Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(12): e22672, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36440960

RESUMEN

FMS-like receptor tyrosine kinase 3 (Flt3) expression was reported to increase in the heart in response to pathological stress, but the role of Flt3 activation and its underlying mechanisms remain poorly elucidated. This study was designed to investigate the role of Flt3 activation in sympathetic hyperactivity-induced cardiac hypertrophy and its mechanisms through autophagy and mitochondrial dynamics. In vivo, cardiac hypertrophy was established by subcutaneous injection of isoprenaline (6 mg/kg·day) in C57BL/6 mice for 7 consecutive days. The Flt3-ligand intervention was launched 2 h prior to isoprenaline each day. In vitro, experiments of cardiomyocyte hypertrophy, autophagy, and mitochondrial dynamics were performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that the expression level of Flt3 protein was significantly increased in the hypertrophic myocardium provoked by isoprenaline administration. Flt3-ligand intervention alleviated isoprenaline-induced cardiac oxidative stress, hypertrophy, fibrosis, and contractile dysfunction. Isoprenaline stimulation impaired autophagic flux in hypertrophic mouse hearts, supported by the accumulation of LC3II and P62 proteins, while Flt3-ligand restored the impairment of autophagic flux. Flt3 activation normalized the imbalance of mitochondrial fission and fusion in the hearts of mice evoked by isoprenaline as evidenced by the neutralization of elevated mitochondrial fission markers and reduced mitochondrial fusion markers. In NRCMs, Flt3-ligand treatment attenuated isoprenaline-stimulated hypertrophy, which was abolished by a Flt3-specific blocker AC220. Activating Flt3 reversed isoprenaline-induced autophagosome accumulation and impairment of autophagic flux probably by enhancing SIRT1 expression and consequently TFEB nuclear translocation. Flt3 activation improved the imbalance of mitochondrial dynamics induced by isoprenaline in NRCMs through the SIRT1/P53 pathway. Activation of Flt3 mitigated ISO-stimulated hypertrophy probably involves the restoration of autophagic flux and balance of mitochondrial dynamics. Therefore, activation of Flt3 attenuates isoprenaline-induced cardiac hypertrophy in vivo and in vitro, the potential mechanism probably attributes to SIRT1/TFEB-mediated autophagy promotion and SIRT1/P53-mediated mitochondrial dynamics balance. These findings suggest that activation of Flt3 may be a novel target for protection against cardiac remodeling and heart failure during sympathetic hyperactivity.


Asunto(s)
Dinámicas Mitocondriales , Tirosina Quinasa 3 Similar a fms , Ratas , Ratones , Animales , Ratones Endogámicos C57BL , Isoproterenol/toxicidad , Sirtuina 1 , Ligandos , Proteína p53 Supresora de Tumor , Autofagia , Miocitos Cardíacos , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control
2.
Pflugers Arch ; 473(3): 407-416, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33394082

RESUMEN

Hibernation allows animals to enter an energy conserving state to survive severe drops in external temperatures and a shortage of food. It has been observed that the hearts of mammalian hibernators exhibit intrinsic protection against ischemia-reperfusion (I/R) injury and cardiac arrhythmias in the winter whether they are hibernating or not. However, the molecular and ionic mechanisms for cardioprotection in mammalian hibernators remain elusive. Recent studies in woodchucks (Marmota monax) have suggested that cardiac adaptation occurs at different levels and mediates an intrinsic cardioprotection prior to/in the winter. The molecular/cellular remodeling in the winter (with or without hibernation) includes (1) an upregulation of transcriptional factor, anti-apoptotic factor, nitric oxide synthase, protein kinase C-ε, and phosphatidylinositol-4,5-bisphosphate 3-kinase; (2) an upregulation of antioxidant enzymes (e.g. superoxide dismutase and catalase); (3) a reduction in the oxidation level of Ca2+/calmodulin-dependent protein kinase II (CaMKII); and (4) alterations in the expression and activity of multiple ion channels/transporters. Therefore, the cardioprotection against I/R injury in the winter is most likely mediated by enhancement in signaling pathways that are shared by preconditioning, reduced cell apoptosis, and increased detoxification of reactive oxygen species (ROS). The resistance to cardiac arrhythmias and sudden cardiac death in the winter is closely associated with an upregulation of the antioxidant catalase and a downregulation of CaMKII activation. This remodeling of the heart is associated with a reduction in the incidence of afterdepolarizations and triggered activities. In this short review article, we will discuss the seasonal changes in gene and protein expression profiles as well as alterations in the function of key proteins that are associated with the occurrence of cardioprotection against myocardial damage from ischemic events and fatal arrhythmias in a mammalian hibernator. Understanding the intrinsic cardiac adaptive mechanisms that confer cardioprotection in hibernators may offer new strategies to protect non-hibernating animals, especially humans, from I/R injury and ischemia-induced fatal cardiac arrhythmias.


Asunto(s)
Arritmias Cardíacas , Hibernación/fisiología , Daño por Reperfusión Miocárdica , Animales
3.
J Am Chem Soc ; 142(18): 8431-8439, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32302111

RESUMEN

The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-Nx (MNx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co1-P1N3 interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co1-P1N3 interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm-2 and a small Tafel slope of 47 mV dec-1, which are greatly superior to those of catalyst with Co1-N4 interfacial structure. We discover that the bond-length-extended high-valence Co1-P1N3 atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.

4.
Biol Pharm Bull ; 43(10): 1490-1500, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32788507

RESUMEN

Depression is the most significant risk factor for suicide, yet the causes are complex and disease mechanism remains unclear. The incidence and disability rate of depression are very high and the efficacy of some traditional antidepressants is not completely satisfactory. Recently, some studies have found that benzofurans have anti-oxidation and anti-monoamine oxidase properties, which are related to depression. Euparin is a monomer compound of benzofuran, previous work by our team found that it improves the behavior of depressed mice. However, additional antidepressant effects and mechanisms of Euparin have not been reported. In this study, the Chronic Unpredictable Mild Stress (CUMS) model of mice was used to further investigate the effect and mechanism of Euparin on depression. Results showed that Euparin (8, 16 and 32 mg/kg) reduced depression-like behavior in mice compared with the model group. Meanwhile, all doses of Euparin were found to increase the contents of monoamine neurotransmitter and decrease monoamine oxidase and reactive oxygen species (ROS) levels in brain of depression mice. Additionally, Euparin restored CUMS-induced decrease of Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) and brain derived neurotrophic factor (BDNF) expression. These findings demonstrate that Euparin has antidepressant properties, and its mechanism involves the SAT1/NMDAR2B/BDNF signaling pathway.


Asunto(s)
Benzofuranos/farmacología , Depresión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/complicaciones , Acetiltransferasas/metabolismo , Animales , Técnicas de Observación Conductual , Conducta Animal/efectos de los fármacos , Benzofuranos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/diagnóstico , Depresión/patología , Depresión/psicología , Modelos Animales de Enfermedad , Dopamina , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo , Organismos Libres de Patógenos Específicos , Estrés Psicológico/psicología
5.
FASEB J ; 32(8): 4229-4240, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29490168

RESUMEN

Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).


Asunto(s)
Antioxidantes/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevención & control , Mamíferos/metabolismo , Marmota/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Vasos Coronarios/metabolismo , Modelos Animales de Enfermedad , Hibernación/fisiología , Hipotermia/metabolismo , Estaciones del Año , Temperatura
6.
Biol Pharm Bull ; 39(8): 1284-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27476938

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and high mortality rate. Panax Notoginseng Saponins (PNS), extracted from Panax Notoginseng as a traditional Asian medicine, displayed a significant anti-fibrosis effect in liver and lung. However, whether Ginsenoside Rg1 (Rg1), an important and active ingredient of PNS, exerts anti-fibrotic activity on IPF still remain unclear. In this study, we investigated the effect of Rg1 on bleomycin-induced pulmonary fibrosis in rats. Bleomycin (5 mg/kg body weight) was intratracheally administrated to male rats. Rg1 (18, 36 and 72 mg/kg) was orally administered on the next day after bleomycin. Lungs were harvested at day 7 and 28 for the further experiments. Histological analysis revealed that bleomycin successfully induced pulmonary fibrosis, and that Rg1 restored the histological alteration of bleomycin-induced pulmonary fibrosis (PF), significantly decreased lung coefficient, scores of alveolitis, scores of PF as well as contents of alpha smooth muscle actin (α-SMA) and hydroxyproline (Hyp) in a dose-dependent manner in PF rats. Moreover, Rg1 increased the expression levels of Caveolin-1 (Cav-1) mRNA and protein, lowered the expression of transforming growth factor-ß1 (TGF-ß1) mRNA and protein in the lung tissues of PF rats. These data suggest that Rg1 exhibits protective effect against bleomycin-induced PF in rats, which is potentially associated with the down-regulation of TGF-ß1 and up-regulation of Cav-1.


Asunto(s)
Caveolina 1/metabolismo , Ginsenósidos , Sustancias Protectoras , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Actinas/metabolismo , Animales , Bleomicina , Caveolina 1/genética , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Hidroxiprolina/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética
7.
Am J Physiol Heart Circ Physiol ; 308(3): H240-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25485900

RESUMEN

Inhibition of ß-adrenergic receptor (ß-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing ß-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6. Therefore, it is surprising that prior studies on overexpression of AC5 and AC6 in transgenic (Tg) mice have not examined mediation of arrhythmogenesis. Our goal was to examine the proarrhythmic substrate in AC5Tg hearts. Intracellular calcium ion (Ca(2+) i) was imaged in fluo-4 AM-loaded ventricular myocytes. The sarcoplasmic reticulum (SR) Ca(2+) content, fractional Ca(2+) release, and twitch Ca(2+) transient were significantly higher in the AC5Tg vs. wild-type (WT) myocytes, indicating Ca(2+) overload in AC5Tg myocytes. Action potential (AP) duration was significantly longer in AC5Tg than in WT myocytes. Additionally, AC5Tg myocytes developed spontaneous Ca(2+) waves in a larger fraction compared with WT myocytes, particularly when cells were exposed to isoproterenol. The Ca(2+) waves further induced afterdepolarizations and triggered APs. AC5Tg hearts had increased level of SERCA2a, oxidized Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and phosphorylation of ryanodine receptors (RyR) at the CaMKII site, especially after isoproterenol treatment. This was consistent with higher reactive oxygen species production in AC5Tg myocytes after isoproterenol treatment. Isoproterenol induced more severe arrhythmias in AC5Tg than in WT mice. We conclude that AC5 overexpression promotes arrhythmogenesis, by inducing SR Ca(2+) overload and hyperactivation of RyR (phosphorylation by CaMKII), which in turn induces spontaneous Ca(2+) waves and afterdepolarizations.


Asunto(s)
Adenilil Ciclasas/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotónicos/farmacología , Células Cultivadas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Cell Physiol Biochem ; 36(6): 2250-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26279430

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is a genetically determined cardiac electrical disorder, characterized by typical electrocardiography (ECG) alterations, and it is an arrhythmogenic syndrome that may lead to sudden cardiac death. The most common genotype found among BrS patients is caused by mutations in the SCN5A gene, which lead to a loss of function of the cardiac sodium (Na(+)) channel (Nav1.5) by different mechanisms. METHODS: The assay of confocal laser microscopy and western blot were used to identify the expression and location of L812Q at the cell surface. Characterization of Nav1.5 L812Q mutant Na(+) channels was text by patch-clamp recordings, and the PHYRE2 server was used to build a model for human Nav1.5 channel. RESULTS: Here, we report that a novel missense SCN5A mutation, L812Q, localized in the DII-S4 transmembrane region of the Nav1.5 channel protein, was identified in an index patient who showed a typical BrS type-1 ECG phenotype. The mutation was absent in the patient's parents and brother. Heterologous expression of the wild-type (WT) and L812Q mutant Nav1.5 channels in human embryonic kidney cells (HEK293 cells) reveals that the mutation results in a reduction of Na(+) current density as well as ∼20 mV hyperpolarizing shift of the voltage dependence of inactivation. The voltage dependence of activation and the time course for recovery from inactivation are not affected by the mutation. The hyperpolarizing shift of the voltage dependence of inactivation caused a reduction of the Na(+) window current as well. In addition, western blot and confocal laser microscopy imaging experiments showed that the mutation causes fewer channel to be expressed at the membrane than WT channel. A large proportion of the mutant channels are retained in the cytoplasm, probably in the endoplasmic reticulum. CONCLUSION: The decrease of channel expression, hyperpolarizing shift of voltage dependence of inactivation, and a decline of Na(+) window current caused by L812Q mutation lead to a reduction of Na(+) current during the upstroke and the repolarization phases of cardiac action potential, which contribute to the development of BrS.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Secuencia de Bases , Síndrome de Brugada/diagnóstico por imagen , Análisis Mutacional de ADN , Electrocardiografía , Genes Dominantes , Células HEK293 , Heterocigoto , Humanos , Activación del Canal Iónico , Cinética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Ultrasonografía
9.
J Nutr Biochem ; 124: 109526, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37931668

RESUMEN

Alternate-day fasting (ADF) has been reported to reduce body weight, neuroinflammation, and oxidative stress damage. However, it is not known whether ADF affects obesity-induced anxiety-like behavior. Here, male C57BL/6 mice were given an alternate fasting and high-fat diet (HFD) or standard chow diet (SD) every other day for 16 or 5 weeks. After the intervention, the degree of anxiety of the mice was evaluated by the open field test (OFT) and the elevated plus maze (EPM) test. Pathological changes in the hippocampus, the expression of Sirt1 and its downstream protein monoamine oxidase A (MAO-A) in the hippocampus, and the expression of 5-hydroxytryptamine (5-HT) were detected. Compared with HFD-fed mice, HFD-fed mice subjected to ADF for 16 weeks had a lower body weight but more brown adipose tissue (BAT), less anxiety behavior, and less pathological damage in the hippocampus, and lower expression of Sirt1 and MAO-A protein and higher 5-HT levels in the hippocampus could be observed. In addition, we noted that long-term ADF intervention could cause anxiety-like behavior in SD mice. Next, we changed the intervention time to 5 weeks. The results showed that short-term ADF intervention could reduce the body weight and increase the BAT mass of SD mice, but it did not affect anxiety. These results indicated that long-term ADF ameliorated obesity-induced anxiety-like behavior and hippocampal damage, but caused anxiety in normal-weight mice. Short-term ADF did not produce adverse emotional reactions in normal-weight mice. Here, we might provide new ideas for the treatment of obesity-induced anxiety.


Asunto(s)
Dieta Alta en Grasa , Sirtuina 1 , Masculino , Ratones , Animales , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Serotonina , Ratones Endogámicos C57BL , Peso Corporal , Obesidad/complicaciones , Obesidad/metabolismo , Ayuno , Ansiedad/etiología , Monoaminooxidasa
10.
Biochem Pharmacol ; 220: 116009, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154547

RESUMEN

The clinic application of doxorubicin (DOX) is severely limited by its severe cardiotoxicity. Tripartite motif-containing protein 16 (TRIM16) has E3 ubiquitin ligase activity and is upregulated in cardiomyocytes under pathological stress, yet its role in DOX-induced cardiotoxicity remains elusive. This study aims to investigate the role and mechanism of TRIM16 in DOX cardiotoxicity. Following TRIM16 overexpression in hearts with AAV9-TRIM16, mice were intravenously administered DOX at a dose of 4 mg/kg/week for 4 weeks to assess the impact of TRIM16 on doxorubicin-induced cardiotoxicity. Transfection of OE-TRIM16 plasmids and siRNA-TRIM16 was performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that DOX challenge elicited a significant upregulation of TRIM16 proteins in cardiomyocytes. TRIM16 overexpression efficiently ameliorated cardiac function while suppressing inflammation, ROS generation, apoptosis and fibrosis provoked by DOX in the myocardium. TRIM16 knockdown exacerbated these alterations caused by DOX in NRCMs. Mechanistically, OE-TRIM16 augmented the ubiquitination and degradation of p-TAK1, thereby arresting JNK and p38MAPK activation evoked by DOX in cardiomyocytes. Furthermore, DOX enhanced the interaction between p-TAK1 and YAP1 proteins, resulting in a reduction in YAP and Nrf2 proteins in cardiomyocytes. OE-TRIM16 elevated YAP levels and facilitated its nuclear translocation, thereby promoting Nrf2 expression and mitigating oxidative stress and inflammation. This effect was nullified by siTRIM16 or TAK1 inhibitor Takinib. Collectively, the current study elaborates that upregulating TRIM16 mitigates DOX-induced cardiotoxicity through anti-inflammation and anti-oxidative stress by modulating TAK1-mediated p38 and JNK as well as YAP/Nrf2 pathways, and targeting TRIM16 may provide a novel strategy to treat DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Ratas , Apoptosis , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Inflamación/metabolismo , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
11.
Biol Pharm Bull ; 36(2): 238-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23196428

RESUMEN

3,4,5-Trimethoxycinnamic acid (TMCA), methyl 3,4,5-trimethoxycinnamate (M-TMCA) and p-methoxycinnamic acid (PMCA) have been identified as the major bioactive components in the serum collected from rats treated with oral administration of Polygalae Radix ("YuanZhi," the roots of Polygala tenuifolia WILLD.), a traditional Chinese medicine used to relieve insomnia, anxiety and heart palpitation. The present study was designed to investigate its direct electrophysiological effects on isolated ventricular myocytes from rabbits. Whole-cell configuration of the patch-clamp technique was used to measure action potential (AP) and membrane currents in single ventricular myocytes enzymatically isolated from adult rabbit hearts. Ca(2+) transients were recorded in myocytes loaded with the Ca(2+) indicator Fluo-4AM. Among three bioactive substances of Polygala metabolites, only M-TMCA (15-30 µM) significantly shortened action potential duration at 50% and 90% repolarization (APD(50) and APD(90)) in cardiomyocytes in a concentration-dependent and a reversible manner. M-TMCA also inhibited L-type calcium current (I(Ca,L)), but showed effect on neither transient outward potassium current (I(to)) nor steady-state potassium current (I(K,SS)). Furthermore, M-TMCA abolished isoprenaline plus BayK8644-induced early afterdepolarizations (EADs) and suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs). This potential anti-arrhythmic effects were likely attributed by the inhibition of I(Ca,L) and the suppression of intracellular Ca(2+) transients, which consequently suppress the generation of transient inward current (I(ti)). These findings suggest that M-TMCA may protect the heart from arrhythmias via its inhibitory effect on calcium channel.


Asunto(s)
Antiarrítmicos/farmacología , Cinamatos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Polygala , Animales , Medicamentos Herbarios Chinos/farmacología , Masculino , Miocitos Cardíacos/fisiología , Raíces de Plantas , Conejos
12.
Antioxidants (Basel) ; 12(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759959

RESUMEN

Recent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling. Mitochondrial fragmentation in cardiomyocytes was induced by isoprenaline (ISO) and H2O2 challenge, respectively, in vitro. Cardiac remodeling in mice was established by ligating the left anterior descending coronary artery or by chronic ISO challenge, respectively, in vivo. Our results demonstrated that the protein expression of acetylated-p53 (ac-p53) in mitochondria was significantly increased under cell stress conditions, facilitating the dissociation of PHB2-OPA1 complex by binding to prohibitin 2 (PHB2), a molecular chaperone that stabilizes OPA1 in mitochondria. This led to the degradation of the long isoform of OPA1 (L-OPA1) that facilitates mitochondrial fusion and resultant mitochondrial network fragmentation. This effect was abolished by a p53 K371R mutant that failed to bind to PHB2 and impeded the formation of the ac-p53-PHB2 complex. The activation of Flt3 significantly reduced ac-p53 expression in mitochondria via SIRT1, thereby hindering the formation of the ac-p53-PHB2 complex and potentiating the stability of the PHB2-OPA1 complex. This ultimately inhibits L-OPA1 processing and leads to the balancing of mitochondrial dynamics. These findings highlight a novel mechanism by which Flt3 activation mitigates mitochondrial fragmentation and dysfunction through the reduction of L-OPA1 processing by dampening the interaction between ac-p53 and PHB2 in cardiac maladaptive remodeling.

13.
Am J Physiol Cell Physiol ; 302(12): C1762-71, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22496245

RESUMEN

Sarcolipin (SLN) is a key regulator of sarco(endo)plasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and its expression is altered in diseased atrial myocardium. To determine the precise role of SLN in atrial Ca(2+) homeostasis, we developed a SLN knockout (sln-/-) mouse model and demonstrated that ablation of SLN enhances atrial SERCA pump activity. The present study is designed to determine the long-term effects of enhanced SERCA activity on atrial remodeling in the sln-/- mice. Calcium transient measurements show an increase in atrial SR Ca(2+) load and twitch Ca(2+) transients. Patch-clamping experiments demonstrate activation of the forward mode of sodium/calcium exchanger, increased L-type Ca(2+) channel activity, and prolongation of action potential duration at 90% repolarization in the atrial myocytes of sln-/- mice. Spontaneous Ca(2+) waves, delayed afterdepolarization, and triggered activities are frequent in the atrial myocytes of sln-/- mice. Furthermore, loss of SLN in atria is associated with increased interstitial fibrosis and altered expression of genes encoding collagen and other extracellular matrix proteins. Our results also show that the sln-/- mice are susceptible to atrial arrhythmias upon aging. Together, these findings indicate that ablation of SLN results in increased SERCA activity and SR Ca(2+) load, which, in turn, could cause abnormal intracellular Ca(2+) handling and atrial remodeling.


Asunto(s)
Arritmias Cardíacas/metabolismo , Función Atrial , Señalización del Calcio , Proteínas Musculares/deficiencia , Miocitos Cardíacos/metabolismo , Proteolípidos/deficiencia , Potenciales de Acción , Envejecimiento/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/metabolismo , Colágeno/metabolismo , Fibrosis , Regulación de la Expresión Génica , Genotipo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Fenotipo , Proteolípidos/genética , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Tiempo
14.
Am J Physiol Heart Circ Physiol ; 302(8): H1636-44, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22307670

RESUMEN

Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H(2)O(2); 200 µM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of I(Ca,L), Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H(2)O(2) model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of I(Ca,L) may act synergistically in either case, reactivation of I(Ca,L) plays a predominant role in EAD genesis under oxidative stress (H(2)O(2) model), while spontaneous CaWs are a predominant cause for EADs under Ca(2+) overload condition (Iso + BayK model).


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Miocitos Cardíacos/fisiología , Potenciales de Acción/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Compuestos de Anilina/farmacología , Animales , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Fenómenos Electrofisiológicos/fisiología , Ventrículos Cardíacos , Proteínas de Homeodominio , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Isoproterenol/farmacología , Cinética , Técnicas de Placa-Clamp , Éteres Fenílicos/farmacología , Conejos , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/fisiología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores
15.
Toxicology ; 481: 153348, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209947

RESUMEN

Sorafenib (Sor), a novel multi-target anticancer drug also induces severe toxicity in heart, while the mechanism of its cardiotoxicity remains to be fully elucidated. Dysregulation of autophagy and mitochondrial dynamics imbalance have been implicated in cardiomyocyte death. The aim of this study is to test the hypothesis that Sor disrupts autophagy and mitochondrial dynamics, thereby aggravating Sor-induced oxidative stress damage to cardiomyocytes. Our results revealed that Sor (≥ 5 µM) concentration- and time-dependently reduced cell viability and induced apoptosis in H9c2 myoblasts. Sor treatment promoted intracellular reactive oxygen species (ROS) generation, and subsequent Ca2+ overload as well as apoptosis, which were abolished by the ROS scavenger MPG. Sor inhibited the basal autophagy activity of cells, as supported by the fact that ERK1/2 inhibition-dependent decreases of autophagosomes and autolysosomes, and p62 accumulation in a concentration- and time-dependent manner. Improving autophagy with rapamycin abrogated Sor-induced ROS and Ca2+ overloads, and cell apoptosis. Furthermore, Sor compromised mitochondrial morphology and caused excessive mitochondrial fragmentation in cells. The imbalance of mitochondrial dynamics was attributed to ROS-mediated CaMKII overactivity, and increased phosphorylation of dynamin-related protein 1 (phosph-Drp1). Suppression of CaMKII with KN-93 or mitochondrial fission with mitochondrial division inhibitor-1 (Mdivi-1) attenuated Sor-induced ROS and Ca2+ overloads as well as apoptosis. In conclusion, these results provide the first evidence that impairments in autophagy and mitochondrial dynamics are involved in Sor-induced cardiomyocyte apoptosis. The present study may provide a potential strategy for preventing or reducing cardiotoxicity of Sor.


Asunto(s)
Dinámicas Mitocondriales , Miocitos Cardíacos , Humanos , Sorafenib/toxicidad , Sorafenib/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Miocitos Cardíacos/metabolismo , Cardiotoxicidad/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dinaminas/metabolismo , Apoptosis , Autofagia
16.
ACS Nano ; 16(2): 2452-2460, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35129970

RESUMEN

Antiferroelectric (AFE) materials, in which alternating dipole moments cancel out to a zero net macroscopic polarization, can be used for high-density energy storage and memory applications. The AFE phase can exist in bulk CuInP2Se6, CuBiP2S6, and a few other transition-metal thiophosphates below 200 K. The required low temperature poses challenges for practical applications. In this work, we report the coexistence of ferrielectric (FE) states and a stable surface phase that does not show piezoelectric response ("zero-response phase") in bulk CuInP2S6 at room temperature. Using piezoresponse force microscopy (PFM) tomographic imaging together with density functional theory, we find that direct and alternating voltages can locally and stably convert FE to zero-response phases and vice versa. While PFM loops show pinched hystereses reminiscent of antiferroelectricity, PFM tomography reveals that the zero-response areas form only on top of the FE phase in which the polarization vector is pointing up. Theoretical calculations suggest that the zero-response phase may correspond to AFE ordering where stacked CuInP2S6 layers have alternating polarization orientations thereby leading to a net-zero polarization. Consistent with experimental findings, theory predicts that the FE polarization pointing down is robust up to the top surface, whereas FE polarization pointing up energetically favors the formation of an AFE surface layer, whose thickness is likely to be sensitive to local strains. AFE order is likely to be more robust against detrimental size effects than polar order, therefore providing additional opportunities to create multifunctional heterostructures with 2D electronic materials.

17.
J Mol Cell Cardiol ; 50(1): 128-36, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21059353

RESUMEN

Renin-angiotensin system inhibitors significantly reduce the incidence of arrhythmias. However, the underlying mechanism(s) is not well understood. We aim to test the hypothesis that angiotensin II (Ang II) induces early afterdepolarizations (EADs) and triggered activities (TAs) via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-ROS-calmodulin kinase II (CaMKII) pathway. ROS production was analyzed in the isolated rabbit myocytes loaded with ROS dye. Ang II (1-2 µM) increased ROS fluorescence in myocytes, which was abolished by Ang II type 1 receptor blocker losartan, NADPH oxidase inhibitor apocynin, and antioxidant MnTMPyP, respectively. Action potentials were recorded using the perforated patch-clamp technique. EADs emerged in 27 out of 41 (66%) cells at 15.8 ± 1.6 min after Ang II (1-2 µM) perfusion. Ang II-induced EADs were eliminated by losartan, apocynin, or trolox. The CaMKII inhibitor KN-93 (n=6) and inhibitory peptide (AIP) (n=4) also suppressed Ang II-induced EADs, whereas the inactive analogue KN-92 did not. Nifedipine, a blocker of L-type Ca current (I(Ca)(2+)(,L)), or ranolazine, an inhibitor of late Na current (I(Na)(+)), abolished Ang II-induced EADs. The effects of Ang II on major membrane currents were evaluated using voltage clamp. While Ang II at same concentrations had no significant effect on total outward K(+) current, it enhanced I(Ca.L) and late I(Na), which were attenuated by losartan, apocynin, trolox, or KN-93. We conclude that Ang II induces EADs via intracellular ROS production through NADPH oxidase, activation of CaMKII, and enhancement of I(Ca,L) and late I(Na). These results provide evidence supporting a link between renin-angiotensin system and cardiac arrhythmias.


Asunto(s)
Angiotensina II/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetanilidas/farmacología , Animales , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Electrofisiología , Ventrículos Cardíacos/citología , Masculino , Nifedipino/farmacología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Ranolazina , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología
18.
Food Funct ; 12(15): 6755-6765, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34116563

RESUMEN

Neointimal hyperplasia is the major cause of carotid stenosis after vascular injury, which restricts the long-term efficacy of endovascular treatment and endarterectomy in preventing stenosis. Ginsenoside Re (Re) is a major active ingredient of ginseng having multifaceted pharmacological effects on the cardiovascular system, and is a potential treatment for restenosis. In this study, we demonstrated that Re treatment significantly inhibited vascular injury-induced neointimal thickening, reduced the intimal area and intima/media (I/M) ratio, increased the lumen area, and inhibited pro-inflammatory cytokines. In cultured A7R5 cells, Re inhibited LPS-induced proliferation and migration as evidenced by suppressed colony formation and shortened migration distance, accompanied by the downregulated expression of pro-inflammatory cytokines. Re promoted VSMC apoptosis induced by balloon injury in vivo and LPS challenge in vitro. Moreover, Re inhibited autophagy in VSMCs evoked by balloon injury and LPS as supported by reduced LC3II and increased p62 expressions. Suppression of autophagy with the specific autophagy inhibitor spautin-1 efficiently inhibited LPS-induced cell proliferation and inflammation and promoted caspase-3/7 activities. Mechanistically, we found that Re attenuated Ras/ERK1/2 expression in VSMCs in vivo and in vitro. The MEK1/2 inhibitor PD98059 showed similar effects to Re on cell proliferation, migration, apoptosis, and the levels of autophagy and cytokines. In conclusion, we provided significant evidence that Re inhibited vascular injury-induced neointimal thickening probably by promoting VSMC apoptosis and inhibiting autophagy via suppression of the Ras/MEK/ERK1/2 signaling pathway.


Asunto(s)
Ginsenósidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neointima , Sustancias Protectoras/farmacología , Animales , Hiperplasia , Masculino , Neointima/metabolismo , Neointima/patología , Ratas , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
19.
Oxid Med Cell Longev ; 2021: 8889195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646427

RESUMEN

Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.


Asunto(s)
MicroARNs/metabolismo , Miocardio/metabolismo , Sirtuina 1/metabolismo , Remodelación Ventricular/efectos de los fármacos , Angiotensina II/farmacología , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Remodelación Ventricular/fisiología
20.
Food Funct ; 12(1): 241-251, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33295905

RESUMEN

Long-term high-fat-diet (HFD)-induced obesity is associated with many comorbidities, such as cognitive impairment and anxiety, which are increasing public health burdens that have gained prevalence in adolescents. Although low-dose alcohol could attenuate the risk of cardiovascular disease, its mechanism on HFD-induced anxiety-related behavior remains not clear. The mice were divided into 4 groups, Control (Con), Alcohol (Alc), HFD and HFD + Alc groups. To verify the effects of low-dose alcohol on HFD-induced anxiety-related behavior, the mice were fed with HFD for 16 weeks. At the beginning of week 13, the HFD-fed mice were administered intragastrically with low-dose alcohol (0.8 g kg-1) for 4 weeks. After 4 weeks of oral administration, low-dose alcohol decreased body weight and Lee's index in HFD-induced obese mice. Moreover, low-dose alcohol alleviated the anxiety-related behaviors of obese mice in the open field test and the elevated plus maze test. The HFD-induced damage to the hippocampus was improved in hematoxylin-eosin staining assay in mice. In addition, low-dose alcohol also suppressed HFD-induced oxidative stress and increased HFD-suppressed adiponectin (APN) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) activation in the hippocampus. Taken together, low-dose alcohol significantly ameliorates HFD-induced obesity, oxidative stress and anxiety-related behavior in mice, which might be related to APN upregulation, Nrf2 activation and related antioxidase expression including SOD1, HO-1, and catalase.


Asunto(s)
Adiponectina/metabolismo , Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Etanol/farmacología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Obesidad/metabolismo , Animales , Ansiedad/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Factor 2 Relacionado con NF-E2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA