Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8011): 467-473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471529

RESUMEN

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Bacteriófagos , Microscopía por Crioelectrón , Inmunidad Innata , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/inmunología , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , ADN/metabolismo , ADN/química , División del ADN , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Viabilidad Microbiana , Bacillus cereus/química , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Estructura Cuaternaria de Proteína , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN-Topoisomerasas/ultraestructura
2.
Mol Cell ; 68(3): 591-604.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100056

RESUMEN

The Hippo pathway is crucial in organ size control and tissue homeostasis, with deregulation leading to cancer. An extracellular nutrition signal, such as glucose, regulates the Hippo pathway activation. However, the mechanisms are still not clear. Here, we found that the Hippo pathway is directly regulated by the hexosamine biosynthesis pathway (HBP) in response to metabolic nutrients. Mechanistically, the core component of Hippo pathway (YAP) is O-GlcNAcylated by O-GlcNAc transferase (OGT) at serine 109. YAP O-GlcNAcylation disrupts its interaction with upstream kinase LATS1, prevents its phosphorylation, and activates its transcriptional activity. And this activation is not dependent on AMPK. We also identified OGT as a YAP-regulated gene that forms a feedback loop. Finally, we confirmed that glucose-induced YAP O-GlcNAcylation and activation promoted tumorigenesis. Together, our data establish a molecular mechanism and functional significance of the HBP in directly linking extracellular glucose signal to the Hippo-YAP pathway and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transformación Celular Neoplásica/metabolismo , Glucosa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/enzimología , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Glicosilación , Células HEK293 , Células HeLa , Humanos , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Fosfoproteínas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina , Transducción de Señal , Factores de Tiempo , Factores de Transcripción , Transcripción Genética , Activación Transcripcional , Proteínas Señalizadoras YAP
3.
Microb Pathog ; : 106816, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032675

RESUMEN

Salmonella is a zoonotic pathogen posing a serious risk to the farming industry and public health due to food animals serving as reservoirs for future contamination and spread of Salmonella. The present study is designed to monitor the contamination status of Salmonella in duck farms and the main control points during breeding. 160 strains of duck-derived Salmonella were isolated from the 736 samples (cloacal swabs, feces, water, feed, soil, and air and dead duck embryos) collected in southwest Shandong Province and the province's surrounding area. The percentage of Salmonella-positive samples collected was 21.74% (160/736), and the greatest prevalence from duck embryo samples (40.00%, 36/90). These Salmonella were classified into 23 serotypes depending on their O and H antigens, in which S. Typhimurium (30.15%), S. Kottbus (13.97%) and S. Enteritidis (10.29%) were the prevailing serotypes. Subsequently, the molecular subtyping was done. Clustered regularly interspaced short palindromic repeats (CRISPR) analysis showed that 41 strains of S. Typhimurium and 14 strains of S. Enteritidis were classified into 13 and 3 genotypes, respectively. 19 S. Kottbus isolates from different sources featured ST1546, ST198, ST321, and ST1690 by multilocus sequence typing (MLST) analysis, among which ST1546 belongs to S. Kottbus was a new ST. The minimum spanning tree analysis based on the two CRISPR loci and seven MLST loci from all S. Typhimurium, S. Enteritidis and S. Kottbus isolates revealed that duck embryos, feed and water were key control points to the spread of Salmonella along the breeding chain. Meanwhile, the emergence of S. Kottbus in duck flocks was considered a potential public health hazard.

4.
Chemistry ; : e202402264, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981862

RESUMEN

Modular synthesis can combine different functional module to flexibly regulate comprehensive properties and study the diversity of compounds. This study established a modular bicyclic synthesis strategy of combining polynitro energetic module with iodine-containing biocidal module. Compounds 1-6 with high iodine content (48.72-69.56%) and high thermal stability (Td: 172-304 ˚C) were synthesized and exhaustively identified. By modular synthesis, the detonation properties and gas-production of 3-6 improved greatly expanding their biocidal efficacy and maintained the iodine atomic utilization of iodine-containing module. Notably, 4,5-diiodo-3,4',5'-trinitro-1,3'-bipyrazole (5) and 3,5-diiodo-4,4',5'-trinitro-1,3'-bipyrazole (6) exhibit high detonation velocities (D: 5903 m s-1, 5769 m s-1, respectively) and highest gas production of 212.85 L mol-1 and 217.66 L mol-1 after decomposition. This study diversifies polyiodio-nitro compounds, and also inspire the implementation of similar synthesis strategies to provide family-level synthetic solutions to energetic biocidal materials.

5.
BMC Cancer ; 24(1): 1046, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187773

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are rapidly evolving in the management of bladder cancer (BLCA). Nevertheless, effective biomarkers for predicting immunotherapeutic outcomes in BLCA are still insufficient. Ferroptosis, a form of immunogenic cell death, has been found to enhance patient sensitivity to ICIs. However, the underlying mechanisms of ferroptosis in promoting immunotherapy efficacy in BLCA remain obscure. METHODS: Our analysis of The Cancer Genome Atlas (TCGA) mRNA data using single sample Gene Set Enrichment Analysis (ssGSEA) revealed two immunologically distinct subtypes. Based on these subtypes and various other public cohorts, we identified Apolipoprotein L6 (APOL6) as a biomarker predicting the efficacy of ICIs and explored its immunological correlation and predictive value for treatment. Furthermore, the role of APOL6 in promoting ferroptosis and its mechanism in regulating this process were experimentally validated. RESULTS: The results indicate that APOL6 has significant immunological relevance and is indicative of immunologically hot tumors in BLCA and many other cancers. APOL6, interacting with acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), mediates immunotherapy efficacy by ferroptosis. Additionally, APOL6 is regulated by signal transducer and activator of transcription 1 (STAT1). CONCLUSIONS: To conclude, our findings indicate APOL6 has potential as a predictive biomarker for immunotherapy treatment success estimation and reveal the STAT1/APOL6/GPX4 axis as a critical regulatory mechanism in BLCA.


Asunto(s)
Biomarcadores de Tumor , Ferroptosis , Inmunoterapia , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Ferroptosis/genética , Humanos , Inmunoterapia/métodos , Biomarcadores de Tumor/genética , Apolipoproteínas/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Animales , Pronóstico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones
6.
Mol Biol Rep ; 51(1): 338, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393490

RESUMEN

Pulmonary fibrosis (PF) is a progressive and fatal lung disease with high incidence and a lack of effective treatment, which is a severe public health problem. PF has caused a huge socio-economic burden, and its pathogenesis has become a research hotspot. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent sirtuin essential in tumours, Epithelial mesenchymal transition (EMT), and anti-aging. Numerous studies have demonstrated after extensive research that it is crucial in preventing the progression of pulmonary fibrosis. This article reviews the biological roles and mechanisms of SIRT1 in regulating the progression of pulmonary fibrosis in terms of EMT, oxidative stress, inflammation, aging, autophagy, and discusses the potential of SIRT1 as a therapeutic target for pulmonary fibrosis, and provides a new perspective on therapeutic drugs and prognosis prospects.


Asunto(s)
Neoplasias , Fibrosis Pulmonar , Sirtuina 1 , Humanos , Transición Epitelial-Mesenquimal , Fibrosis , Estrés Oxidativo , Sirtuina 1/genética , Sirtuina 1/metabolismo
7.
J Nanobiotechnology ; 22(1): 318, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849914

RESUMEN

Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.


Asunto(s)
Mitocondrias , Nanomedicina , Neoplasias , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nanomedicina/métodos , Animales , Metabolismo Energético/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos
8.
J Nanobiotechnology ; 22(1): 171, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610017

RESUMEN

Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Boca , Humanos , Medicina de Precisión , Sistemas de Liberación de Medicamentos , Saliva
9.
Ecotoxicol Environ Saf ; 283: 116842, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106568

RESUMEN

Numerous studies have highlighted the correlation between metal intake and deteriorated pulmonary function, emphasizing its pivotal role in the progression of Chronic Obstructive Pulmonary Disease (COPD). However, the efficacy of traditional models is often compromised due to overfitting and high bias in datasets with low-level exposure, rendering them ineffective in delineating the contemporary risk trends associated with pulmonary diseases. To address these limitations, we embarked on developing advanced, interpretable models, crucial for elucidating the intricate mechanisms of metal toxicity and enriching the domain knowledge embedded in toxicity models. In this endeavor, we scrutinized extensive, long-term metal exposure datasets from NHANES to explore the interplay between metal and pulmonary functionality. Employing a variety of machine-learning approaches, we opted for the "Mixer of Experts" model for its proficiency in identifying a myriad of toxicological trends and sensitivities. We conceptualized and illustrated the TSAP (Toxicity Score at Population-level), a metal interpretable scoring system offering performance nearly equivalent to the amalgamation of standard interpretable methods addressing the "black box" conundrum. This streamlined, bifurcated procedural analysis proved instrumental in discerning established risk factors, thereby uncovering Tungsten as a novel contributor to COPD risk. SYNOPSIS: TSAP achieved satisfied performance with transparent interpretability, suggesting tungsten intake need further action for COPD prevention.

10.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184976

RESUMEN

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Asunto(s)
Drosophila , Testículo , Masculino , Animales , Testículo/metabolismo , Drosophila/metabolismo , Antimonio/toxicidad , Antimonio/metabolismo , Comunicación Celular , Receptores ErbB/metabolismo , Análisis de Secuencia de ARN
11.
Phytother Res ; 38(2): 797-838, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38083970

RESUMEN

Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.


Asunto(s)
Fármacos Antiobesidad , Obesidad , Humanos , Animales , Obesidad/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
12.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542160

RESUMEN

Protein serine/threonine phosphatase 2A (PP2A) regulates diverse cellular processes via the formation of ~100 heterotrimeric holoenzymes. However, a scarcity of knowledge on substrate recognition by various PP2A holoenzymes has greatly prevented the deciphering of PP2A function in phosphorylation-mediated signaling in eukaryotes. The review summarized the contribution of B56 phosphorylation to PP2A-B56 function and proposed strategies for intervening B56 phosphorylation to treat diseases associated with PP2A-B56 dysfunction; it especially analyzed recent advancements in LxxIxEx B56-binding motifs that provide the molecular details of PP2A-B56 binding specificity and, on this basis, explored the emerging role of PP2A-B56 in the mitosis process, virus attack, and cancer development through LxxIxE motif-mediated PP2A-B56 targeting. This review provides theoretical support for discriminatingly targeting specific PP2A holoenzymes to guide PP2A activity against specific pathogenic drivers.


Asunto(s)
Proteína Fosfatasa 2 , Transducción de Señal , Fosforilación , Proteína Fosfatasa 2/metabolismo , Unión Proteica , Holoenzimas/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1406-1414, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621989

RESUMEN

The clinical data of coronary heart disease(CHD) patients treated in the First Affiliated Hospital of Guangzhou University of Chinese Medicine and Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine from January 2022 to March 2023 were retrospectively collected. This study involved the descriptive analysis of demographic characteristics, clinical symptoms, and tongue and pulse features. The χ~2 test was conducted to analyze the distribution of syndrome elements and their combinations at diffe-rent stages of CHD, so as to reveal the clinical characteristics and syndrome patterns at various pathological stages of CHD. This study extracted 28 symptom entries, 10 tongue manifestation entries, and 7 pulse manifestation entries, summarized the 5 main disease locations of the heart, lung, liver, spleen, and kidney, and the 8 main disease natures of blood stasis, phlegm turbidity, Qi stagnation, heat(fire), fluid retention, Qi deficiency, Yin deficiency, and Yang deficiency and 8 combinations of disease natures. The χ~2 test showed significant differences in the distribution of syndrome elements including the lung, liver, spleen, kidney, blood stasis, heat(fire), Qi stagnation, heat syndrome, water retention, Qi deficiency, Yin deficiency, and Yang deficiency between different disease stages. Specifically, the liver, blood stasis, heat(fire), and Qi stagnation accounted for the highest proportion during unstable stage, and the lung, spleen, kidney, water retention, Qi deficiency, Yin deficiency, and Yang deficiency accounted for the highest proportion at the end stage. The distribution of Qi deficiency varied in the different time periods after percutaneous coronary intervention(PCI). As shown by the χ~2 test of the syndrome elements combination, the distribution of single disease location, multiple disease locations, single disease nature, double disease natures, multiple natures, excess syndrome, and mixture of deficiency and excess varied significantly at different stages of CHD. Specifically, single disease location, single disease nature, and excess syndrome accounted for the highest proportion during the stable stage, and double disease natures accounted for the highest proportion during the unstable stage. Multiple disease locations, multiple disease natures, and mixture of deficiency and excess accounted for the highest proportion during the end stage. In conclusion, phlegm turbidity and blood stasis were equally serious during the stable stage, and a pathological mechanism caused by blood stasis and toxin existed during the unstable stage. The overall Qi deficiency worsened after PCI, and the end stage was accompanied by the Yin and Yang damage and the aggravation of water retention. There were significant differences in the distribution of clinical characteristics and syndrome elements at different stages of CHD. The pathological process of CHD witnessed the growth and decline of deficiency and excess and the combination of phlegm turbidity and blood stasis, which constituted the basic pathogenesis.


Asunto(s)
Enfermedad Coronaria , Insuficiencia Cardíaca , Intervención Coronaria Percutánea , Humanos , Medicina Tradicional China , Deficiencia Yang , Deficiencia Yin , Estudios Transversales , Estudios Retrospectivos , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/epidemiología , Síndrome , Agua
14.
Angew Chem Int Ed Engl ; 63(18): e202401880, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407419

RESUMEN

Cytisine (CTS) is a useful medicine for treating nervous disorders and smoking addiction, and exploring a convenient method to detect CTS is of great significance for long-term/home medication to avoid the risk of poisoning, but it is full of challenges. Here, a modified metal-organic framework sensor Tb@Zn-TDA-80 with dual emission centers was prepared using a post-modified luminescence center strategy. The obtained Tb@Zn-TDA-80 can serve as a CTS sensor with high sensitivity and selectivity. To achieve portable detection, Tb@Zn-TDA-80 was further fabricated as a membrane sensor, M-Tb@Zn-TDA-80, which displayed an obvious CTS-responsive color change by simply dropping a CTS solution onto its surface. Benefiting from this unique functionality, M-Tb@Zn-TDA-80 successfully realized the visual detection and quantitative monitoring of CTS in the range of 5.26-52.6 mM by simply scanning the color with a smartphone. The results of nuclear magnetic resonance spectroscopy and theoretical computation illustrated that the high sensing efficiency of Tb@Zn-TDA-80 for CTS was attributed to the N-H⋅⋅⋅π and π⋅⋅⋅π interactions between the ligand and CTS. And luminescence quenching may result from the intramolecular charge transfer. This study provides a convenient method for ensuring long-term medication safety at home.


Asunto(s)
Alcaloides , Estructuras Metalorgánicas , Alcaloides de Quinolizidina , Luminiscencia , Teléfono Inteligente , Zinc , Estructuras Metalorgánicas/química
15.
Funct Integr Genomics ; 23(2): 79, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882550

RESUMEN

As a well-known behavioral risk factor for human health, smoking is involved in carcinogenesis, tumor progression, and therapeutic interventions of head and neck squamous cell carcinoma (HNSCC). The stratification of disease subtypes according to tobacco use is expressively needed for HNSCC precision therapy. High-throughput transcriptome profiling by RNA sequencing (RNA-seq) from The Cancer Genome Atlas (TCGA) was collected and collated for differential expression analysis and pathway enrichment analysis to characterize the molecular landscape for non-smoking HNSCC patients. Molecular prognostic signatures specific to non-smoking HNSCC patients were identified by the least absolute shrinkage and selection operator (LASSO) analysis and were then verified via internal and external validation cohorts. While proceeding to immune cell infiltration and after drug sensitivity analysis was further carried out, a proprietary nomogram was finally developed for their respective clinical applications. In what it relates to the non-smoking cohort, the enrichment analysis pointed to human papillomavirus (HPV) infection and PI3K-Akt signaling pathway, with the prognostic signature consisting of another ten prognostic genes (COL22A1, ADIPOQ, RAG1, GREM1, APBA2, SPINK9, SPP1, ARMC4, C6, and F2RL2). These signatures showed to be independent factors, and the related nomograms were, thus, constructed for their further and respective clinical applications. While the molecular landscapes and proprietary prognostic signature were characterized based on non-smoking HNSCC patients, a clinical nomogram was constructed to provide better HNSCC patient classification and guide treatment for non-smoking HNSCC patients. Nonetheless, there are still significant challenges in the recognition, diagnosis, treatment, and understanding of the potentially efficient mechanisms of HNSCC with no tobacco use.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Transcriptoma , Humanos , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
16.
J Gene Med ; 25(7): e3495, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36894497

RESUMEN

Immunogenic cell death (ICD) is one of the mechanisms regulating cell death, which activates adaptive immunity in immunocompetent hosts and is associated with tumor progression, prognosis and therapeutic response. Endometrial cancer (EC) is one of the most common malignancies of the female genital tract, and the potential role of immunogenic cell death-related genes (IRGs) in the tumor microenvironment (TME) remains unclear. We describe the variation of IRGs and assess the expression patterns in EC samples from The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Based on the expression of 34 IRGs, we identified two different ICD-related clusters and subsequently differentially expressed genes between the two ICD-related clusters were used for the identification of two ICD gene clusters. We identified the clusters and found that alterations in the multilayer IRG were associated with patient prognosis and TME cell infiltration characteristics. On this basis, ICD score risk scores were calculated, and ICD signatures were constructed and validated for their predictive power in EC patients. To help clinicians better apply the ICD signature, an accurate nomogram was constructed. The low ICD risk group was characterized by high microsatellite instability, high tumor mutational load, high IPS score and stronger immune activation. Our comprehensive analysis of IRGs in EC patients suggested a potential role in the tumor immune interstitial microenvironment, clinicopathological features and prognosis. These findings may improve our understanding of the role of ICDs, and provide a new basis for assessing prognosis and developing more effective immunotherapeutic strategies in EC.


Asunto(s)
Neoplasias Endometriales , Muerte Celular Inmunogénica , Humanos , Femenino , Microambiente Tumoral/genética , Neoplasias Endometriales/genética , Familia de Multigenes , Mutación
17.
J Transl Med ; 21(1): 211, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949458

RESUMEN

The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Disbiosis/microbiología , Boca/microbiología
18.
Glycoconj J ; 40(5): 541-549, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542637

RESUMEN

Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.


Asunto(s)
Glicopéptidos , Glicoproteínas , Humanos , Glicosilación , Glicoproteínas/metabolismo , Glicopéptidos/análisis , Polisacáridos
19.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686320

RESUMEN

Fungal pathogens of the Cryptococcus neoformans species complex (C. neoformans SC) are a major cause of fungal meningitis in immunocompromised individuals. As with other melanotic microorganisms associated with human diseases, the cell-wall-associated melanin of C. neoformans SC is a major virulence factor that contributes to its ability to evade host immune responses. The levels of melanin substrate and the regulation of melanin formation could be influenced by the microbiota-gut-brain axis. Moreover, recent studies show that C. neoformans infections cause dysbiosis in the human gut microbiome. In this review, we discuss the potential association between cryptococcal meningitis and the gut microbiome. Additionally, the significant potential of targeting the gut microbiome in the diagnosis and treatment of this debilitating disease is emphasized.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Microbioma Gastrointestinal , Meningitis Criptocócica , Humanos , Melaninas , Eje Cerebro-Intestino
20.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445889

RESUMEN

The instability and volatility of iodine is high, however, effective iodine biocidal species can be readily stored in iodinated azoles and then be released upon decomposition or detonation. Iodine azoles with high iodine content and high thermal stability are highly desired. In this work, the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP), 2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly stable fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole (4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for compound 3 and 86.48% for compound 4; Td: 3: 285 °C, 4: 260 °C). Furthermore, their composites with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and thermal decomposition properties of the formulations were tested and evaluated. This work may open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic and biocidal properties and versatile functionality.


Asunto(s)
Azoles , Yodo , Azoles/farmacología , Yodo/farmacología , Yodo/química , Pirroles , Fenómenos Químicos , Pirazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA