Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.327
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452348

RESUMEN

MOTIVATION: Anticancer peptides (ACPs) have natural cationic properties and can act on the anionic cell membrane of cancer cells to kill cancer cells. Therefore, ACPs have become a potential anticancer drug with good research value and prospect. RESULTS: In this article, we propose AACFlow, an end-to-end model for identification of ACPs based on deep learning. End-to-end models have more room to automatically adjust according to the data, making the overall fit better and reducing error propagation. The combination of attention augmented convolutional neural network (AAConv) and multi-layer convolutional neural network (CNN) forms a deep representation learning module, which is used to obtain global and local information on the sequence. Based on the concept of flow network, multi-head flow-attention mechanism is introduced to mine the deep features of the sequence to improve the efficiency of the model. On the independent test dataset, the ACC, Sn, Sp, and AUC values of AACFlow are 83.9%, 83.0%, 84.8%, and 0.892, respectively, which are 4.9%, 1.5%, 8.0%, and 0.016 higher than those of the baseline model. The MCC value is 67.85%. In addition, we visualize the features extracted by each module to enhance the interpretability of the model. Various experiments show that our model is more competitive in predicting ACPs.


Asunto(s)
Redes Neurales de la Computación , Péptidos , Membrana Celular
3.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38431524

RESUMEN

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Basidiomycota/fisiología , Regulación de la Expresión Génica de las Plantas , Fenotipo , Mutación/genética , Ácido Salicílico/metabolismo , Ustilago/genética
4.
J Am Chem Soc ; 146(25): 17003-17008, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865191

RESUMEN

We report here a new type of metal fluoride cluster that can be stabilized inside fullerene via in situ fluorine encapsulation followed by exohedral trifluoromethylation, giving rise to rare-earth metal fluoride clusterfullerenes (FCFs) M2F@C80(CF3) (M = Gd and Y). The molecular structure of Gd2F@C80(CF3) was unambiguously determined by single-crystal X-ray analysis to show a µ2-fluoride-bridged Gd-F-Gd cluster with short Gd-F bonds of 2.132(7) and 2.179(7) Å. The 19F NMR spectrum of the diamagnetic Y2F@C80(CF3) confirms the existence of the endohedral F atom, which exhibits a triplet with a large 19F-89Y coupling constant of 74 Hz and a high temperature sensitivity of the 19F chemical shift of 0.057 ppm/K. Theoretical studies reveal the ionic Y-F bonding nature arising from the highest electronegativity of the F element and an electronic configuration of [Y2F]5+@[C80]5- with an open-shell carbon cage, which thus necessitates the stabilization of FCFs by exohedral trifluoromethylation.

5.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797860

RESUMEN

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Asunto(s)
Grano Comestible , Endospermo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sistemas CRISPR-Cas
6.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715061

RESUMEN

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Malaria Cerebral , Ratones Endogámicos C57BL , Neuronas , Factor de Transcripción STAT1 , Regulación hacia Arriba , Animales , Ratones , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Malaria Cerebral/inmunología , Malaria Cerebral/metabolismo , Malaria Cerebral/patología , Ratones Noqueados , Neuronas/metabolismo , Plasmodium berghei , Transducción de Señal/fisiología , Factor de Transcripción STAT1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Crit Care Med ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832833

RESUMEN

OBJECTIVES: This study aimed to systematically assess the methodological quality and key recommendations of the guidelines for the diagnosis and treatment of liver failure (LF), furnishing constructive insights for guideline developers and equipping clinicians with evidence-based information to facilitate informed decision-making. DATA SOURCES: Electronic databases and manual searches from January 2011 to August 2023. STUDY SELECTION: Two reviewers independently screened titles and abstracts, then full texts for eligibility. Fourteen guidelines were included. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted data and checked by two others. Methodological quality of the guidelines was appraised using the Appraisal of Guidelines for Research and Evaluation II tool. Of the 14 guidelines, only the guidelines established by the Society of Critical Care Medicine and the American College of Gastroenterology (2023) achieved an aggregate quality score exceeding 60%, thereby meriting clinical recommendations. It emerged that there remains ample room for enhancement in the quality of the guidelines, particularly within the domains of stakeholder engagement, rigor, and applicability. Furthermore, an in-depth scrutiny of common recommendations and supporting evidence drawn from the 10 adult LF guidelines unveiled several key issues: controversy exists in the recommendation, the absence of supporting evidence and confusing use of evidence for recommendations, and a preference in evidence selection. CONCLUSIONS: There are high differences in methodological quality and recommendations among LF guidelines. Improving these existing problems and controversies will benefit existing clinical practice and will be an effective way for developers to upgrade the guidelines.

8.
J Virol ; 97(11): e0071923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37929962

RESUMEN

IMPORTANCE: African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Bacillus subtilis , Animales , Fiebre Porcina Africana/prevención & control , Antivirales/farmacología , ADN-Topoisomerasas de Tipo II/farmacología , Genisteína/farmacología , Porcinos
9.
J Transl Med ; 22(1): 562, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867291

RESUMEN

BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Antiinflamatorios , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antiinflamatorios/farmacología , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Neovascularización Coroidal/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Masculino , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/patología , Oftalmopatías/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Neovascularización Patológica , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo
10.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37217835

RESUMEN

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Asunto(s)
Malus , Prunus persica , Prunus , Prunus persica/genética , Prunus persica/metabolismo , Prunus/genética , Prunus/metabolismo , Histonas/metabolismo , Estudio de Asociación del Genoma Completo , Malus/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
11.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594722

RESUMEN

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

12.
Purinergic Signal ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489005

RESUMEN

Berberine (BBR) is a Chinese herb with antioxidant and anti-inflammatory properties. In a previous study, we found that BBR had a protective effect against light-induced retinal degeneration in BALB/c mice. The purinergic P2X7 receptor (P2X7R) plays a key role in retinal degeneration via inducing oxidative stress, inflammatory changes, and cell death. The aim of this study was to investigate whether BBR can induce protective effects in light damage experiments and whether P2X7R can get involved in these effects. C57BL/6 J mice and P2X7 knockout (KO) mice on the C57BL/6 J background were used. We found that BBR preserved the outer nuclear layer (ONL) thickness and retinal ganglion cells following light stimulation. Furthermore, BBR significantly suppressed photoreceptor apoptosis, pro-apoptotic c-fos expression, pro-inflammatory responses of Mϋller cells, and inflammatory factors (TNF-α, IL-1ß). In addition, protein levels of P2X7R were downregulated in BBR-treated mice. Double immunofluorescence showed that BBR reduced overexpression of P2X7R in retinal ganglion cells and Mϋller cells. Furthermore, BBR combined with the P2X7R agonist BzATP blocked the effects of BBR on retinal morphology and photoreceptor apoptosis. However, in P2X7 KO mice, BBR had an additive effect resulting in thicker ONL and more photoreceptors. The data suggest that the P2X7 receptor is involved in retinal light damage, and BBR inhibits this process by reducing histological impairment, cell death, and inflammatory responses.

13.
Bioorg Med Chem Lett ; 99: 129618, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219887

RESUMEN

This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 µM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of ß-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.


Asunto(s)
Neuronas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Unión Proteica , Neuronas/metabolismo , Cumarinas/farmacología
14.
Bioorg Med Chem Lett ; 97: 129564, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000482

RESUMEN

The aggregation of α-Syn is a pivotal mechanism in Parkinson's disease (PD). Effectively maintaining α-Syn proteostasis involves both inhibiting its aggregation and promoting disaggregation. In this study, we developed a series of aromatic amide derivatives based on Rhein. Two of these compounds, 4,5-dihydroxy-N-(3-hydroxyphenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a5) and 4,5-dihydroxy-N-(2-hydroxy-4-chlorophenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a8), exhibited good binding affinities to α-Syn residues, demonstrating promising inhibitory activity against α-Syn aggregation in vitro, with low IC50 values (1.35 and 1.08 µM, respectivly). These inhibitors acted throughout the entire aggregation process by stabilizing α-Syn's conformation and preventing the formation of ß-sheet aggregates. They also effectively disassembled preformed α-Syn oligomers and fibrils. Preliminary mechanistic insights indicated that they bound to the specific domain within fibrils, inducing fibril instability, collapse, and the formation of smaller aggregates and monomeric α-Syn units. This research underscores the therapeutic potential of Rhein's aromatic amides in targeting α-Syn aggregation for PD treatment and suggests broader applications in managing and preventing neurodegenerative diseases.


Asunto(s)
Antracenos , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Antraquinonas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/metabolismo , Antracenos/química , Antracenos/farmacología
15.
Bioorg Med Chem Lett ; 105: 129752, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631541

RESUMEN

The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.


Asunto(s)
Benzotiazoles , Polifenoles , Agregado de Proteínas , alfa-Sinucleína , Benzotiazoles/química , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/metabolismo , Polifenoles/química , Polifenoles/farmacología , Polifenoles/síntesis química , Humanos , Agregado de Proteínas/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
16.
Pediatr Blood Cancer ; : e31177, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967594

RESUMEN

INTRODUCTION: Thalassemia represents a significant public health challenge globally. However, the global burden of thalassemia and the disparities associated with it remain poorly understood. Our study aims to uncover the long-term spatial and temporal trends in thalassemia at global, regional, and national levels, analyze the impacts of age, time periods, and birth cohorts, and pinpoint the global disparities in thalassemia burden. METHODS: We extracted data on the thalassemia burden from the Global Burden of Disease Study (GBD) 2019. We employed a joinpoint regression model to assess temporal trends in thalassemia burden and an age-period-cohort model to evaluate the effects of age, period, and cohort on thalassemia mortality. RESULTS: From 1990 to 2019, the number of thalassemia incident cases, prevalent cases, mortality cases, and disability-adjusted life years (DALYs) decreased by 20.9%, 3.1%, 38.6%, and 43.1%, respectively. Age-standardized rates of incidence, prevalence, mortality, and DALY declined across regions with high, high-middle, middle, and low-middle sociodemographic index (SDI), yet remained the highest in regions with low SDI and low-middle SDI as well as in Southeast Asia, peaking among children under five years of age. The global prevalence rate was higher in males than in females. The global mortality rate showed a consistent decrease with increasing age. CONCLUSION: The global burden of thalassemia has significantly declined, yet notable disparities exist in terms of gender, age groups, periods, birth cohorts, SDI regions, and GBD regions. Systemic interventions that include early screening, genetic counseling, premarital health examinations, and prenatal diagnosis should be prioritized in regions with low, and low-middle SDI, particularly in Southeast Asia. Future population-based studies should focus specifically on thalassemia subtypes and transfusion requirements, and national registries should enhance data capture through newborn screening.

17.
Mol Breed ; 44(4): 28, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545461

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01467-8.

18.
BMC Cardiovasc Disord ; 24(1): 199, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582861

RESUMEN

BACKGROUND: The study set out to develop an accurate and clinically valuable prognostic nomogram to assess the risk of in-hospital death in patients with acute decompensated chronic heart failure (ADCHF) and diabetes. METHODS: We extracted clinical data of patients diagnosed with ADCHF and diabetes from the Medical Information Mart for Intensive Care III database. Risk variables were selected utilizing least absolute shrinkage and selection operator regression analysis, and were included in multivariate logistic regression and presented in nomogram. bootstrap was used for internal validation. The discriminative power and predictive accuracy of the nomogram were estimated using the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA). RESULTS: Among 867 patients with ADCHF and diabetes, In-hospital death occurred in 81 (9.3%) patients. Age, heart rate, systolic blood pressure, red blood cell distribution width, shock, ß-blockers, angiotensin converting enzyme inhibitors or angiotensin receptor blockers, assisted ventilation, and blood urea nitrogen were brought into the nomogram model. The calibration curves suggested that the nomogram was well calibrated. The AUC of the nomogram was 0.873 (95% CI: 0.834-0.911), which was higher that of the Simplified Acute Physiology Score II [0.761 (95% CI: 0.711-0.810)] and sequential organ failure assessment score [0.699 (95% CI: 0.642-0.756)], and Guidelines-Heart Failure score [0.782 (95% CI: 0.731-0.835)], indicating that the nomogram had better ability to predict in-hospital mortality. In addition, the internally validated C-index was 0.857 (95% CI: 0.825-0.891), which again verified the validity of this model. CONCLUSIONS: This study constructed a simple and accurate nomogram for predicting in-hospital mortality in patients with ADCHF and diabetes, especially in those who admitted to the intensive care unit for more than 48 hours, which contributed clinicians to assess the risk and individualize the treatment of patients, thereby reducing in-hospital mortality.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Humanos , Nomogramas , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Diabetes Mellitus/diagnóstico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Estudios Retrospectivos
19.
Cereb Cortex ; 33(14): 8858-8875, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37183178

RESUMEN

Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[ß-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.


Asunto(s)
Trastorno Depresivo Mayor , Receptores Purinérgicos P2X7 , Ratones , Animales , Depresión , Corteza Prefrontal , Adenosina Trifosfato , Adenosina , Modelos Animales de Enfermedad
20.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659314

RESUMEN

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Asunto(s)
Blattellidae , Proteínas de Insectos , Oviposición , Pigmentación , Interferencia de ARN , Animales , Blattellidae/genética , Blattellidae/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Pigmentación/genética , Cortejo , Melaninas/metabolismo , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA