Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(14): 8392-8398, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35880584

RESUMEN

Enzymatic ligation is a popular method in DNA nanotechnology for structural enforcement. When employed as stability switch for chosen components, ligation can be applied to induce DNA nanostructure reconfiguration. In this study, we investigate the reinforcement effect of ligation on addressable DNA nanostructures assembled entirely from short synthetic strands as the basis of structural reconfiguration. A careful calibration of ligation efficiency is performed on structures with programmable nicks. Systematic investigation using comparative agarose gel electrophoresis enables quantitative assessment of enhanced survivability with ligation treatment on a number of unique structures. The solid ligation performance sets up the foundation for the ligation-based structural reconfiguration. With the capability of switching base pairing status between permanent and transient (ON and OFF) by a simple round of enzymatic treatment, ligation induced reconfiguration can be engineered for DNA nanostructures accordingly.


Asunto(s)
ADN/química , Nanoestructuras , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico
2.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338461

RESUMEN

Toona sinensis (A. Juss.) Roem., which is widely distributed in China, is a homologous plant resource of medicine and food. The leaves, seeds, barks, buds and pericarps of T. sinensis can be used as medicine with traditional efficacy. Due to its extensive use in traditional medicine in the ancient world, the T. sinensis plant has significant development potential. In this review, 206 compounds, including triterpenoids (1-133), sesquiterpenoids (134-135), diterpenoids (136-142), sterols (143-147), phenols (148-167), flavonoids (168-186), phenylpropanoids (187-192) and others (193-206), are isolated from the T. sinensis plant. The mass spectrum cracking laws of representative compounds (64, 128, 129, 154-156, 175, 177, 179 and 183) are reviewed, which are conducive to the discovery of novel active substances. Modern pharmacological studies have shown that T. sinensis extracts and their compounds have antidiabetic, antidiabetic nephropathy, antioxidant, anti-inflammatory, antitumor, hepatoprotective, antiviral, antibacterial, immunopotentiation and other biological activities. The traditional uses, chemical constituents, compound cracking laws and pharmacological activities of different parts of T. sinensis are reviewed, laying the foundation for improving the development and utilization of its medicinal value.


Asunto(s)
Fitoquímicos , Toona , Fitoquímicos/química , Medicina Tradicional , Antioxidantes/farmacología , Hipoglucemiantes , Extractos Vegetales/química , Etnofarmacología
3.
Angew Chem Int Ed Engl ; 63(31): e202404093, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38727540

RESUMEN

Accurate visualization of tumor microenvironment is of great significance for personalized medicine. Here, we develop a near-infrared (NIR) fluorescence/photoacoustic (FL/PA) dual-mode molecular probe (denoted as NIR-CE) for distinguishing tumors based on carboxylesterase (CE) level by an analyte-induced molecular transformation (AIMT) strategy. The recognition moiety for CE activity is the acetyl unit of NIR-CE, generating the pre-product, NIR-CE-OH, which undergoes spontaneous hydrogen atom exchange between the nitrogen atoms in the indole group and the phenol hydroxyl group, eventually transforming into NIR-CE-H. In cellular experiments and in vivo blind studies, the human hepatoma cells and tumors with high level of CE were successfully distinguished by both NIR FL and PA imaging. Our findings provide a new molecular imaging strategy for personalized treatment guidance.


Asunto(s)
Carboxilesterasa , Medicina de Precisión , Humanos , Carboxilesterasa/metabolismo , Sondas Moleculares/química , Colorantes Fluorescentes/química , Imagen Óptica , Animales
4.
Angew Chem Int Ed Engl ; 63(26): e202403968, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38637949

RESUMEN

Fluorescence sensing is crucial to studying biological processes and diagnosing diseases, especially in the second near-infrared (NIR-II) window with reduced background signals. However, it's still a great challenge to construct "off-on" sensors when the sensing wavelength extends into the NIR-II region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quencher (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQs can competitively pack with fluorophores and prevent their self-aggregation. Based on this quenching mechanism, a novel activatable "off-on" sensing method is achieved via bio-analyte responsive invalidation of SHQ, namely the Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO--sensitive SHQ lead to the bright NIR-II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real-time visualization of ClO- generation process in living epileptic mice.


Asunto(s)
Teoría Funcional de la Densidad , Epilepsia , Colorantes Fluorescentes , Imagen Óptica , Animales , Colorantes Fluorescentes/química , Epilepsia/diagnóstico por imagen , Ratones , Rayos Infrarrojos , Hipocampo/diagnóstico por imagen , Estructura Molecular
5.
J Transl Med ; 21(1): 429, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391847

RESUMEN

BACKGROUND: The human gut microbiota (GM) is involved in the pathogenesis of hypertension (HTN), and could be affected by various factors, including sex and geography. However, available data directly linking GM to HTN based on sex differences are limited. METHODS: This study investigated the GM characteristics in HTN subjects in Northwestern China, and evaluate the associations of GM with blood pressure levels based on sex differences. A total of 87 HTN subjects and 45 controls were recruited with demographic and clinical characteristics documented. Fecal samples were collected for 16S rRNA gene sequencing and metagenomic sequencing. RESULTS: GM diversity was observed higher in females compared to males, and principal coordinate analysis showed an obvious segregation of females and males. Four predominant phyla of fecal GM included Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. LEfSe analysis indicated that phylum unidentified_Bacteria was enriched in HTN females, while Leuconostocaceae, Weissella and Weissella_cibaria were enriched in control females (P < 0.05). Functionally, ROC analysis revealed that Cellular Processes (0.796, 95% CI 0.620 ~ 0.916), Human Diseases (0.773, 95% CI 0.595 ~ 0.900), Signal transduction (0.806, 95% CI 0.631 ~ 0.922) and Two-component system (0.806, 95% CI 0.631 ~ 0.922) could differentiate HTN females as effective functional classifiers, which were also positively correlated with systolic blood pressure levels. CONCLUSIONS: This work provides evidence of fecal GM characteristics in HTN females and males in a northwestern Chinese population, further supporting the notion that GM dysbiosis may participate in the pathogenesis of HTN, and the role of sex differences should be considered. Trial registration Chinese Clinical Trial Registry, ChiCTR1800019191. Registered 30 October 2018 - Retrospectively registered, http://www.chictr.org.cn/ .


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Femenino , Humanos , Masculino , Presión Sanguínea , China , Estudios Transversales , ARN Ribosómico 16S/genética
6.
Chem Soc Rev ; 51(18): 7692-7714, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35861173

RESUMEN

Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Imagen Óptica/métodos
7.
J Oral Rehabil ; 50(12): 1487-1497, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37574812

RESUMEN

BACKGROUND: Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS: The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS: After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION: We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.


Asunto(s)
Osteogénesis , ARN , Humanos , Osteogénesis/genética , ARN/metabolismo , ARN/farmacología , Diferenciación Celular/genética , Hipoxia/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/farmacología , Células de la Médula Ósea/metabolismo , Células Cultivadas
8.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445785

RESUMEN

Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, ß-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, ß-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.


Asunto(s)
Histonas , Tubulina (Proteína) , Ratas , Animales , Histonas/metabolismo , Nestina/genética , Nestina/metabolismo , Diferenciación Celular , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Células Madre/metabolismo , Neurogénesis , Papila Dental/metabolismo , Células Cultivadas , Osteogénesis
9.
Angew Chem Int Ed Engl ; 62(25): e202302676, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074038

RESUMEN

Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a stimulus-responsive photothermal-promoted endosomal escape delivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.


Asunto(s)
Liposomas , Nanopartículas , Ratones , Animales , ARN Mensajero , Lípidos , Fototerapia
10.
Nat Mater ; 20(11): 1571-1578, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34326504

RESUMEN

Spectrally distinct fluorophores are desired for multiplexed bioimaging. In particular, monitoring biological processes in living mammals needs fluorophores that operate in the 'tissue-transparent' near-infrared (NIR) window, that is, between 700 and 1,700 nm. Here we report a fluorophore system based on molecular erbium(III)-bacteriochlorin complexes with large Stokes shift (>750 nm) and narrowband NIR-to-NIR downconversion spectra (full-width at half-maximum ≤ 32 nm). We have found that the fast (2 × 109 s-¹) and near-unity energy transfer from bacteriochlorin triplets to the erbium(III) 4I13/2 level overcomes the notorious vibrational overtones quenching, resulting in bright and long-lived (1.73 µs) 1,530 nm luminescence in water. We demonstrate the excitation/emission-multiplexed capability of the complexes in the visualization of dynamic circulatory and metabolic processes in living mice, and through skull tracking of cancer cell metastases in mouse brain. This hybrid probe system facilitates robust multiplexed NIR imaging with high contrast and spatial resolution for applications ranging from fluorescence-guided surgery, diagnostics and intravital microscopy.


Asunto(s)
Erbio , Porfirinas , Animales , Colorantes Fluorescentes , Espectroscopía Infrarroja Corta/métodos
11.
Nanotechnology ; 33(45)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35914509

RESUMEN

High-efficiency bi-functional electrocatalysts with long-term stability are critical to the development of many kinds of fuel cells, because that the performance of battery is limited by the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, porous MCo2O4(M = Zn, Cu, Fe, Mn) were prepared by hydrothermal method with NH4F and urea as surfactants. FeCo2O4with porous structure has more oxygen defects and the larger specific surface area than other MCo2O4(M = Zn, Cu, Mn), and it not onlysupplies more active sites but also avails the transmission of electrolyte and O2in the process of ORR and OER in 0.1 M KOH aqueous solution. Porous FeCo2O4electrode material produces less intermediate H2O2, and its ORR is mainly controlled by a 4e-reaction path. Compared with commercial Pt/C, the prepared FeCo2O4has comparable ORR activity and excellent OER activity. At the same time, the stability of FeCo2O4to ORR is significantly higher than that of commercial Pt/C. The porous FeCo2O4was prepared by facile synthesis procedure could be a potential promising bi-functional catalyst due to its high electrocatalytic activities and long-term stability for both the ORR and OER.

12.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654912

RESUMEN

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
13.
Drug Chem Toxicol ; 45(6): 2601-2612, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34551652

RESUMEN

Acrylamide (ACR) is a potential neurotoxin commonly found in the environment, as well as in food repeatedly exposed heat processing, but the mechanism underpinning ACR-induced neurotoxicity remains unclear. This study investigated the potential association and underlying signal transduction of oxidative stress, apoptosis, and autophagy associated with ACR-triggered neurotoxicity. Therefore, U87-MG cells were treated with varying ACR concentrations, while the cell activity reduction depended on the specific dosage and time parameters. Biochemical analyses showed that ACR significantly increased the reactive oxygen species (ROS), malondialdehyde (MDA), and Ca2+ levels while decreasing the glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm), finally leading to a higher cell apoptotic rate. Moreover, ACR induced U87-MG cell apoptosis and autophagy via ROS-triggered expression in the mitochondrial apoptosis pathway, NF-κB activation, and autophagosome accumulation. In addition, the autophagosome accumulation induced by ACR could probably be ascribed to blocked autophagic flux, inhibiting the autophagosomes from combining with lysosomes, while the inhibition of autophagy caused by ACR further promoted the initiation of apoptosis. In conclusion, the results indicated that the apoptotic and autophagic pathways responded to ACR-induced neurotoxicity. However, inhibited protective autophagy further promoted apoptotic progression. New insights may be derived from these cellular responses that can help develop diverse pathway strategies for assessing the risk posed by ACR.HIGHLIGHTSACR induced mitochondrial- and caspase-dependent apoptosis in U87-MG cells.ACR regulated the autophagic markers and blocked autophagic flux in U87-MG cells.ACR inhibited protective autophagy and promoted apoptotic initiation in U87-MG cells.


Asunto(s)
Acrilamida , FN-kappa B , Especies Reactivas de Oxígeno/metabolismo , Acrilamida/toxicidad , Neurotoxinas/farmacología , Apoptosis , Autofagia , Transducción de Señal , Estrés Oxidativo , Mitocondrias , Malondialdehído/metabolismo , Glutatión/metabolismo
14.
Nano Lett ; 21(9): 3721-3730, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33891423

RESUMEN

Chemo-immunotherapy combination effect remains to be a great challenge due to the poor tumor penetration of therapeutic agents that resulted from condensed extracellular matrix (ECM), T cell-related immune escape, and thus the potential recurrence. Herein, a helix self-assembly camptothecin (CPT) prodrug with simultaneous physical and physiological tumor penetration was constructed to realize effective chemo-immunotherapy. Specifically, CPT was modified with arginine to self-assemble into nanofibers to physically improve tumor penetration. Two plasmids, pshPD-L1 and pSpam1 for expressing small hairpin RNA PD-L1 and hyaluronidase, respectively, were loaded to down-regulate tumor surface PD-L1 expression for converting anergic state of T cells into the tumor-reactive T cells and produce hyaluronidase to physiologically degrade ECM for further enhanced tumor penetration. Moreover, the degraded ECM could also increase immune cells' infiltration into tumor sites, which may exert a synergistic antitumor immunity combined with immune checkpoint inhibition. Such a nanomedicine could cause significant inhibition of primary, distant tumors, and effective prevention of tumor recurrence.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Línea Celular Tumoral , Humanos , Inmunoterapia , Nanomedicina , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico
15.
Angew Chem Int Ed Engl ; 61(24): e202117436, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35294084

RESUMEN

Photon excitation and emission at the NIR-II spectral window enable high-contrast deep-tissue bioimaging. However, multiplexed imaging with NIR-II excitation and emission has been hampered by the limited chemical strategies to develop bright fluorophores with tunable absorption in this spectral regime. Herein, we developed a series of heptamethine cyanines (HCs) with varied absorption/emission maxima spanning from 1100 to 1600 nm through a physical organic approach. A bulky counterion paired to HCs was found to elicit substantial improvements in absorptivity (7-fold), brightness (14-fold), and spectral profiles in water, addressing a notorious quenching problem of NIR-II cyanines due to aggregation and polarization. We demonstrated the utilities of HC1222 and HC1342 for high-contrast dual-color imaging of circulatory system, lymphatic structures, tumor, and organ function in living mice under 1120 nm and 1319 nm excitation, showing HCs as a promising platform for non-invasive bioimaging.


Asunto(s)
Neoplasias , Imagen Óptica , Animales , Colorantes Fluorescentes/química , Ionóforos , Ratones , Imagen Óptica/métodos , Fotones
16.
Angew Chem Int Ed Engl ; 61(47): e202209592, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36175373

RESUMEN

Designing luminescence lifetime sensors in the second near-infrared (NIR-II) window is a great challenge due to the difficult structural construction. Here, we report a tumor redox responsive and easily synthesized material, amorphous manganese oxide (MnOx ) with indirect band gap of 1.02 eV, as an energy acceptor to build a luminescence resonance energy transfer (LRET) toolbox for universally regulating NIR-I to NIR-II luminescence lifetimes of lanthanide nanoparticles, in which energy transfer is based on matched energy gap instead of conventional overlapped spectra. We further utilize ytterbium (Yb3+ )-doped YbNP@MnOx as an NIR-II luminescence lifetime sensor to realize in vitro quantitative redox visualization with relative errors under 5 % in samples covered with mouse skin. Furthermore, HepG2 cells and tumors with high redox state have been accurately distinguished by NIR-II luminescence lifetime imaging. The quantified intracellular and intratumor glutathione (GSH) levels are highly consistent with the commercial kit results, illustrating the reliable redox visualization ability in biological tissue.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas del Metal , Nanopartículas , Neoplasias , Ratones , Animales , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Nanopartículas/química , Glutatión , Espectroscopía Infrarroja Corta , Oxidación-Reducción
17.
Angew Chem Int Ed Engl ; 61(16): e202200025, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35170174

RESUMEN

We present a second near-infrared (NIR-II) self-checking molecule, LET-1052, for acidic tumor microenvironment (TME) turn-on photothermal therapy (PTT), followed by viscosity based therapeutic efficacy evaluation by itself in two independent channels, denoted as "self-checking" strategy. In acidic TME, LET-1052 was protonated and turned on NIR-II absorption for PTT under 1064 nm laser irradiation. Subsequently, PTT-induced cellular death increases intracellular viscosity, which inhibited the intramolecular rotation of LET-1052, resulting in the enhancement of NIR-I fluorescence for real-time evaluation of PTT efficacy. After PTT of tumor-bearing mice for different periods of NIR-II laser irradiation, NIR-I fluorescence in the tumor region showed positive correlation with tumor growth inhibition rate, demonstrating reliable and prompt prediction of PTT efficacy. The strategy may be expanded for instant evaluation of other therapeutic modalities for personalized medicine.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Animales , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Ratones , Fototerapia , Medicina de Precisión , Viscosidad
18.
Angew Chem Int Ed Engl ; 61(5): e202114273, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34850517

RESUMEN

Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmax Φf>1000 nm <10 M-1 cm-1 ) and limited blood circulation time (t1/2 <2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmax Φf>1000 nm ≈60 M-1 cm-1 ), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2 ≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2 <2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.


Asunto(s)
Tiempo de Circulación Sanguínea
19.
Pharmacol Res ; 166: 105517, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636349

RESUMEN

As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.


Asunto(s)
Suplementos Dietéticos , Alimentos Funcionales , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal , Humanos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología
20.
Angew Chem Int Ed Engl ; 60(10): 5091-5095, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300662

RESUMEN

Monitoring the pH in tumor lesions provides abundant physiological information. However, currently developed pH sensors only achieve sensitive detection in the settled response region around the pH transition point (pHt ). To realize tumor pH monitoring with high sensitivity within a wider response region, reported here are serial pHt adjustable sensors (pTAS) that simply regulate the component ratio of second near-infrared (NIR-II) emission aza-BODIPY (NAB) donor and pH sensitive rhodamine-based pre-acceptor (NRh) in Förster resonance energy transfer system. Combining the pH response regions of pTAS, a twofold widened pH detection range (6.11-7.22) is obtained compared to the pHt settled sensor (6.38-6.94). With an adjustable pHt , in vivo tumor pH increase and decrease processes could be dynamically visualized through dual-channel ratiometric bioimaging within the NIR-II window, with a coefficient of variation under 1 % compared to the standard pH meter.


Asunto(s)
Neoplasias/metabolismo , Microambiente Tumoral/fisiología , Animales , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Línea Celular Tumoral , Femenino , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Ratones Desnudos , Monitoreo Fisiológico/métodos , Rodaminas/síntesis química , Rodaminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA