Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Pharmacol Sin ; 43(1): 146-156, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33782543

RESUMEN

Mifepristone (Mif), an effective synthetic steroidal antiprogesterone drug, is widely used for medical abortion and pregnancy prevention. Due to its anti-glucocorticoid effect, high-dose Mif is also used to treat Cushing's syndrome. Mif was reported to active pregnane X receptor (PXR) in vitro and PXR can induce hepatomegaly via activation and interaction with yes-associated protein (YAP) pathway. High-dose Mif was reported to induce hepatomegaly in rats and mice, but the underlying mechanism remains unclear. Here, the role of PXR was studied in Mif-induced hepatomegaly in C57BL/6 mice and Pxr-knockout mice. The results demonstrated that high-dose Mif (100 mg · kg-1 · d-1, i.p.) treatment for 5 days significantly induced hepatomegaly with enlarged hepatocytes and promoted proliferation, but low dose of Mif (5 mg · kg-1 · d-1, i.p.) cannot induce hepatomegaly. The dual-luciferase reporter gene assays showed that Mif can activate human PXR in a concentration-dependent manner. In addition, Mif could promote nuclear translocation of PXR and YAP, and significantly induced the expression of PXR, YAP, and their target proteins such as CYP3A11, CYP2B10, UGT1A1, ANKRD, and CTGF. However, Mif (100 mg · kg-1 · d-1, i.p.) failed to induce hepatomegaly in Pxr-knockout mice, as well as hepatocyte enlargement and proliferation, further indicating that Mif-induced hepatomegaly is PXR-dependent. In summary, this study demonstrated that PXR-mediated Mif-induced hepatomegaly in mice probably via activation of YAP pathway. This study provides new insights in Mif-induced hepatomegaly, and provides novel evidence on the crucial function of PXR in liver enlargement and regeneration.


Asunto(s)
Hepatomegalia/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hepatomegalia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Mifepristona , Estructura Molecular , Relación Estructura-Actividad
2.
Acta Pharmacol Sin ; 43(8): 2139-2146, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34931017

RESUMEN

Cholestasis is a major cause of a series of bile flow malfunction-related liver diseases. Pregnane X receptor (PXR) is a key regulator in endo- and xeno-biotics metabolism, which has been considered as a promising therapeutic target for cholestasis. In this study we conducted human PXR (hPXR) agonistic screening using dual-luciferase reporter gene assays, which led to discovering a series of potent hPXR agonists from a small Euphorbiaceae diterpenoid library, containing 35 structurally diverse diterpenoids with eight different skeleton types. The most active compound 6, a lathyrane diterpenoid (5/11/3 ring system), dose-dependently activated hPXR with a high selectivity, and significantly upregulated the expression of hPXR downstream genes CYP3A4 and UGT1A1. In LCA-induced cholestasis mouse model, administration of compound 6 (50 mg· kg-1. d-1, ip) for 7 days significantly suppressed liver necrosis and decreased serum levels of AST, ALT, Tbili, ALP, and TBA, ameliorating LCA-induced cholestatic liver injury. We further revealed that compound 6 exerted its anti-cholestatic efficacy via activation of PXR pathway, accelerating the detoxification of toxic BAs and promoting liver regeneration. These results suggest that lathyrane diterpenoids may serve as a promising scaffold for future development of anti-cholestasis drugs.


Asunto(s)
Productos Biológicos , Colestasis , Hepatopatías , Receptor X de Pregnano , Animales , Productos Biológicos/farmacología , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Citocromo P-450 CYP3A/metabolismo , Humanos , Hepatopatías/tratamiento farmacológico , Ratones , Receptor X de Pregnano/agonistas
3.
ACS Med Chem Lett ; 12(7): 1159-1165, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267886

RESUMEN

Pregnane X receptor (PXR) that orchestrates the intricate network of xeno- and endobiotic metabolism is considered as a promising therapeutic target for cholestasis. In this study, the human PXR (hPXR) agonistic bioassay-guided isolation of Euphorbia lathyris followed by the structural modification led to the construction of a lathyrane diterpenoid library (1-34). Subsequent assay of this library led to the identification of a series of potent hPXR agonists, showing better efficacy than that of typical hPXR agonist, rifampicin. The most active compound, 8, could dose-dependently activate hPXR at micromolar concentrations and significantly up-regulate the expressions of PXR downstream genes CYP3A4, CYP2B6, and MDR1. The structure-activity relationships (SARs) studied in combination with molecular modeling suggested that acyloxy at C-7 and the presence of 14-carbonyl were essential to the activity. These findings suggested that lathyrane diterpenoids could serve as a new type of hPXR agonist for future anticholestasis drug development.

4.
Phytomedicine ; 84: 153520, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33662920

RESUMEN

BACKGROUND: Schisandrol B (SolB) is one of the bioactive components from a traditional Chinese medicine Schisandra chinensis or Schisandra sphenanthera. It has been demonstrated that SolB exerts hepatoprotective effects against drug-induced liver injury and promotes liver regeneration. It was found that SolB can induce hepatomegaly but the involved mechanisms remain unknown. PURPOSE: This study aimed to explore the mechanisms involved in SolB-induced hepatomegaly. METHODS: Male C57BL/6 mice were injected intraperitoneally with SolB (100 mg/kg) for 5 days. Serum and liver samples were collected for biochemical and histological analyses. The mechanisms of SolB were investigated by qRT-PCR and western blot analyses, luciferase reporter gene assays and immunofluorescence. RESULTS: SolB significantly increased hepatocyte size and proliferation, and then promoted liver enlargement without liver injury and inflammation. SolB transactivated human PXR, activated PXR in mice and upregulated hepatic expression of its downstream proteins, such as CYP3A11, CYP2B10 and UGT1A1. SolB also significantly enhanced nuclear translocation of PXR and YAP in human cell lines. YAP signal pathway was activated by SolB in mice. CONCLUSION: These findings demonstrated that SolB can significantly induce liver enlargement, which is associated with the activation of PXR and YAP pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclooctanos/toxicidad , Dioxoles/toxicidad , Hepatomegalia/inducido químicamente , Lignanos/toxicidad , Receptor X de Pregnano/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatomegalia/metabolismo , Hepatomegalia/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Receptor X de Pregnano/genética , Schisandra/química , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
5.
Front Pharmacol ; 11: 628314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33628187

RESUMEN

UDP-glucuronosyltransferase 1A1 (UGT1A1) is an essential enzyme in mammals that is responsible for detoxification and metabolic clearance of the endogenous toxin bilirubin and a variety of xenobiotics, including some crucial therapeutic drugs. Discovery of potent and safe UGT1A1 inducers will provide an alternative therapy for ameliorating hyperbilirubinaemia and drug-induced hepatoxicity. This study aims to find efficacious UGT1A1 inducer(s) from natural flavonoids, and to reveal the mechanism involved in up-regulating of this key conjugative enzyme by the flavonoid(s) with strong UGT1A1 induction activity. Among all the tested flavonoids, neobavaisoflavone (NBIF) displayed the most potent UGT1A1 induction activity, while its inductive effects were confirmed by both western blot and glucuronidation activity assays. A panel of nuclear receptor reporter assays demonstrated that NBIF activated PPARα and PPARγ in a dose-dependent manner. Meanwhile, we also found that NBIF could up-regulate the expression of PPARα and PPARγ in hepatic cells, suggesting that the induction of UGT1A1 by NBIF was mainly mediated by PPARs. In silico simulations showed that NBIF could stably bind on pocket II of PPARα and PPARγ. Collectively, our results demonstrated that NBIF is a natural inducer of UGT1A1, while this agent induced UGT1A1 mainly via activating and up-regulating PPARα and PPARγ. These findings suggested that NBIF can be used as a promising lead compound for the development of more efficacious UGT1A1 inducers to treat hyperbilirubinaemia and UGT1A1-associated drug toxicities.

6.
Org Lett ; 22(11): 4435-4439, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32452687

RESUMEN

Crotonpenoids A (1) and B (2), two highly modified clerodane diterpenoids featuring a new 10-(butan-2-yl)-1,6,12-trimethyltricyclo[7.2.1.02,7]dodecane skeleton, were isolated from the leaves and twigs of Croton yanhuii. Their structures including the absolute configurations were determined by spectroscopic analysis, single-crystal X-ray diffraction, and biomimetic semisynthesis. Compounds 1 and 2 exhibited an agonistic effect on pregnane X receptor at 10 µM.


Asunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/aislamiento & purificación , Croton/química , Materiales Biomiméticos/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Hojas de la Planta/química , Tallos de la Planta/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA