Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Small ; 20(34): e2311621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38618662

RESUMEN

2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.

2.
J Sci Food Agric ; 104(10): 6062-6069, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38441143

RESUMEN

BACKGROUND: The objective of this investigation was to examine the impact of enzymatic hydrolysis of arabinoxylan (AX) on frozen dough quality under subfreezing conditions. The dough was subjected to freezing at -40 °C for 2 h and then stored at -9, -12, and -18 °C for 15 days. The water loss, freezable water content, water migration, and microstructure of the dough were measured. RESULTS: The dough containing 0.8% cellulase enzymatically hydrolyzed AX (CAX) required the shortest duration when traversing the maximum ice-crystal formation zone (6.5 min). The dough with xylanase enzymatically hydrolyzed AX (XAX) demonstrated a faster freezing rate than the dough with CAX. The inclusion of both XAX and CAX in the dough resulted in the lowest freezable water loss and reduced freezable water content and free-water content levels, whereas the inclusion of xylanase-cellulase combined with enzymatically hydrolyzed AX resulted in higher free-water content levels. The textural properties of the subfreezing temperature dough were not significantly different from the dough stored at -18 °C and sometimes even approached or surpassed the quality observed in the control group rather than the dough stored at -18 °C. In addition, the gluten network structure remains well preserved in XAX- and CAX-containing doughs with minimal starch damage. CONCLUSION: The enzymatic hydrolysis of AX from wheat bran can be used as a useful additive to improve the quality of frozen dough. © 2024 Society of Chemical Industry.


Asunto(s)
Harina , Congelación , Triticum , Xilanos , Xilanos/química , Xilanos/metabolismo , Hidrólisis , Harina/análisis , Triticum/química , Triticum/metabolismo , Agua/química , Celulasa/química , Celulasa/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Pan/análisis , Manipulación de Alimentos/métodos
3.
Arch Microbiol ; 205(1): 20, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482126

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes severe gastroenteritis. The 5'-nucleotidases of pathogens can dephosphorylate adenosine phosphates, boost adenosine levels and suppress the pro-inflammatory immune response. In our previous study, an extracellular nuclease, 5'-nucleotidase, was identified in the extracellular proteins of S. Typhimurium. However, the nuclease activity and the function of the 5'-nucleotidase of S. Typhimurium have not been explored. In the present study, deletion of the 5'-nucleotidase gene is dispensable for S. Typhimurium growth, even under environmental stress. Fluorescence microscopy revealed that the 5'-nucleotidase mutant induced more macrophage extracellular traps (METs) than the wild type did. Furthermore, recombinant 5'-nucleotidase protein (r5Nuc) could degrade λDNA, and the nuclease activity of r5Nuc was optimum at 37 °C and pH 6.0-7.0. The Mg2+ enhanced the nuclease activity of r5Nuc, whereas Zn2+ inhibited it. Meanwhile, deletion of the 5'-nucleotidase gene increased the bactericidal activity of METs, and r5Nuc could degrade METs and inhibit the bactericidal activity of METs. In conclusion, S. Typhimurium growth was independent of 5'-nucleotidase, but the nuclease activity of 5'-nucleotidase assisted S. Typhimurium to evade macrophage-mediated extracellular killing through degrading METs.


Asunto(s)
Trampas Extracelulares , Salmonella typhimurium , Salmonella typhimurium/genética , Macrófagos
4.
Luminescence ; 37(6): 944-952, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338676

RESUMEN

Inorganic-organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+ -doped LaF3 (LaF3 :Eu3+ ) nanoparticles were prepared using a hydrothermal method, and were then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2'-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic-organic mixed hybrid nanostructures was particularly enhanced, and covered the whole ultraviolet band region of solar light on Earth. The prepared composites exhibited good optical properties.

5.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 903-907, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543589

RESUMEN

A wavelength demultiplexing (WDM) structure based on graphene nanoribbon resonators is proposed and simulated using the finite-difference time-domain (FDTD) method. Based on a simple structure, the demultiplexing wavelength and transmission characteristics of the WDM can be tuned by adjusting the length of the resonator, the nanoribbon width, or the chemical potential of graphene within a relative broadband frequency range. Moreover, the mechanism of the proposed WDM structure is analyzed in detail using the theory of Fabry-Perot (F-P) resonance and temporal coupled-mode theory. The proposed structure has promising potential in the field of ultracompact WDM systems in highly integrated optical circuits.

6.
J Nanosci Nanotechnol ; 19(9): 5661-5666, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30961722

RESUMEN

Well dispersed CeO2 nanoparticles are prepared by azeotropic co-precipitation method. (Ba0.96Ca0.04)(Ti0.90Sn0.10)O3 lead-free piezoelectric ceramics doped with nano-CeO2 (x =0 mol%, 0.03 mol%, and 0.07 mol%) and micro-CeO2 (x = 0.03 mol%) are prepared at 1430 °C for 2 h by the conventional solid state sintering method. XRD diffraction indicates that all components have typical perovskite structure. Both doping of nano-CeO2 and micro-CeO2 can inhibit grain growth. And the average grain size decreased apparently with the increase of nano-CeO2 amount. All the samples exhibit typical diffuse phase transition behavior. The optimized electrical performances are obtained at x = 0.03 mol% with d33 = 512 pC/N, kp = 41.5%, and Pr = 14.00 µC/cm².

7.
Angew Chem Int Ed Engl ; 58(3): 722-726, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30403435

RESUMEN

Hydrogenation of CO2 to formate with H2 in the absence of transition metal is a long-standing challenge in catalysis. The reactions between tris(pentafluorophenyl)borane (BCF) and K2 CO3 (or KHCO3 ) are found to form a Lewis pair (K2 [(BCF)2 -CO3 ]) which can react with both H2 and CO2 to produce formate. Based on these stoichiometric reactions, the first catalytic hydrogenation process of CO2 to formate using transition metal free catalyst (BCF/M2 CO3 , M=Na, K, and Cs) is reported. The highest TON value of this catalytic process is up to 3941. Further research revealed the reaction mechanism in which the Lewis pair enables the splitting of H2 and the insertion of CO2 into the B-H bond.

8.
J Nanosci Nanotechnol ; 18(6): 4222-4229, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442766

RESUMEN

Nickel oxide (NiOx) films were deposited onto ITO-coated glass at room temperature by DC magnetron sputtering and the electrochromic properties were investigated. The effects of film thickness on structure, morphology, electrochemical and electrochromic properties of NiOx films were systematically studied. X-ray diffraction and scanning electron microscopy results indicate NiOx films have the polycrystalline structure and the crystallinity improves with the increase of thickness. In atomic force microscopy analysis, the surface roughness of NiOx films increases as the thickness increases and large roughness is obtained in the films of more than 300 nm. The electrochemical properties were measured by using conventional three-electrode configuration in 1 M LiClO4-PC electrolyte and all the samples show good cyclic stability. A transmittance modulation of 62% between colored and bleached state at 550 nm wavelength is obtained for 500 nm thick film and the high color efficiencies of more than 62 cm2C-1 are obtained in NiOx films. However, coloring and bleaching response times increase with the increase of thickness because of the larger depth of charge insertion/extraction. The results confirm that magnetron sputtering technology provides a feasibility for electrochromic devices with excellent electrochromic performance.

9.
J Nanosci Nanotechnol ; 18(7): 4814-4821, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442661

RESUMEN

Nickel oxide (NiOx) films were deposited onto ITO-coated glass at room temperature by DC magnetron sputtering in Ar/O2 mixing gas. The effect of O2 concentration on structure, morphology, electrochemical and electrochromic properties of NiOx films was systematically investigated. X-ray diffraction results showed NiOx films had the polycrystalline structure. NiOx films deposited at low O2 concentration had the preferred (200) peak. On the other hand, the films exhibited the strong (111) peak at high O2 concentration. Small roughness and grain size of NiOx film deposited at 15% O2 concentration were observed by atomic force microscope and scanning electron microscope results, and small crystallite size was obtained from the XRD data which leads to the good cyclic durability. The large transmittance modulation, high color efficiency and fast coloring/bleaching response time make NiOx films suitable to be applied as an anodic coloring material complemented with WO3 electrochromic window.

10.
Chemphyschem ; 16(10): 2106-9, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25952008

RESUMEN

A new CO2 fixation process into solid CO2 -storage materials (CO2 SMs) under mild conditions has been developed. The novel application of amine-glycol systems to the capture, storage, and utilization of CO2 with readily available 1,2-ethanediamine (EDA) and ethylene glycol derivatives (EGs) was demonstrated. Typically, the CO2 SMs were isolated in 28.9-47.5 % yields, followed by extensive characterization using (13) C NMR, XRD, and FTIR. We found that especially the resulting poly-ethylene-glycol-300-based CO2 SM (PCO2 SM) product could be processed into stable tablets for CO2 storage; the aqueous PCO2 SM solution exhibited remarkable CO2 capturing and releasing capabilities after multiple cycles. Most importantly, the EDA and PEG 300 released from PCO2 SM were found to act as facilitative surfactants for the multiple preparation of CaCO3 microparticles with nano-layer structure.


Asunto(s)
Dióxido de Carbono/química , Glicol de Etileno/química , Etilenodiaminas/química , Tamaño de la Partícula , Propiedades de Superficie
11.
J Colloid Interface Sci ; 678(Pt A): 1109-1120, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39243477

RESUMEN

It is crucial to employ an integrated catalyst to avoid the complications of the recovery process. This work reports the fabrication of porous carbon@ionic liquid (PC@IL) composites with readily accessible active ion sites, achieved by confining cross-linked ionic liquid (IL) within the channels of porous carbon (PC). The incorporation of porous carbon not only confines the IL within its framework, creating microsites for CO2 adsorption and conversion, but also simplifies catalyst recovery. The results indicate that PC@IL composites exhibit excellent cycloaddition activity towards CO2 in a co-catalyst- and solvent-free environment. Notably, PC@IL(C)-24 demonstrates remarkable catalytic performance across various epoxides under 1 bar of CO2, with yields above 90 % at 90 °C for 12 h, and achieving a remarkable styrene carbonate yield of up to 92.8 % under a CO2 pressure of 1 bar (at 100 °C for 12 h). Control experiments confirm that the confinement effect exerted by N,S co-doped carbon on cross-linked IL plays a pivotal role in enhancing both stability and activity of PC@IL composites, thereby providing novel insights for designing functionalized porous carbon catalysts for CO2 cycloaddition conversion.

12.
Chemosphere ; 349: 140877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061559

RESUMEN

Solid waste and heavy metal pollution are long-term and challenging subjects in the field of environmental engineering. In this study, we propose a sustainable approach to "treating waste with waste" by utilizing the ultramicropore biochar derived from solid waste distiller's grains as a means to remove Cr(VI) from simulated wastewater and wet phosphoric acid. The biochar prepared in this research exhibit extremely high specific surface areas (up to 2973 m2/g) and a well-developed pore structure, resulting in a maximum Cr(VI) adsorption capacity of 426.0 mg/g and over 99% removal efficiency of Cr(VI). Furthermore, the adsorbent can be reused for up to eight cycles without significant reduction in its Cr(VI) adsorption performance. Mechanistic investigations suggest that the exceptional Cr(VI) adsorption capacity can be attributed to the synergistic effect of electrostatic interaction and reduction adsorption. This study offers an alternative approach for the resource utilization of solid waste distiller's grains, and the prepared biochar holds promise for the removal of Cr(VI) from wastewater and wet-process phosphoric acid.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Residuos Sólidos , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Cromo/química , Adsorción , Cinética
13.
IEEE Trans Pattern Anal Mach Intell ; 46(8): 5245-5259, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38319773

RESUMEN

Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging and nascent problem. The leading method mainly considers the local explanations, i.e., important subgraph structure and node features, to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized at the instance level. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, training the explanation model explaining for each instance is time-consuming for large-scale real-life datasets. In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which renders PGExplainer a natural approach to multi-instance explanations. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting without training the model for new instances. Thus, PGExplainer is much more efficient than the leading method with significant speed-up. In addition, the explanation networks can also be utilized as a regularizer to improve the generalization power of existing GNNs when jointly trained with downstream tasks. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline.

14.
Nanoscale Horiz ; 9(8): 1372-1378, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38895819

RESUMEN

Graphene modulators are considered a potential solution for achieving high-efficiency light modulation, and graphene-silicon hybrid-integrated modulators are particularly favorable due to their CMOS compatibility and low cost. The exploitation of graphene modulator latent capabilities remains an ongoing endeavour to improve the modulation and energy efficiency. Here, high-efficiency graphene-silicon hybrid-integrated thermal and electro-optical modulators are realized using gold-assisted transfer. We fabricate and demonstrate a microscale thermo-optical modulator with a tuning efficiency of 0.037 nm mW-1 and a high heating performance of 67.4 K µm3 mW-1 on a small active area of 7.54 µm2 and a graphene electro-absorption modulator featuring a high speed data rate reaching 56 Gb s-1 and a low power consumption of 200 fJ per bit. These devices show superior performance compared to the state of the art devices in terms of high efficiency, low process complexity, and compact device footage, which can support the realization of high-performance graphene-silicon hybrid-integrated photonic circuits with CMOS compatibility.

15.
ACS Omega ; 8(33): 30640-30645, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636962

RESUMEN

Copper hydride (CuH) complexes have been proposed as key intermediates in synthesis and catalysis. Herein, we developed a highly efficient strategy for CuH-catalyzed N-methylation of aromatic and aliphatic amines using paraformaldehyde and polymethylhydrosiloxane (PMHS) under mild reaction conditions. The reaction proceeded smoothly without additives to furnish the corresponding N-methylated products using cyclic(alkyl)(amino)carbene (CAAC)CuH as a reaction intermediate, which results from a reaction between PMHS and (CAAC)CuCl.

16.
ACS Appl Mater Interfaces ; 15(25): 30543-30552, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315213

RESUMEN

The development of highly efficient orange and red thermally activated delayed fluorescence (TADF) materials for constructing full-color and white organic light-emitting diodes (OLEDs) remains insufficient because of the formidable challenges in molecular design, such as the severe radiationless decay and the intrinsic trade-off between the efficiencies of radiative decay and reverse intersystem crossing (RISC). Herein, we design two high-efficiency orange and orange-red TADF molecules by constructing intermolecular noncovalent interactions. This strategy could not only ensure high emission efficiency via suppression of the nonradiative relaxation and enhancement of the radiative transition but also create intermediate triplet excited states to ensure the RISC process. Both emitters exhibit typical TADF characteristics, with a fast radiative rate and a low nonradiative rate. Photoluminescence quantum yields (PLQYs) of the orange (TPA-PT) and orange-red (DMAC-PT) materials reach up to 94 and 87%, respectively. Benefiting from the excellent photophysical properties and stability, OLEDs based on these TADF emitters realize orange to orange-red electroluminescence with high external quantum efficiencies reaching 26.2%. The current study demonstrates that the introduction of intermolecular noncovalent interactions is a feasible strategy for designing highly efficient orange to red TADF materials.

17.
ACS Appl Mater Interfaces ; 15(18): 22744-22751, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37116067

RESUMEN

Photon-electron interactions are essential for many areas such as energy conversion, signal processing, and emerging quantum science. However, the current demonstrations are typically targeted to fiber and on-chip applications and lack of study in wave space. Here, we introduce a concept of optoelectronic metasurface that is capable of realizing direct and efficient optical-microwave interactions in free space. The optoelectronic metasurface is realized via a hybrid integration of microwave resonant meta-structures with a photoresponsive material. As a proof of concept, we construct an ultrathin optoelectronic metasurface using photodiodes that is bias free, which is modeled and analyzed theoretically by using the light-driven electronic excitation principle and microwave network theory. The incident laser and microwave from the free space will interact with the photodiode-based metasurface simultaneously and generate strong laser-microwave coupling, where the phase of output microwave depends on the input laser intensity. We experimentally verify that the reflected microwave phase of the optoelectronic metasurface decreases as the incident laser power becomes large, providing a distinct strategy to control the vector fields by the power intensity. Our results offer fundamentally new understanding of the metasurface capabilities and the wave-matter interactions in hybrid materials.

18.
Adv Sci (Weinh) ; 10(23): e2300808, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37279379

RESUMEN

The development of orange-red/red thermally activated delayed fluorescence (TADF) materials with both high emission efficiencies and short lifetimes is highly desirable for electroluminescence (EL) applications, but remains a formidable challenge owing to the strict molecular design principles. Herein, two new orange-red/red TADF emitters, namely AC-PCNCF3 and TAC-PCNCF3, composed of pyridine-3,5-dicarbonitrile-derived electron-acceptor (PCNCF3) and acridine electron-donors (AC/TAC) are developed. These emitters in doped films exhibit excellent photophysical properties, including high photoluminescence quantum yields of up to 0.91, tiny singlet-triplet energy gaps of 0.01 eV, and ultrashort TADF lifetimes of less than 1 µs. The TADF-organic light-emitting diodes employing the AC-PCNCF3 as emitter achieve orange-red and red EL with high external quantum efficiencies of up to 25.0% and nearly 20% at doping concentrations of 5 and 40 wt%, respectively, both accompanied by well-suppressed efficiency roll-offs. This work provides an efficient molecular design strategy for developing high-performance red TADF materials.

19.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683659

RESUMEN

In this paper, the molecular sieve NaZSM-5 was modified with zirconium dioxide (ZrO2) by a hydrothermal coating process and other methods. By comparing the effects of the crystal phase structure of ZrO2 and the compositing method on the physicochemical properties and catalytic performance of the obtained composites, the structure-performance relationship of these composite catalysts was revealed. The results indicate that in the hydrothermal system used for the preparation of NaZSM-5, Zr4+ is more likely to dissolve from m-ZrO2 than from t-ZrO2, which can subsequently enter the molecular sieve, causing a greater degree of desiliconization of the framework. The larger specific surface area (360 m2/g) and pore volume (0.52 cm3/g) of the m-ZrO2/NaZSM-5 composite catalyst increase the exposure of its abundant acidic (0.078 mmol/g) and basic (0.081 mmol/g) active centers compared with other composites. Therefore, this catalyst exhibits a shorter induction period and better catalytic performance. Furthermore, compared with the impregnation method and mechanochemical method, the hydrothermal coating method produces a greater variety of acid-base active centers in the composite catalyst due to the hydrothermal modifying effect.

20.
Nanomaterials (Basel) ; 12(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889558

RESUMEN

Organic light-emitting diodes (OLEDs) with tunable emission colors, especially white OLEDs, have rarely been observed with a single emitter in a single emissive layer. In this paper, we report a new compound featuring a D-A-D structure, 9,9'-(pyrimidine-2,5-diylbis(2,1-phenylene))bis(3,6-di-tert-butyl-9H-carbazole) (PDPC). A nondoped OLED using this compound as a single emitter exhibits unique voltage-dependent dual emission. The emission colors range from blue to orange-red with an increase in voltage, during which white electroluminescence with a Commission Internationale De L'Eclairage (CIE) coordinate of (0.35, 0.29) and a color render index (CRI) value of 93 was observed. A comparative study revealed that the dual emission simultaneously originates from the monomers and excimers of the emitter. This study provides insight into understanding the multimer-excited mechanism and developing novel color-tunable OLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA