Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38648079

RESUMEN

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Ornitina Descarboxilasa , Femenino , Humanos , Masculino , Células A549 , Autofagia/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética , Pronóstico , Regulación hacia Arriba
2.
Gynecol Obstet Invest ; 88(4): 197-213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36934719

RESUMEN

OBJECTIVE: The objective of this study was to explore the inhibitory effect of total flavonoids of Polygala fallax Hemsl (PFHF) on human ectopic endometrial stromal cells (HEcESCs) and its mechanism. DESIGN: The apoptosis, cell cycle, migration, and invasion ability of HEcESCs (Fresh human ovarian endometriosis tissue was used for primary culture) after PFHF treatment were detected, and the mechanism of action was explored. MATERIALS: The Polygala fallax Hemsl (PFH), RPMI 1640 culture medium, Dulbecco's modified Eagle's medium (DMEM)/F-12, fetal bovine serum, penicillin/streptomycin, cell counting kit-8 (CCK-8) kit, trypsin, phenylmethylsulfonyl fluoride, radioimmunoprecipitation assay tissue/cell lysate, bicinchoninic acid protein concentration detection kits, protein loading buffer, the apoptosis and cell cycle extraction kits, the matrix glue, TRIzol Universal Reagent, the reverse transcription kit, AB HS Green qPCR Mix, the ECL chromogenic solution, enzyme labeling instrument, flow cytometry, automatic real-time fluorescence quantitative PCR instrument, Goat anti-rabbit, rabbit anti-ß-actin, vimentin, phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), Bcl-extra long (Bcl-xl), Bcl-2 associated death promoter (Bad) antibody, Alexa Fluor 594-labeled secondary antibody, the inverted microscope, the constant temperature carbon dioxide cell incubator. SETTING: Five parts included introduction, materials and methods, results, discussion, and conclusion. METHODS: The potential targets and pathways of PFHF in the treatment of endometriosis were predicted by network pharmacology. The effect of PFHF on the proliferation, apoptosis and cell cycle, migration, and invasion of HEcESCs was detected by CCK-8 method, flow cytometry, and Transwell chamber experiment. Label-free quantitative proteomics based on mass spectrometry was used to analyze the protein mass spectrum of differential expression of HEcESCs before and after PFHF, and the biological information was analyzed. The effects of PFHF on the mRNA and protein expression of pathway-related genes predicted in HEcESCs were detected by reverse transcription-quantitative polymerase chain reaction and Western blotting. RESULTS: The network pharmacology predicts that PFHF treats endometriosis through PI3K/AKT signaling pathway. Compared with control group (DMEM/F-12 medium alone), the high dose PFHF can significantly reduce the viability, migration, and invasion of HEcESCs, increase the apoptosis rate of HEcESCs, and make the HEcESCs accumulated in G0/G1 phase in a time- and dose-dependent manner (p < 0.05). The analysis of label-free quantitative proteomics indicated that PFHF flavonoids may induce apoptosis of EESCs through PI3K/AKT signaling pathway. The results of RT-qPCR and Western blotting showed that the expressions of PI3K, AKT, Bcl-2, and Bcl-xl were significantly downregulated, while the bad expression was upregulated in HEcESCs treated with PFHF (p < 0.05). LIMITATIONS: This research investigated the effects of PFHF on the stromal endometriotic cells only. So it is unknown how PFHF can affect the entire endometriotic lesion. And the research is carried out in vitro, which gives no impression about the bioavailability of the flavonoids. CONCLUSION: PFHF reduces the expression of PI3K, AKT, Bcl-2, and Bcl-xl through the PI3K/AKT/Bcl-2 signaling pathway to inhibit HEcESCs proliferation, migration, and invasion and promote their apoptosis.


Asunto(s)
Endometriosis , Polygala , Femenino , Animales , Humanos , Conejos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Polygala/metabolismo , Flavonoides/farmacología , Endometriosis/tratamiento farmacológico , Transducción de Señal , Apoptosis , Células del Estroma/metabolismo , Proliferación Celular
3.
J Sep Sci ; 44(13): 2524-2535, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33939879

RESUMEN

Panzerina lanata is a Chinese medicine with the bioactivity of detumescence and detoxification. In this study, novel qualitative and quantitative methods were established by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and ultra-high-performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry, respectively. As a result, 20 compounds were identified or tentatively characterized including flavonoids, organic acids, alkaloids, and lignans, five of which were identified for the first time based on the reference standards. The quantitative approach exhibited good linearity (R2  > 0.995), precision (RSDs < 4.97%), stability (RSDs < 4.77%), and recovery (96.04-104.14%). Afterward, this method was implemented to determine 11 flavonoids in four batches of P. lanata. Among them, seven compounds were quantified for the first time. Narcissin was abundant in each batch of P. lanata (average of 10.890-14.230 mg/g) with the highest quantities. The results provide valuable information for quality evaluation.


Asunto(s)
Medicamentos Herbarios Chinos/química , Lamiaceae/química , Extractos Vegetales/química , Alcaloides/análisis , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Lignanos/análisis , Límite de Detección , Espectrometría de Masas en Tándem/métodos
4.
ACS Omega ; 9(32): 34303-34313, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157086

RESUMEN

OBJECTIVES: To examine the anti-inflammatory properties and underlying mechanisms of Tongfeng Li'an Granules (TFLA), a traditional medicine, in acute gouty arthritis using a rat model. MATERIALS AND METHODS: We identified 55 major compounds in TFLA via ultrahigh-performance liquid chromatography connected to quadrupole time-of-flight mass spectrometry (UPLC-TQF-MS/MS). Databases were employed for the prediction of potential targets, followed by PPI network construction as well as GO and KEGG analyses. After network-pharmacology-based analysis, a rat gouty arthritis model was used to validate the anti-inflammatory mechanism of TFLA. RESULTS: UPLC-TQF-MS/MS and network pharmacology analyses revealed 55 active ingredients and 160 targets of TFLA associated with gouty arthritis, forming an ingredient-target-disease network. The PPI network identified 20 core targets, including TLR2, TLR4, IL6, NFκB, etc. Functional enrichment analyses highlighted the Toll-like receptor signaling pathway as significantly enriched by multiple targets, validated in in vivo experiments. Animal experiments demonstrated that TFLA improved pathological changes in gouty joint synovium, with decreased ankle joint circumference, serum IL6, IL10, and TNFα levels, as well as reduced protein and mRNA expression of NLRP3, TLR2, and TLR4 in ankle joint synovial tissue observed in the middle- and high-dose TFLA and positive control groups compared to the model group (p < 0.05). CONCLUSION: This research elucidated the pharmacological mechanisms of TFLA against gouty arthritis, implicating various ingredients, targets, and signaling pathways. Animal experiments confirmed TFLA's efficacy in alleviating inflammation in acute gouty arthritis by modulating Toll-like receptor signaling and NLRP3 expression.

5.
Front Chem ; 10: 889441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494635

RESUMEN

Eight new phenolic compounds, named bercheminols A-H (1-8), and eleven known analogues were isolated from the stems and leaves of Berchemia lineata (L.) DC. Their structures including the absolute configurations were elucidated by extensive spectroscopic analysis, chemical method, and quantum chemical calculations. Compound 1 possesses an unprecedented 3,4-dihydro-11H-benzo[b]pyrano[4,3-e] oxepin-11-one skeleton. The other new compounds belong to three structural types of natural products, including naphthopyrones (2-5), flavonoids (6-7), and bibenzyl (8). The α-glucosidase inhibitory activities of the isolated compounds were assayed. As a result, vittarin-B (9), rubrofusarin-6-O-ß-D-glucopyranoside (11), quercetin (14), kaempferol (15), and dihydrokaempferol (17) showed moderate inhibitory activities against α-glucosidase with IC50 values of 22.5, 28.0, 36.5, 32.7, and 31.9 µM, respectively.

6.
Biomed Res Int ; 2021: 6682525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34337044

RESUMEN

The aim of the study is to examine the mechanism of Aralia armata (Wall.) Seem (AAS) in improving intimal hyperplasia after vascular injury in rats. Rats with femoral artery injury were randomly divided into three groups: the model group, AAS low-dose group (40 mg/kg), and AAS high-dose group (80 mg/kg). The sham operation group was used as a control group. HE staining was used to observe the changes in femoral artery vessels. Immunohistochemistry was adopted to detect α-SMA, PCNA, GSK-3ß, and ß-catenin proteins in femoral artery tissue. The CCK-8 test and wound healing assay were employed to analyze the effect of AAS on proliferation and migration of vascular smooth muscle cells (VSMCs) cultured in vitro. Western blotting (WB) and polymerase chain reaction (PCR) assays were used to evaluate the molecular mechanism. AAS reduced the stenosis of blood vessels and the protein expressions of α-SMA, PCNA, GSK-3ß, and ß-catenin compared to the model group. In addition, AAS (0-15 µg/mL) effectively inhibited the proliferation and migration of VSMCs. Moreover, the results of WB and PCR showed that AAS could inhibit the activation of ß-catenin induced by 15% FBS and significantly decrease the expression levels of Wnt3α, Dvl-1, GSK-3ß, ß-catenin, and cyclin D1 in the upstream and downstream of the pathway. AAS could effectively inhibit the proliferation and migration of neointima after vascular injury in rats by regulating the Wnt/ß-catenin signaling pathway.


Asunto(s)
Aralia/química , Regulación hacia Abajo , Neointima/tratamiento farmacológico , Lesiones del Sistema Vascular/tratamiento farmacológico , Proteína Wnt3/metabolismo , beta Catenina/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Proteínas Dishevelled/metabolismo , Arteria Femoral/patología , Regulación de la Expresión Génica , Hiperplasia , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima/genética , Neointima/patología , Ratas Sprague-Dawley , Saponinas/química , Saponinas/uso terapéutico , Suero , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
7.
Springerplus ; 5(1): 658, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27347459

RESUMEN

The genus Berchemia comprises important Chinese plants with considerable medicinal value; however, these plants are often misidentified in the herbal medicinal market. To differentiate the various morphotypes of Berchemia species, a proficient method employing the screening of universal DNA barcodes was used in this work. Three candidate barcoding loci, namely, psbA-trnH, rbcL, and the second internal transcribed spacer (ITS2), were used to identify an effective DNA barcode that can differentiate the various Berchemia species. Additionally, PCR amplification, efficient sequencing, intra- and inter-specific divergences, and DNA barcoding gaps were employed to assess the ability of each barcode to identify these diverse Berchemia plants authentically; the species were differentiated using the Kimura two-parameter and maximum composite likelihood methods. Sequence data analysis showed that the ITS2 region was the most suitable candidate barcode and exhibited the highest interspecific divergence among the three DNA-barcoding sequences. A clear differentiation was observed at the species level, in which a maximum distance of 0.264 was exhibited between dissimilar species. Clustal analysis also demonstrated that ITS2 clearly differentiated the test species in a more effective manner than that with the two other barcodes at both the hybrid and variety levels. Results indicate that DNA barcoding is ideal for species-level identification of Berchemia and provides a foundation for further identification at the molecular level of other Rhamnaceae medicinal plants.

8.
J Med Food ; 17(7): 787-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24940817

RESUMEN

This study investigated the active components and the anti-tumor efficacy and mechanisms of the flavonoids from Docynia delavayi (Franch.) Schneid. (DDS). MTT assay was used to examine the growth inhibitory effects of the four flavonoids, including chrysin, quercetin, naringenin, and avicularin that were isolated from the rhizome of DDS, on human hematomas cell (HepG2), esophageal carcinoma cell (EC109), human cervical adenocarcinoma cell (Hela), human colon adenocarcinoma cell (SW480), and African green monkey kidney cell (Vero cells). The anti-tumor mechanism of chrysin on HepG2 was further investigated by the methods of fluorescence staining, flow cytometry, and immunoblotting. The results showed that the inhibitory activity of chrysin was much stronger than the other three flavonoids on HepG2, EC109, Hela, and SW480 cells for 48 h treatment in vitro. Moreover, no inhibiting effect of chrysin on the proliferation of normal cells (Vero cells) was observed. Further study revealed that chrysin caused HepG2 cell shrinkage, membrane blebbing, and apoptotic body formation, all of which were typical characteristics of apoptosis programmed cell death. Flow cytometric analysis demonstrated that chrysin increased the sub G0/G1 population, which indicated the increased cell apoptosis, thus preventing cells from entering the S phase as the population in G2/M or S phase declined; whereas in G0/G1 phase, it increased. In addition, immunoblot results showed that chrysin significantly increased the expression levels of caspase-3 and Bax proteins, and it decreased the expression level of B-cell lymphoma/leukemia-2 (Bcl-2) protein. These findings indicate that chrysin is the major flavonoid present in DDS, and it induces HepG2 cell death via apoptosis, probably through the participation of caspase-3, Bax, and Bcl-2 proteins.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Rosaceae/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Regulación hacia Abajo , Células HeLa , Células Hep G2 , Humanos , Regulación hacia Arriba , Células Vero , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
9.
Food Chem Toxicol ; 50(9): 3166-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22687553

RESUMEN

The fruit of Docynia delavayi (Franch.) Schneid is a kind of popular food in southwestern areas of China. Additionally, its rhizome has been long used as a folk medicine in the treatment of liver cancer by local people. Chrysin is a kind of flavonoid which induces cancer cell death in vitro. However, its anti-tumor activity in vivo and toxicological effects on the tumor-bearing animals still remain poorly understood. In this study, we obtained four flavonoids from this herb. Among them, chrysin showed the strongest cytotoxic effect on an array of cultured tumor cells. Further investigations revealed that it significantly repressed transplanted H22 ascitic hepatic tumor cell growth in vivo. Moreover, this compound displayed little toxic effects. Additionally, we demonstrated that in transplanted tumor tissues, chrysin not only activated caspase-3 and induced apoptosis, but also inhibited the production of vascular endothelial growth factor (VEGF) and suppressed angiogenesis. These data showed that chrysin exhibited prominent anti-tumor activities and low toxic effects in vivo.


Asunto(s)
Flavonoides/farmacología , Neoplasias Hepáticas Experimentales/patología , Animales , Apoptosis , Chlorocebus aethiops , Neoplasias Hepáticas Experimentales/irrigación sanguínea , Ratones , Neovascularización Patológica , Células Vero , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA