D1): D738-D746, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37819042

RESUMEN

Extensive evidence has demonstrated that the human microbiome and probiotics confer great impacts on human health, particularly during critical developmental stages such as pregnancy and infancy when microbial communities undergo remarkable changes and maturation. However, a major challenge in understanding the microbial community structure and interactions between mothers and infants lies in the current lack of comprehensive microbiome databases specifically focused on maternal and infant health. To address this gap, we have developed an extensive database called MAMI (Microbiome Atlas of Mothers and Infants) that archives data on the maternal and neonatal microbiome, as well as abundant resources on edible probiotic strains. By leveraging this resource, we can gain profound insights into the dynamics of microbial communities, contributing to lifelong wellness for both mothers and infants through precise modulation of the developing microbiota. The functionalities incorporated into MAMI provide a unique perspective on the study of the mother-infant microbiome, which not only advance microbiome-based scientific research but also enhance clinical practice. MAMI is publicly available at https://bioinfo.biols.ac.cn/mami/.


Asunto(s)
Microbiota , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Probióticos , Intercambio Materno-Fetal
6.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36857617

RESUMEN

Advances in spatial transcriptomics enlarge the use of single cell technologies to unveil the expression landscape of the tissues with valuable spatial context. Here, we propose an unsupervised and manifold learning-based algorithm, Spatial Transcriptome based cEll typE cLustering (STEEL), which identifies domains from spatial transcriptome by clustering beads exhibiting both highly similar gene expression profiles and close spatial distance in the manner of graphs. Comprehensive evaluation of STEEL on spatial transcriptomic datasets from 10X Visium platform demonstrates that it not only achieves a high resolution to characterize fine structures of mouse brain but also enables the integration of multiple tissue slides individually analyzed into a larger one. STEEL outperforms previous methods to effectively distinguish different cell types/domains of various tissues on Slide-seq datasets, featuring in higher bead density but lower transcript detection efficiency. Application of STEEL on spatial transcriptomes of early-stage mouse embryos (E9.5-E12.5) successfully delineates a progressive development landscape of tissues from ectoderm, mesoderm and endoderm layers, and further profiles dynamic changes on cell differentiation in heart and other organs. With the advancement of spatial transcriptome technologies, our method will have great applicability on domain identification and gene expression atlas reconstruction.


Asunto(s)
Acero , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Diferenciación Celular , Algoritmos
7.
BMC Biol ; 22(1): 107, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715037

RESUMEN

BACKGROUND: Predation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited. RESULTS: In this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and L-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria. CONCLUSIONS: Our results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.


Asunto(s)
Cilióforos , Cilióforos/fisiología , Cilióforos/genética , Genómica , Genoma de Protozoos , Transcriptoma
8.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36952281

RESUMEN

Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.


Asunto(s)
Cilióforos , Factores de Terminación de Péptidos , Codón de Terminación , Factores de Terminación de Péptidos/genética , Cilióforos/genética , Código Genético , Secuencia de Bases
9.
Conserv Biol ; 38(1): e14173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650395

RESUMEN

Reintroduction programs seek to restore degraded populations and reverse biodiversity loss. To examine the hypothesis that gut symbionts could be used as an indicator of reintroduction success, we performed intensive metagenomic monitoring over 10 years to characterize the ecological succession and adaptive evolution of the gut symbionts of captive giant pandas reintroduced to the wild. We collected 63 fecal samples from 3 reintroduced individuals and 22 from 9 wild individuals and used 96 publicly available samples from another 3 captive individuals. By microbial composition analysis, we identified 3 community clusters of the gut microbiome (here termed enterotypes) with interenterotype succession that was closely related to the reintroduction process. Each of the 3 enterotypes was identified based on significant variation in the levels of 1 of 3 genera: Clostridium, Pseudomonas, and Escherichia. The enterotype of captive pandas was Escherichia. This enterotype was gradually replaced by the Clostridium enterotype during the wild-training process, which in turn was replaced by the Pseudomonas enterotype that resembled the enterotype of wild pandas, an indicator of conversion to wildness and a successful reintroduction. We also isolated 1 strain of Pseudomonas protegens from the wild enterotype, a previously reported free-living microbe, and found that its within-host evolution contributed to host dietary adaptation in the wild. Monitoring gut microbial structure provides a novel, noninvasive tool that can be used as an indicator of successful reintroduction of a captive individual to the wild.


Microbiomas intestinales como indicadores clave de monitoreo para la reintroducción de animales cautivos Resumen Los programas de reintroducción buscan restaurar las poblaciones degradadas y revertir la pérdida de la biodiversidad. Realizamos un monitoreo metagenómico intensivo durante más de diez años para caracterizar la sucesión ecológica y la evolución adaptativa de los simbiontes intestinales de pandas reintroducidos en la naturaleza y así comprobar la hipótesis de que estos simbiontes pueden usarse como indicadores de una reintroducción exitosa. Recolectamos 63 muestras fecales de tres individuos reintroducidos y 22 de nueve individuos silvestres y usamos 96 muestras disponibles al público de otros tres individuos cautivos. Mediante el análisis de la composición microbiana identificamos tres grupos comunitarios del microbioma intestinal (denominados como enterotipos) con una sucesión entre enterotipos relacionada cercanamente al proceso de reintroducción. Identificamos cada uno de los tres enterotipos con base en la variación significativa en los niveles de uno de los tres géneros: Clostridium, Pseudomonas, y Escherichia. El enterotipo de los pandas cautivos fue Escherichia. A este enterotipo lo reemplazó gradualmente el enterotipo de Clostridium durante el proceso de adaptación a la naturaleza, y a su vez fue reemplazado por el enterotipo de Pseudomonas similar al de los pandas silvestres, un indicador de la conversión a la vida silvestre y de una reintroducción exitosa. También aislamos una cepa de Pseudomonas protegens del enterotipo silvestre, un microbio reportado previamente como de vida libre, y descubrimos que su evolución dentro del hospedero contribuyó a que este se adaptara a la naturaleza de la dieta. El monitoreo de la estructura microbiana intestinal proporciona una herramienta novedosa y no invasiva que puede usarse como indicador del éxito de la reintroducción de un individuo cautivo a la naturaleza.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Humanos , Animales , Conservación de los Recursos Naturales , Biodiversidad , Heces , Dieta
10.
Gut ; 72(4): 772-786, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720630

RESUMEN

The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Complicaciones del Embarazo , Niño , Lactante , Recién Nacido , Humanos , Femenino , Embarazo , Madres
11.
Gut ; 72(4): 686-698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35803703

RESUMEN

OBJECTIVE: The obesity epidemic and its metabolic complications continue to be a major global public health threat with limited effective treatments, especially drugs that can be taken orally. Peptides are a promising class of molecules that have gained increased interest for their applications in medicine and biotechnology. In this study, we focused on looking for peptides that can be administrated orally to treat obesity and exploring its mechanisms. DESIGN: Here, a 9-amino-acid peptide named D3 was designed and administered orally to germ-free (GF) mice and wild-type (WT) mice, rats and macaques. The effects of D3 on body weight and other basal metabolic parameters were evaluated. The effects of D3 on gut microbiota were evaluated using 16S rRNA amplicon sequencing. To identify and confirm the mechanisms of D3, transcriptome analysis of ileum and molecular approaches on three animal models were performed. RESULTS: A significant body weight reduction was observed both in WT (12%) and GF (9%) mice treated with D3. D3 ameliorated leptin resistance and upregulated the expression of uroguanylin (UGN), which suppresses appetite via the UGN-GUCY2C endocrine axis. Similar effects were also found in diet-induced obese rat and macaque models. Furthermore, the abundance of intestinal Akkermansia muciniphila increased about 100 times through the IFNγ-Irgm1 axis after D3 treatment, which may further inhibit fat absorption by downregulating Cd36. CONCLUSION: Our results indicated that D3 is a novel drug candidate for counteracting diet-induced obesity as a non-toxic and bioactive peptide. Targeting the UGN-GUCY2C endocrine axis may represent a therapeutic strategy for the treatment of obesity.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Ratas , Animales , Apetito , ARN Ribosómico 16S , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Dieta , Peso Corporal , Péptidos/farmacología , Péptidos/uso terapéutico
12.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35325184

RESUMEN

Ciliated protists are among the oldest unicellular organisms with a heterotrophic lifestyle and share a common ancestor with Plantae. Unlike any other eukaryotes, there are two distinct nuclei in ciliates with separate germline and somatic cell functions. Here, we assembled a near-complete macronuclear genome of Fabrea salina, which belongs to one of the oldest clades of ciliates. Its extremely minimized genome (18.35 Mb) is the smallest among all free-living heterotrophic eukaryotes and exhibits typical streamlined genomic features, including high gene density, tiny introns, and shrinkage of gene paralogs. Gene families involved in hypersaline stress resistance, DNA replication proteins, and mitochondrial biogenesis are expanded, and the accumulation of phosphatidic acid may play an important role in resistance to high osmotic pressure. We further investigated the morphological and transcriptomic changes in the macronucleus during sexual reproduction and highlighted the potential contribution of macronuclear residuals to this process. We believe that the minimized genome generated in this study provides novel insights into the genome streamlining theory and will be an ideal model to study the evolution of eukaryotic heterotrophs.


Asunto(s)
Cilióforos , Genoma de Protozoos , Cilióforos/genética , ADN Protozoario/genética , Intrones , Macronúcleo/genética , Análisis de Secuencia de ADN
13.
Inorg Chem ; 62(3): 1202-1209, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36622043

RESUMEN

The excited-state manipulation of the phosphorescent iridium(III) complexes plays a vital role in their photofunctional applications. The development of the molecular design strategy promotes the creative findings of novel iridium(III) complexes. The current molecular design strategies for iridium(III) complexes mainly depend on the selective cyclometalation of the ligands with the iridium(III) ion, which is governed by the steric hindrance of the ligand during the cyclometalation. Herein, a new molecular design strategy (i.e., random cyclometalation strategy) is proposed for the effective excited-state manipulation of phosphorescent cyclometalated iridium(III) complexes. Two series of new and separable methoxyl-functionalized isomeric iridium(III) complexes are accessed by a one-pot synthesis via random cyclometalation, resulting in a dramatic tuning of the phosphorescence peak wavelength (∼57 nm) and electrochemical properties attributed to the high sensitivity of their excited states to the position of the methoxyl group. These iridium(III) complexes show intense phosphorescence ranging from the yellow (567 nm) to the deep-red (634 nm) color with high photoluminescence quantum yields of up to 0.99. Two deep-red emissive iridium(III) complexes with short decay lifetimes are further utilized as triplet emitters to afford efficient solution-processed electroluminescence with reduced efficiency roll-offs.

14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1222-1227, 2023 Oct 10.
Artículo en Zh | MEDLINE | ID: mdl-37730221

RESUMEN

OBJECTIVE: To analyze the characteristics of genetic variants in 134 patients diagnosed with Acute myeloid leukemia (AML). METHODS: Clinical data of the 134 patients with AML (non-acute promyelocytic leukemia) initially diagnosed at the 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army from June 2017 to June 2022 were retrospectively analyzed. Potential variants of AML-related genes were detected by next-generation sequencing, and the frequency of variants was analyzed by using SPSS v26.0 software, and likelihood ratio χ2 test and Fisher exact test were used for data analysis. RESULTS: The patients had included 72 males and 62 females, with a gender ratio of 1.7 : 1 and a median age of 51 years (9 ~ 86 years old). One hundred twenty patients (76.1%) had harbored at least one genetic variant, including 26 (19.4%) having a single variant, 27 (20.1%) having two variants, and 49 (36.6%) having >= 3 variants. 32 (23.9%) had no detectable variants. Genetic variants detected in over 10% of the 134 patients had included NPM1 (n = 24, 17.91%), FLT3-ITD (n = 21, 15.67%), DNMT3A (n = 20, 14.93%), CEBPA (single variant; n = 14, 10.45%), TET2 (n = 14, 10.45%), and NRAS (n = 14, 10.45%). The patients were also divided into low risk, intermediate risk and high risk groups based on their chromosomal karyotypes. The mutational rates for genes in different groups have varied, with 19 patients from the low risk group harboring variants of NRAS (n = 4, 21.05%), KRAS (n = 4, 21.05%), and KIT (n = 2, 10.53%); and 96 patients from the intermediate risk group harboring variants of NPM1 (n = 24, 25.00%), FLT3-ITD (n = 20, 20.83%), DNMT3A (n = 18, 18.75%), CEBPA (n = 12, 12.50%), and TET2 genes (n = 12, 12.50%). The mutational frequencies for the 19 patients from the high risk group were ASXL1 (n = 7, 21.05%), NRAS (n = 3, 15.97%), TP53 (n = 3, 15.79%), and EZH2 (n = 2, 10.53%). A significant difference was found in the frequencies of KIT, NPM1, FLT3-ITD, DNMT3A, and ASXL1 gene variants among the low-risk, medium-risk, and high-risk groups. CONCLUSION: AML patients have a high frequency for genetic variants, with 76.1% harboring at least one variant. The frequency of genetic variants have varied among patients with different chromosomal karyotypes, and there are apparent dominant variants. KIT, NPM1, FLT3-ITD, DNMT3A, and ASXL1 may be used as prognostic factors for evaluating their prognosis.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Leucemia Mieloide Aguda/genética , Proteínas Nucleares , Estudios Retrospectivos , Niño , Adolescente , Adulto Joven , Adulto , Anciano , Pueblos del Este de Asia
15.
Gut ; 71(12): 2451-2462, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35387876

RESUMEN

OBJECTIVE: Fetal growth restriction (FGR) is a devastating pregnancy complication that increases the risk of perinatal mortality and morbidity. This study aims to determine the combined and relative effects of genetic and intrauterine environments on neonatal microbial communities and to explore selective FGR-induced gut microbiota disruption, metabolic profile disturbances and possible outcomes. DESIGN: We profiled and compared the gut microbial colonisation of 150 pairs of twin neonates who were classified into four groups based on their chorionicity and discordance of fetal birth weight. Gut microbiota dysbiosis and faecal metabolic alterations were determined by 16S ribosomal RNA and metagenomic sequencing and metabolomics, and the long-term effects were explored by surveys of physical and neurocognitive development conducted after 2~3 years of follow-up. RESULTS: Adverse intrauterine environmental factors related to selective FGR dominate genetics in their effects of elevating bacterial diversity and altering the composition of early-life gut microbiota, and this effect is positively related to the severity of selective FGR in twins. The influence of genetic factors on gut microbes diminishes in the context of selective FGR. Gut microbiota dysbiosis in twin neonates with selective FGR and faecal metabolic alterations features decreased abundances of Enterococcus and Acinetobacter and downregulated methionine and cysteine levels. Correlation analysis indicates that the faecal cysteine level in early life is positively correlated with the physical and neurocognitive development of infants. CONCLUSION: Dysbiotic microbiota profiles and pronounced metabolic alterations are associated with selective FGR affected by adverse intrauterine environments, emphasising the possible effects of dysbiosis on long-term neurobehavioural development.


Asunto(s)
Microbioma Gastrointestinal , Recién Nacido , Embarazo , Lactante , Femenino , Humanos , Disbiosis , Cisteína/farmacología , ARN Ribosómico 16S/genética , Metaboloma , Heces/microbiología
16.
Methods ; 196: 17-22, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33781864

RESUMEN

High-throughput RNA sequencing has enabled the extensive detection of circular RNAs (circRNAs) in eukaryotic organisms. However, most circRNAs are derived from exonic regions and possess sequences that are highly overlapped to their cognate linear mRNAs, which makes the reconstruction of the internal structure and full-length circular transcripts a challenging aspect in circRNA studies. To solve this problem, we provide a step-by-step protocol for the full-length reconstruction of circRNAs using CIRI-full and CIRI-long in Illumina and Nanopore RNA-seq libraries. By combining experimental and computational methods, we are able to effectively characterize the full-length landscape of circRNAs, which provide an important basis to explore the biogenesis and biological function of circRNAs.


Asunto(s)
Nanoporos , ARN Circular , Exones , ARN/genética , ARN Mensajero/genética , RNA-Seq
17.
Nucleic Acids Res ; 48(17): 9589-9605, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32857850

RESUMEN

Transcription termination defines accurate transcript 3'-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3'-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3'end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3'-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.


Asunto(s)
Proteínas Arqueales/genética , Methanococcus/genética , Ribonucleasas/genética , Proteínas Arqueales/metabolismo , ADN Complementario/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Arqueal , Mutación , Filogenia , Ribonucleasas/metabolismo , Transcripción Genética , Uridina
18.
BMC Biol ; 19(1): 264, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34903227

RESUMEN

BACKGROUND: Ciliated protists are a widely distributed, morphologically diverse, and genetically heterogeneous group of unicellular organisms, usually known for containing two types of nuclei: a transcribed polyploid macronucleus involved in gene expression and a silent diploid micronucleus responsible for transmission of genetic material during sexual reproduction and generation of the macronucleus. Although studies in a few species of culturable ciliated protists have revealed the highly dynamic nature of replicative and recombination events relating the micronucleus to the macronucleus, the broader understanding of the genomic diversity of ciliated protists, as well as their phylogenetic relationships and metabolic potential, has been hampered by the inability to culture numerous other species under laboratory conditions, as well as the presence of symbiotic bacteria and microalgae which provide a challenge for current sequencing technologies. Here, we optimized single-cell sequencing methods and associated data analyses, to effectively remove contamination by commensal bacteria, and generated high-quality genomes for a number of Euplotia species. RESULTS: We obtained eight high-quality Euplotia genomes by using single-cell genome sequencing techniques. The genomes have high genomic completeness, with sizes between 68 and 125 M and gene numbers between 14K and 25K. Through comparative genomic analysis, we found that there are a large number of gene expansion events in Euplotia genomes, and these expansions are closely related to the phenotypic evolution and specific environmental adaptations of individual species. We further found four distinct subgroups in the genus Euplotes, which exhibited considerable genetic distance and relative lack of conserved genomic syntenies. Comparative genomic analyses of Uronychia and its relatives revealed significant gene expansion associated with the ciliary movement machinery, which may be related to the unique and strong swimming ability. CONCLUSIONS: We employed single-cell genomics to obtain eight ciliate genomes, characterized the underestimated genomic diversity of Euplotia, and determined the divergence time of representative species in this subclass for the first time. We also further investigated the extensive duplication events associated with speciation and environmental adaptation. This study provides a unique and valuable resource for understanding the evolutionary history and genetic diversity of ciliates.


Asunto(s)
Cilióforos , Genómica , Mapeo Cromosómico , Cilióforos/genética , Evolución Molecular , Genómica/métodos , Macronúcleo/genética , Filogenia
19.
BMC Biol ; 19(1): 143, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294107

RESUMEN

BACKGROUND: Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. RESULTS: We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32-18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. CONCLUSIONS: Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species.


Asunto(s)
Thlaspi , Aclimatación , Adaptación Fisiológica/genética , Genómica , Rayos Ultravioleta
20.
Trends Genet ; 34(5): 389-400, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29338875

RESUMEN

Recent studies have demonstrated that circular RNAs (circRNAs) are ubiquitous and have diverse functions and mechanisms of biogenesis. In these studies, computational profiling of circRNAs has been prevalently used as an indispensable method to provide high-throughput approaches to detect and analyze circRNAs. However, without an overall understanding of the underlying strategies, these computational methods may not be appropriately selected or used for a specific research purpose, and some misconceptions may result in biases in the analyses. In this review we attempt to illustrate the key steps and summarize tradeoff of different strategies, covering all popular algorithms for circRNA detection and various downstream analyses. We also clarify some common misconceptions and put emphasis on the fields of application for these computational methods.


Asunto(s)
MicroARNs/genética , ARN/genética , Transcriptoma/genética , Biología Computacional/tendencias , ARN Circular , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA