RESUMEN
Chiral secondary alkyl amines with a vicinal quaternary stereocenter are undoubtedly important and ubiquitous subunits in natural products and pharmaceuticals. However, their asymmetric synthesis remains a formidable challenge. Herein, we merge the ring-opening 1,2-metallate shift with iridium-catalyzed enantioselective C(sp3)-H borylation of aziridines to deliver these frameworks with high enantioselectivities. We also demonstrated the synthetic application by downstream transformations, including the total synthesis of two Amaryllidaceae alkaloids, (-)-crinane and (+)-mesmebrane.
RESUMEN
To investigate the thermodynamic and molecular self-assembly mechanism of trans-1,2-cyclohexane dicarboxylic acid containing two carboxylic acid groups in the chiral resolution process, (S)-phenylethylamine was used as the chiral resolving agent. Two stoichiometric salts were formed when the raw materials were fed at different molar ratios: cyclohexane dicarboxylate monophenylethylamine salt and cyclohexane dicarboxylate diphenylethylamine salt. When the molar ratio of the (S)-phenylethylamine to trans-1,2-cyclohexane dicarboxylic acid was less than 3:1, trans-(1S,2S)-cyclohexane dicarboxylic acid was obtained with 97 e.e% purity. But when the molar ratio exceeded 3:1, the product was the racemic trans-(1,2)-cyclohexane dicarboxylic acid. In addition, single crystal structures of more soluble mono-salt, less soluble mono-salt, and less soluble di-salt were obtained. The weak intermolecular interactions and the way of the molecules packing in the crystals were analyzed. The hydrogen bond was stronger in the less soluble salt than that in the more soluble salt. And a "lock-and-key" structure in the hydrophobic layers makes it more tightly packed through the van der Waals interaction, which is responsible for the stability of less soluble salts.
RESUMEN
The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing ß-cyclodextrin (ß-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by ß-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5ß-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.
RESUMEN
BACKGROUND: Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), is influenced by genetic variations, particularly those in the low-density lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR polymorphisms on baseline serum lipid levels and the therapeutic efficacy of atorvastatin in an adult Han population in northern China with dyslipidemia. METHODS: In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined and followed up. The 3' untranslated region (UTR) of the LDLR gene was sequenced to identify polymorphisms. The associations between gene polymorphisms and serum lipid levels, as well as changes in lipid levels after intervention, were evaluated using the Wilcoxon rank sum test, with a P < 0.05 indicating statistical significance. Assessment of linkage disequilibrium patterns and haplotype structures was conducted utilizing Haploview. RESULTS: Eleven distinct polymorphisms at LDLR 3' UTR were identified. Seven polymorphisms (rs1433099, rs14158, rs2738466, rs5742911, rs17249057, rs55971831, and rs568219285) were correlated with the baseline serum lipid levels (P < 0.05). In particular, four polymorphisms (rs14158, rs2738466, rs5742911, and rs17249057) were in strong linkage disequilibrium (r2 = 1), and patients with the AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms (rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy of atorvastatin (P < 0.05). Furthermore, carriers of the rs2738467 T allele demonstrated a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels post-atorvastatin treatment (P = 0.03), indicating a potentially crucial genetic influence on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were neither correlated with the baseline serum lipid levels nor atorvastatin's efficacy. CONCLUSIONS: This research outlined the complex genetic architecture surrounding LDLR 3' UTR polymorphisms and their role in lipid metabolism and the response to atorvastatin treatment in adult Han Chinese patients with dyslipidemia, highlighting the importance of genetic profiling in enhancing tailored therapeutic strategies. Furthermore, this investigation advocates for the integration of genetic testing into the management of dyslipidemia, paving the way for customized therapeutic approaches that could significantly improve patient care. TRIAL REGISTRATION: This multicenter study was approved by the Ethics Committee of Xiangya Hospital Central South University (ethics number K22144). It was a general ethic. In addition, this study was approved by The First Hospital of Hebei Medical University (ethics number 20220418).
Asunto(s)
Dislipidemias , Polimorfismo Genético , Adulto , Humanos , Atorvastatina/uso terapéutico , Regiones no Traducidas 3'/genética , LDL-Colesterol , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , ChinaRESUMEN
Lead halide perovskites (LHPs) have been extensively studied due to their remarkable optoelectronic performance. However, the toxicity of a lead ion to humans and its instability under ambient conditions render lead-based halide perovskite an unsuitable material for commercialization. Meanwhile, lead-free halide perovskite (LFHP) devices generally exhibit poor performance. Therefore, enhancing photoelectric conversion capacity is the most important issue that needs to be addressed. Here, we propose a photodetector (PD) fabricated using C s B i 3 I 10/p h e n y l-C 61-butyric acid methyl ester (PCBM) bulk heterojunction as the active layer. The PD illuminated under 532 nm can reach a high responsivity (1.54 A/W) at -2V bias, while at 2 V bias, the PD reaches a higher responsivity (224.40 A/W). All of those results suggest that C s B i 3 I 10/P C B M bulk heterojunctions hold enormous potential in substituting for LHPs in optoelectronic devices.
RESUMEN
Practical approaches to the synthesis of atomically precise metal nanoclusters are in high demand as they provide the structural basis for investigating nanomaterials' structure-property correlations with atomic precision. The Brust-Schiffrin method has been widely used, while the essential reductive ligands (e.g., thiols) limit the application of this method for synthesizing metal nanoclusters with specific frameworks and surface ligands. In this work, we developed a photochemical route for synthesizing atomically precise metal nanoclusters by applying disulfide, which is a widely available, stable, and environmentally friendly sulfur source. This method enables the construction of structurally diverse metal nanoclusters and especially features the synthesis of PhS-protected metal nanoclusters that were not easily achieved previously and the gram-scale synthesis. A reduction-oxidation cascade mechanism has been revealed for the photochemical route. This work is expected to open up new opportunities for metal nanocluster synthesis and will contribute to the practical applications of this kind of nanomaterial.
RESUMEN
We herein report the iridium-catalyzed enantioselective C-H borylation of aryl chlorides. A variety of prochiral biaryl compounds could be well-tolerated, affording a vast array of axially chiral biaryls with high enantioselectivities. The current method exhibits a high turnover number (TON) of 7000, which represents the highest in functional-group-directed asymmetric C-H activation. The high TON was attributed to a weak catalyst-substrate interaction that was caused by mismatched chirality between catalyst and substrate. We also demonstrated the synthetic application of the current method by C-B, ortho-C-H, and C-Cl bond functionalization, including programmed Suzuki-Miyaura coupling for the synthesis of axially chiral polyarenes.
RESUMEN
The enzymatic activity of atomically precise metal nanoclusters has recently been recognized; however, the number of nanoclusterzymes is very small. Besides, the applications of nanoclusterzyme wait to be explored. Herein, a novel nanoclusterzyme is synthesized and its structure is majorly resolved by single-crystal X-ray diffraction and mass spectrometry, which reveal that the nanocluster consists of an Au13 icosahedron capped by an exterior shell including four I, three Dppp (1,3-bis(diphenylphosphino) propane) ligands, and a rarely reported Dppp-Au-Dppp handle staple, which contributes a lot to the enzyme activity of [Au14 (Dppp)5 I4 ]2+ nanocluster. The as-obtained nanocluster can catalyze oxygen to O2 â¢- under visible light irradiation with a specific activity up to 0.182 U·mg-1 and lead to the blue color of 3,3',5,5'-tetramethylbenzidine (TMB) in both solution and solid states. With the addition of acetylcholinesterase (AChE), the blue color of (Au14 + TMB) solution system disappears due to the nanoclusterzyme activity inhibition, but the further addition of organophosphorus pesticides (OPs) into the above mixture can restore the nanoclusterzyme and recover the blue color. Based on the color turn-off and on, the various nanoclusterzyme-containing systems are used to colorimetrically sense AChE and OPs with the detection limits reaching 0.04 mU·mL-1 and 0.02 ng·mL-1 , respectively.
RESUMEN
OBJECTIVES: To predict preoperative acute ischemic stroke (AIS) in acute type A aortic dissection (ATAAD). METHODS: In this multi-center retrospective study, 508 consecutive patients diagnosed as ATAAD between April 2020 and March 2021 were considered for inclusion. The patients were divided into a development cohort and two validation cohorts based on time periods and centers. Clinical data and imaging findings obtained were analyzed. Univariable and multivariable logistic regression analyses were performed to identify predictors associated with preoperative AIS. The performance of resulting nomogram was evaluated in discrimination and calibration on all cohorts. RESULTS: A total of 224 patients were in the development cohort, 94 in the temporal validation cohort, and 118 in the geographical validation cohort. Six predictors were identified: age, syncope, D-dimer, moderate to severe aortic valve insufficiency, diameter ratio of true lumen in ascending aorta < 0.33, and common carotid artery dissection. The nomogram established showed good discrimination (area under the receiver operating characteristic curve [AUC], 0.803; 95% CI: 0.742, 0.864) and calibration (Hosmer-Lemeshow test p = 0.300) in the development cohort. External validation showed good discrimination and calibration abilities in both temporal (AUC, 0.778; 95% CI: 0.671, 0.885; Hosmer-Lemeshow test p = 0.161) and geographical cohort (AUC, 0.806; 95% CI: 0.717, 0.895; Hosmer-Lemeshow test p = 0.100). CONCLUSIONS: A nomogram, based on simple imaging and clinical variables collected on admission, showed good discrimination and calibration abilities in predicting preoperative AIS for ATAAD patients. KEY POINTS: ⢠A nomogram based on simple imaging and clinical findings may predict preoperative acute ischemic stroke in patients with acute type A aortic dissection in emergencies. ⢠The nomogram showed good discrimination and calibration abilities in validation cohorts.
Asunto(s)
Disección Aórtica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/diagnóstico , Estudios Retrospectivos , Nomogramas , Disección Aórtica/diagnóstico por imagenRESUMEN
KEY MESSAGE: The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.
Asunto(s)
Respuesta al Choque por Frío , Oryza , Respuesta al Choque por Frío/genética , Transcriptoma/genética , Oryza/metabolismo , Genotipo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , FríoRESUMEN
BACKGROUND: Sensory stimulation can play a fundamental role in the activation of the primary sensorimotor cortex (S1-M1), which can promote motor learning and M1 plasticity in stroke patients. However, studies have focused mainly on investigating the influence of brain lesion profiles on the activation patterns of S1-M1 during motor tasks instead of sensory tasks. Therefore, the objective of this study is to explore the lesion-specific activation patterns due to different brain lesion profiles and types during focal vibration (FV). METHODS: In total 52 subacute stroke patients were recruited in this clinical experiment, including patients with basal ganglia hemorrhage/ischemia, brainstem ischemia, other subcortical ischemia, cortical ischemia, and mixed cortical-subcortical ischemia. Electroencephalograms (EEG) were recorded following a resting state lasting for 4 min and three sessions of FV. FV was applied over the muscle belly of the affected limb's biceps for 3 min each session. Beta motor-related EEG power desynchronization overlying S1-M1 was used to indicate the activation of S1-M1, while the laterality coefficient (LC) of the activation of S1-M1 was used to assess the interhemispheric asymmetry of brain activation. RESULTS: (1) Regarding brain lesion profiles, FV could lead to the significant activation of bilateral S1-M1 in patients with basal ganglia ischemia and other subcortical ischemia. The activation of ipsilesional S1-M1 in patients with brainstem ischemia was higher than that in patients with cortical ischemia. No activation of S1-M1 was observed in patients with lesions involving cortical regions. (2) Regarding brain lesion types, FV could induce the activation of bilateral S1-M1 in patients with basal ganglia hemorrhage, which was significantly higher than that in patients with basal ganglia ischemia. Additionally, LC showed no significant correlation with the modified Barthel index (MBI) in all patients, but a positive correlation with MBI in patients with basal ganglia lesions. CONCLUSIONS: These results reveal that sensory stimulation can induce lesion-specific activation patterns of S1-M1. This indicates FV could be applied in a personalized manner based on the lesion-specific activation of S1-M1 in stroke patients with different lesion profiles and types. Our study may contribute to a better understanding of the underlying mechanisms of cortical reorganization.
Asunto(s)
Hemorragia de los Ganglios Basales , Accidente Cerebrovascular , Humanos , Encéfalo , Electroencefalografía , Isquemia , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Few prognostic risk scores (PRSs) have been routinely used in acute decompensated heart failure (ADHF). We, therefore, externally validated three published PRSs (3A3B, AHEAD, and OPTIME-CHF) and derived a new PRS to predict the short-term prognosis in ADHF. METHODS: A total of 4550 patients from the Heb-ADHF registry in China were randomly divided into the derivation and validation cohorts (3:2). Discrimination of each PRS was assessed by the area under the receiver operating characteristic curve (AUROC). Logistic regression was exploited to select the predictors and create the new PRS. The Hosmer-Lemeshow goodness-of-fit test was used to assess the calibration of the new PRS. RESULTS: The AUROCs of the 3A3B, AHEAD, and OPTIME-CHF score in the derivation cohort were 0.55 (95% CI 0.53-0.57), 0.54 (95% CI 0.53-0.56), and 0.56 (95% CI 0.54-0.57), respectively. After logistic regression analysis, the new PRS computed as 1 × (diastolic blood pressure < 80 mmHg) + 2 × (lymphocyte > 1.11 × 109/L) + 1 × (creatinine > 80 µmol/L) + 2 × (blood urea nitrogen > 21 mg/dL) + 1 × [BNP 500 to < 1500 pg/mL (NT-proBNP 2500 to < 7500 pg/mL)] or 3 × [BNP ≥ 1500 (NT-proBNP ≥ 7500) pg/mL] + 3 × (QRS fraction of electrocardiogram < 55%) + 4 × (ACEI/ARB not used) + 1 × (rhBNP used), with a better AUROC of 0.67 (95% CI 0.64-0.70) and a good calibration (Hosmer-Lemeshow χ2 = 3.366, P = 0.186). The results in validation cohort verified these findings. CONCLUSIONS: The short-term prognostic values of 3A3B, AHEAD, and OPTIME-CHF score in ADHF patients were all poor, while the new PRS exhibited potential predictive ability. We demonstrated the QRS fraction of electrocardiogram as a novel predictor for the short-term outcomes of ADHF for the first time. Our findings might help to recognize high-risk ADHF patients.
Asunto(s)
Insuficiencia Cardíaca , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Humanos , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Pronóstico , Factores de RiesgoRESUMEN
A rapid and efficient method was developed for enantioseparation of basic drugs, using carboxymethyl-ß-cyclodextrin (CM-ß-CD) as chiral mobile phase additive, rather than involving costly chiral column in high-performance liquid chromatography (HPLC) system. Four of the six basic drug enantiomers investigated were successfully separated. The highest resolution reaches 2.15 for threo-(1S,2S)-2-amino-l-p-nitrophenyl-1,3-propanediol. The effects of the organic modifier, pH value, concentration of chiral additive, column temperature, and flow rate of mobile phase on the enantioseparation of analytes were researched. The apparent formation constants of inclusion and the thermodynamic parameters were evaluated to explain the mechanism of chiral recognition.
Asunto(s)
Cromatografía de Fase Inversa , beta-Ciclodextrinas , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo , beta-Ciclodextrinas/químicaRESUMEN
OBJECTIVE: Stanford type A aortic dissection (AAD) may affect the supra-aortic arteries, which are associated with acute ischemic stroke (AIS) or transient ischemic attack (TIA). This study aimed to investigate cerebral perfusion, the infarction incidence and risk factors in AAD patients. METHODS: A total of 156 consecutive AAD patients were enrolled and divided into two groups according to whether the aortic arch branches were involved: the affected group (n = 90) and the unaffected group (n = 66). Clinical, echocardiographic/carotid Doppler data and cerebral infarction morbidity were compared between the groups. Independent predictors of 30-day AAD mortality were identified through multivariable Cox regression, and perioperative risk factors were analyzed. RESULTS: In total, 57.7% of AAD patients had aortic arch branch involvement. Abnormal Doppler waveforms were more common in the affected group (p < 0.05). Regarding intracranial perfusion, the blood flow volumes (BFVs) of the bilateral internal carotid arteries (ICAs) and right vertebral artery (RVA) in the affected group were significantly reduced (p < 0.05). The incidence of cerebral infarction in the affected group was significantly higher than that in the unaffected group (35.6% vs. 19.7%, p = 0.031). Multivariable analysis revealed that age >45 years old, right internal carotid artery (RICA) involvement and reduced left ventricular ejection fraction (LVEF) were significant predictors of perioperative death. CONCLUSIONS: Aortic arch branch involvement is common in patients with AAD and is associated with reduced cerebral blood flow (especially on the right side) and a higher incidence of cerebral infarction. Age, extension of the RICA dissection and LVEF impairment are independent risk factors for AAD-related death.
Asunto(s)
Disección Aórtica , Accidente Cerebrovascular Isquémico , Aorta Torácica , Infarto Cerebral , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Volumen Sistólico , Función Ventricular IzquierdaRESUMEN
BACKGROUND: Patients with acute decompensated heart failure (ADHF) show cardiorenal syndrome type 1 (CRS-1) are more likely to have a poor outcome. However, the current criteria often lead to delayed CRS-1 diagnosis. Therefore, we evaluated the predictive value of plasma proenkephalin (pPENK) and urine NT-proBNP (uNT-proBNP) for early diagnosis of CRS-1 and vulnerable-phase prognosis in ADHF patients. METHODS: The plasma NT-proBNP (pNT-proBNP), pPENK, and uNT-proBNP were measured in 121 ADHF patients on admission. The plasma neutrophil gelatinase-associated lipocalin (pNGAL) was chosen as the reference. Logistic regression was used to determine the predictors of CRS-1. The area under the receiver operating curves (ROCs) was calculated to assess the early diagnostic value of pNGAL, pPENK, and uNT-proBNP/uCr for CRS-1. To evaluate the prognostic risk of factors for the 90-d outcomes of all ADHF patients, the Cox regression was performed and the cumulative risk curve was plotted. RESULTS: We found that pPENK [OR 1.093 (95% CI 1.022-1.169), p = 0.010; AUROC = 0.899 (95% CI 0.831-0.946)] and uNT-proBNP/uCr ratio [OR 1.015 (95% CI 1.003-1.028), p = 0.012; AUROC = 0.934 (95% CI 0.874-0.971)] could independently predict the occurrence of CRS-1 in hospitalized patients with ADHF. The pPENK [HR 1.014 (95% CI 1.000-1.042), p = 0.044] and uNT-proBNP/uCr ration [HR 0.998 (95% CI 0.997-1.000), p = 0.045] were also independent predictors of the risk of HF readmission or all-cause death 90 d after discharge in ADHF patients. CONCLUSIONS: The newly found pPENK and noninvasive test of uNT-proBNP/uCr ratio (pg/nmol) on admission may be two promising novel predictive biomarkers for early diagnosis of CRS-1 occurrence and vulnerable-phase outcomes in ADHF patients.
Asunto(s)
Síndrome Cardiorrenal , Insuficiencia Cardíaca , Biomarcadores , Síndrome Cardiorrenal/diagnóstico , Diagnóstico Precoz , Encefalinas , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/diagnóstico , Humanos , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Pronóstico , Estudios Prospectivos , Precursores de ProteínasRESUMEN
Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.
Asunto(s)
Lisostafina , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cinética , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Electricidad EstáticaRESUMEN
There is an urgent need for novel agents to treat drug-resistant bacterial infections, such as multidrug-resistant Staphylococcus aureus (MRSA). Desirable properties for new antibiotics include high potency, narrow species selectivity, low propensity to elicit new resistance phenotypes, and synergy with standard-of-care (SOC) chemotherapies. Here, we describe analysis of the antibacterial potential exhibited by F12, an innovative anti-MRSA lysin that has been genetically engineered to evade detrimental antidrug immune responses in human patients. F12 possesses high potency and rapid onset of action, it has narrow selectivity against pathogenic staphylococci, and it manifests synergy with numerous SOC antibiotics. Additionally, resistance to F12 and ß-lactam antibiotics appears mutually exclusive, and, importantly, we provide evidence that F12 resensitizes normally resistant MRSA strains to ß-lactams both in vitro and in vivo These results suggest that combinations of F12 and SOC antibiotics are a promising new approach to treating refractory S. aureus infections.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sinergismo Farmacológico , Humanos , Lisostafina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , beta-Lactamas/farmacologíaRESUMEN
Metamaterial absorbers can achieve high-efficiency electromagnetic absorption in a specific band, which have been used in biochemical sensing, photoelectric detection, imaging and other fields. Tunable metamaterial absorbers provide more possibilities for the development of multifunctional electromagnetic absorption devices. Here we propose a tunable and polarization-dependent terahertz metamaterial absorber which can work for both linearly and circularly polarized waves. By introducing single layer graphene and vanadium dioxide (VO2), switching between the two working states and wide-range tuning of the absorption efficiency are realized. When VO2 is in insulating state, the absorber shows different tunable absorption performance for the x- or y-polarized terahertz waves, in which the maximum absorption rate is close to 100%. When VO2 is in metallic state, the metasurface behaves as a chiral absorber, and the maximum absorption difference between the two circular polarizations is about 0.45, while the tuning efficiency reaches 86.3%. Under the two working conditions, the absorber can maintain efficient absorption with a large incident angle. In addition, as an application exploration of the absorber, we demonstrated its application in tunable and polarization multiplexed near-field image display.
RESUMEN
It is difficult for single-layer metal metasurfaces to excite in-plane component of magnetic dipole moment, so achieving giant intrinsic optical chirality remains challenging. Fortunately, displacement current in dielectric metasurfaces can form the in-plane magnetic moment which is not orthogonal to the electric dipole moment and forms intrinsic chirality. Here, we show a lossless all-silicon metasurface which achieves giant intrinsic chirality in terahertz band. The leaky waveguide mode in the chiral silicon pillars simultaneously excite the in-plane electric and magnetic dipole moments, which triggers the spin-selected backward electromagnetic radiation, and then realizes the chiral response. The theoretical value of circular dichroism in the transmission spectrum reaches 69.4%, and the measured one is 43%. Based on the photoconductivity effect of the silicon metasurface, we demonstrate optical modulation of the intrinsic chirality using near-infrared continuous wave. In addition, by arranging the two kinds of meta-atoms which are enantiomers, we show the spin-dependent and tunable near-field image display. This simple-prepared all-silicon metasurface provides a new idea for the design of terahertz chiral meta-devices, and it is expected to be applied in the fields of terahertz polarization imaging or spectral detection.
RESUMEN
OBJECTIVES: The purpose of this study was to review the experiences with transcatheter closure of mitral PVL after surgical valve replacement. BACKGROUND: Transcatheter closure of paravalvular leak (PVL) is an intricate alternative to surgical closure. But it represents one of the most intricate procedures in the field of structural heart interventions, especially for patients with mitral PVL. METHODS: From January 2015 through January 2019, 35 patients with mitral PVL after valve replacement underwent transcatheter closure. We reviewed the catheter techniques, perioperative characteristics, and prognosis. The median follow-up was 26 (3-48) months. RESULTS: Acute procedural success was achieved in 33/35 (94.3%) patients. Twenty-five patients had single mitral prosthetic valve replacements; 10 had combined aortic and mitral prosthetic valve replacements previously; 28 had mechanical valves; and 7 had bioprosthetic valves. All percutaneous procedures were performed with local anesthesia except for seven transapical cases with general anesthesia. Multiple approaches were used: transfemoral, transapical, and transseptal via an arteriovenous loop. Multiple devices were deployed. There were no hospital deaths. The procedural time was 67-300 (124 ± 62) minutes. Fluoroscopic time was 17-50 (23.6 ± 12.1) minutes. The hospital stay was 5-17 (8.3 ± 3.2) days. Complications included recurrent hemolysis, residual regurgitation, acute renal insufficiency, and anemia. Twenty-seven (77.1%) patients improved by ≥1 New York Heart Association functional class at the 1-year follow-up. CONCLUSIONS: Transcatheter mitral PVL closure requires complex catheter techniques. However, this minimally invasive treatment could provide reliable outcomes and shorter hospital stays in selected patients. This trial is registered with NCT02917980.