Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276415

RESUMEN

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Asunto(s)
Crustáceos , Animales , Crustáceos/genética , Crustáceos/inmunología , Crustáceos/metabolismo , Crustáceos/microbiología , Drosophila melanogaster , Lipopolisacáridos , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba , Vibrio , Transducción de Señal , Humanos
2.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309506

RESUMEN

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Asunto(s)
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferasas , Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Ecdisterona/metabolismo , Regiones Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo
3.
J Virol ; : e0043324, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888346

RESUMEN

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.

4.
PLoS Genet ; 18(6): e1010229, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696369

RESUMEN

The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression.


Asunto(s)
Ecdisterona , Mariposas Nocturnas , Animales , Autofagia/genética , Ecdisterona/metabolismo , Técnicas de Silenciamiento del Gen , Gluconeogénesis/genética , Glucosa/metabolismo , Glicerol/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mariposas Nocturnas/genética
5.
Development ; 148(5)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692089

RESUMEN

Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with ß-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.


Asunto(s)
Ecdisterona/farmacología , Proteínas de Insectos/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Clatrina/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Endocitosis , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067252

RESUMEN

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Asunto(s)
Receptores de Inmunoglobulina Polimérica , Virus del Síndrome de la Mancha Blanca 1 , Antivirales/farmacología , Calmodulina/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/metabolismo
7.
Fish Shellfish Immunol ; 151: 109679, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844185

RESUMEN

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.

8.
Acta Pharmacol Sin ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698214

RESUMEN

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

9.
Surg Endosc ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914885

RESUMEN

BACKGROUND: Endoscopic balloon dilation (EBD) is a safe and effective treatment for Crohn's disease (CD)-associated strictures. However, serial EBDs have rarely been reported. This study aimed to evaluate the efficacy and safety of serial EBDs for treating CD-associated duodenal strictures compared with intermittent EBDs. METHODS: Patients with CD-associated duodenal strictures who underwent EBD were recruited. The clinical data, stricture characteristics, number of EBDs, dilation diameter, complications, surgical interventions, and follow-up periods were recorded. Patients were divided into a serial dilation group and an intermittent dilation group to analyze the differences in safety and efficacy. RESULTS: Forty-five patients with duodenal CD-associated strictures underwent a total of 139 dilations. A total of 23 patients in the serial dilation group underwent 72 dilations, for a median of 3 (range 3 ~ 4) dilations per patient, and 22 patients in the intermittent dilation group underwent 67 dilations, for a median of 3 (range 1 ~ 6) dilations per patient. Technical success was achieved in 97.84% (136/139) of the patients. During the follow-up period, three patients in the intermittent dilation group underwent surgery, and the total clinical efficacy was 93.33% (42/45). No difference in safety or short-term efficacy was noted between the two groups, but serial EBDs exhibited significantly greater clinical efficacy between 6 months and 2 years. No significant difference in recurrence-free survival was observed, but the median longest recurrence-free survival and recurrence-free survival after the last EBD in the serial dilation group were 693 days (range 298 ~ 1381) and 815 days (range 502 ~ 1235), respectively, which were significantly longer than the 415 days (range 35 ~ 1493) and 291 days (range 34 ~ 1493) in the intermittent dilation group (p = 0.013 and p = 0.000, respectively). At the last follow-up, the mean diameter of the duodenal lumen was 1.17 ± 0.07 cm in the serial dilation group, which was greater than the 1.11 ± 0.10 cm in the intermittent dilation group (p = 0.018). We also found that the Simple Endoscopic Score for Crohn's Disease was associated with an increased risk of surgical intervention (HR 2.377, 95% CI 1.125-5.020; p = 0.023) and recurrence at 6 months after the last EBD (HR 0.698, 95% CI 0.511-0.953; p = 0.024), as assessed by univariate analysis. CONCLUSIONS: Compared to the intermittent EBDs, serial EBDs for duodenal CD-associated strictures exhibit greater clinical efficacy within two years and could delay stricture recurrence. We suggest that serial EBDs can be a novel option for endoscopic treatment of duodenal CD-associated strictures.

10.
PLoS Genet ; 17(4): e1009514, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33901186

RESUMEN

The regulatory subunits (P60 in insects, P85 in mammals) determine the activation of the catalytic subunits P110 in phosphatidylinositol 3-kinases (PI3Ks) in the insulin pathway for cell proliferation and body growth. However, the regulatory subunits also promote apoptosis via an unclear regulatory mechanism. Using Helicoverpa armigera, an agricultural pest, we showed that H. armigera P60 (HaP60) was phosphorylated under insulin-like peptides (ILPs) regulation at larval growth stages and played roles in the insulin/ insulin-like growth factor (IGF) signaling (IIS) to determine HaP110 phosphorylation and cell membrane translocation; whereas, HaP60 was dephosphorylated and its expression increased under steroid hormone 20-hydroxyecdysone (20E) regulation during metamorphosis. Protein tyrosine phosphatase non-receptor type 6 (HaPTPN6, also named tyrosine-protein phosphatase corkscrew-like isoform X1 in the genome) was upregulated by 20E to dephosphorylate HaP60 and HaP110. 20E blocked HaP60 and HaP110 translocation to the cell membrane and reduced their interaction. The phosphorylated HaP60 mediated a cascade of protein phosphorylation and forkhead box protein O (HaFOXO) cytosol localization in the IIS to promote cell proliferation. However, 20E, via G protein-coupled-receptor-, ecdysone receptor-, and HaFOXO signaling axis, upregulated HaP60 expression, and the non-phosphorylated HaP60 interacted with phosphatase and tensin homolog (HaPTEN) to induce apoptosis. RNA interference-mediated knockdown of HaP60 and HaP110 in larvae repressed larval growth and apoptosis. Thus, HaP60 plays dual functions to promote cell proliferation and apoptosis by changing its phosphorylation status under ILPs and 20E regulation, respectively.


Asunto(s)
Proliferación Celular/genética , Insulina/genética , Metamorfosis Biológica/genética , Fosfatidilinositol 3-Quinasas/genética , Animales , Apoptosis/genética , Ecdisterona/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Larva/genética , Larva/crecimiento & desarrollo , Lepidópteros/genética , Lepidópteros/crecimiento & desarrollo , Péptidos , Fosforilación/genética , Receptores Acoplados a Proteínas G/genética , Somatomedinas
11.
BMC Biol ; 21(1): 119, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226192

RESUMEN

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Asunto(s)
Ecdisterona , Insulina , Animales , Ecdisterona/farmacología , Fosfoglicerato Quinasa/genética , Fosforilación , Apoptosis , Larva
12.
PLoS Pathog ; 17(4): e1009479, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798239

RESUMEN

Invertebrates rely on innate immunity, including humoral and cellular immunity, to resist pathogenic infection. Previous studies showed that forkhead box transcription factor O (FOXO) participates in mucosal immune responses of mammals and the gut humoral immune regulation of invertebrates. However, whether FOXO is involved in systemic and cellular immunity regulation in invertebrates remains unknown. In the present study, we identified a FOXO from shrimp (Marsupenaeus japonicus) and found that it was expressed at relatively basal levels in normal shrimp, but was upregulated significantly in shrimp challenged by Vibrio anguillarum. FOXO played a critical role in maintaining hemolymph and intestinal microbiota homeostasis by promoting the expression of Relish, the transcription factor of the immune deficiency (IMD) pathway for expression of antimicrobial peptides (AMPs) in shrimp. We also found that pathogen infection activated FOXO and induced its nuclear translocation by reducing serine/threonine kinase AKT activity. In the nucleus, activated FOXO directly regulated the expression of its target Amp and Relish genes against bacterial infection. Furthermore, FOXO was identified as being involved in cellular immunity by promoting the phagocytosis of hemocytes through upregulating the expression of the phagocytotic receptor scavenger receptor C (Src), and two small GTPases, Rab5 and Rab7, which are related to phagosome trafficking to the lysosome in the cytoplasm. Taken together, our results indicated that FOXO exerts its effects on homeostasis of hemolymph and the enteric microbiota by activating the IMD pathway in normal shrimp, and directly or indirectly promoting AMP expression and enhancing phagocytosis of hemocytes against pathogens in bacteria-infected shrimp. This study revealed the different functions of FOXO in the mucosal (local) and systemic antibacterial immunity of invertebrates.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Microbiota , Penaeidae/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vibrio/fisiología , Animales , Factores de Transcripción Forkhead/genética , Hemocitos/inmunología , Homeostasis , Inmunidad Innata , Penaeidae/inmunología , Penaeidae/microbiología , Fagocitosis/inmunología
13.
J Immunol ; 206(9): 2075-2087, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33863791

RESUMEN

White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.


Asunto(s)
Antivirales/farmacología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Ácido Linoleico/farmacología , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Animales , Antivirales/metabolismo , Ácido Linoleico/metabolismo , Pruebas de Sensibilidad Microbiana , Penaeidae
14.
J Biol Chem ; 296: 100318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33484713

RESUMEN

The insulin receptor (INSR) binds insulin to promote body growth and maintain normal blood glucose levels. While it is known that steroid hormones such as estrogen and 20-hydroxyecdysone counteract insulin function, the molecular mechanisms responsible for this attenuation remain unclear. In the present study, using the agricultural pest lepidopteran Helicoverpa armigera as a model, we proposed that the steroid hormone 20-hydroxyecdysone (20E) induces dephosphorylation of INSR to counteract insulin function. We observed high expression and phosphorylation of INSR during larval feeding stages that decreased during metamorphosis. Insulin upregulated INSR expression and phosphorylation, whereas 20E repressed INSR expression and induced INSR dephosphorylation in vivo. Protein tyrosine phosphatase 1B (PTP1B, encoded by Ptpn1) dephosphorylated INSR in vivo. PTEN (phosphatase and tensin homolog deleted on chromosome 10) was critical for 20E-induced INSR dephosphorylation by maintaining the transcription factor Forkhead box O (FoxO) in the nucleus, where FoxO promoted Ptpn1 expression and repressed Insr expression. Knockdown of Ptpn1 using RNA interference maintained INSR phosphorylation, increased 20E production, and accelerated pupation. RNA interference of Insr in larvae repressed larval growth, decreased 20E production, delayed pupation, and accumulated hemolymph glucose levels. Taken together, these results suggest that a high 20E titer counteracts the insulin pathway by dephosphorylating INSR to stop larval growth and accumulate glucose in the hemolymph.


Asunto(s)
Ecdisterona/genética , Proteína Forkhead Box O1/genética , Fosfohidrolasa PTEN/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Receptor de Insulina/genética , Animales , Ecdisterona/metabolismo , Estrógenos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Insulina/genética , Insulina/metabolismo , Metamorfosis Biológica/genética , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Fosforilación/genética , Interferencia de ARN , Transducción de Señal
15.
PLoS Genet ; 15(8): e1008331, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31412019

RESUMEN

Holometabolous insects stop feeding at the final larval instar stage and then undergo metamorphosis; however, the mechanism is unclear. In the present study, using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20-hydroxyecdysone (20E) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor, to stop larval feeding and promote pupation. DopEcR was expressed in various tissues and its level increased during metamorphic molting under 20E regulation. The 20E titer was low during larval feeding stages and high during wandering stages. By contrast, the dopamine (DA) titer was high during larval feeding stages and low during the wandering stages. Injection of 20E or blocking dopamine receptors using the inhibitor flupentixol decreased larval food consumption and body weight. Knockdown of DopEcR repressed larval feeding, growth, and pupation. 20E, via DopEcR, promoted apoptosis; and DA, via DopEcR, induced cell proliferation. 20E opposed DA function by repressing DA-induced cell proliferation and AKT phosphorylation. 20E, via DopEcR, induced gene expression and a rapid increase in intracellular calcium ions and cAMP. 20E induced the interaction of DopEcR with G proteins αs and αq. 20E, via DopEcR, induced protein phosphorylation and binding of the EcRB1-USP1 transcription complex to the ecdysone response element. DopEcR could bind 20E inside the cell membrane or after being isolated from the cell membrane. Mutation of DopEcR decreased 20E binding levels and related cellular responses. 20E competed with DA to bind to DopEcR. The results of the present study suggested that 20E, via binding to DopEcR, arrests larval feeding and promotes pupation.


Asunto(s)
Ecdisterona/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/fisiología , Receptores Dopaminérgicos/metabolismo , Animales , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Flupentixol/farmacología , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/fisiología , Muda/efectos de los fármacos , Muda/fisiología , Mariposas Nocturnas/efectos de los fármacos , Interferencia de ARN , Receptores Dopaminérgicos/genética , Células Sf9
16.
PLoS Pathog ; 15(2): e1007558, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30726286

RESUMEN

Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway.


Asunto(s)
Penaeidae/inmunología , Receptores de Inmunoglobulina Polimérica/inmunología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Animales , Acuicultura/métodos , Virus ADN , Endocitosis , Penaeidae/metabolismo , Penaeidae/patogenicidad , Unión Proteica , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas del Envoltorio Viral , Internalización del Virus , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
17.
Opt Express ; 29(7): 11277-11292, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820243

RESUMEN

Recently, chirped and tilted fiber Bragg gratings (CTFBGs) have received great attention because they can realize suppression of stimulated Raman scattering (SRS) in high-power fiber lasers. In this study, the possible coupling between the core modes and cladding modes in CTFBGs inscribed in large-mode-area double-cladding fibers is investigated for the first time. Theoretical results show that the coupling between the LP11 mode and cladding modes would destroy the transmission spectra envelope only considering the coupling of LP01 for single-mode CTFBGs, which will degenerate the SRS suppression performance. This was confirmed experimentally by measuring the spectral response under different mode excitations. A reliable method is demonstrated to ease the LP11-excitation-induced spectral deterioration by choosing an appropriate chirp rate for the inscription of CTFBGs, which is useful for improving the Raman suppression effect of large-mode-area double-cladding CTFBGs in high-power fiber lasers.

18.
Opt Express ; 29(12): 17784-17794, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154054

RESUMEN

Side-pumping combiner is used for pumping double-clad fiber in various fiber laser schemes. However, its coupling efficiency and temperature characteristics suffer when pumped via a large numerical aperture (NA) pump light. We investigated the method of optimizing the coupling efficiency of a (2 + 1) ×1 combiner under a large NA pump light injection. After optimization of taper ratio and length of the pump fiber and fusion area between pump and signal fiber, the coupling efficiency increased and the temperature characteristic improved, which could be useful for fabrication of a side-pumping combiner for high-power fiber laser applications.

19.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770540

RESUMEN

Line-by-line direct writing by femtosecond laser has been proved to be a simple and effective method for the fabrication of low-loss fiber Bragg gratings (FBGs), and is more flexible compared with the traditional ultraviolet exposure method. In this paper, the line-position-dependent characteristics of cladding modes coupling in line-by-line FBGs have been studied, to the best of our knowledge, for the first time. Both theoretical and experimental results show that off-center inscribing could compress the bandwidth of the Bragg resonance and excite more abundant cladding mode coupling, in which the core-guided fundamental mode would couple to the cladding-guided LP0n and LP1n simultaneously. By aligning the line positions across the core region, the first apodized line-by-line FBG was achieved. This work enriches the theories of line-by-line FBGs and provides an inscription guidance to meet different application requirements.

20.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068560

RESUMEN

We study here the spectral characteristics of square-wave-modulated type II long-period fiber gratings (LPFGs) inscribed by a femtosecond laser. Both theoretical and experimental results indicate that higher-order harmonics refractive index (RI) modulation commonly exists together with the fundamental harmonic RI modulation in such LPFGs, and the duty cycle of a square wave has a great influence on the number and amplitudes of higher-order harmonics. A linear increase in the duty cycle in a series of square wave pulses will induce another LPFG with a minor difference in periods, which is useful for expanding the bandwidth of LPFGs. We also propose a method to reduce insertion loss by fabricating type II LPFGs without higher-order harmonic resonances. This work intensifies our comprehension of type II fiber gratings with which novel optical fiber sensors can be fabricated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA