Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 192(3): 2102-2122, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36722358

RESUMEN

Peel browning is a natural phenomenon that adversely affects the appearance of fruits. Research on the regulation of browning in apples (Malus × domestica Borkh.) has mainly focused on postharvest storage, while studies at the preharvest stage are relatively rare. Apple is an economically important horticultural crop prone to peel browning during growth, especially when the fruits are bagged (dark conditions). The present study's integrated transcriptomics and metabolomics analysis revealed that preharvest apple peel browning was primarily due to changes in phenolics and flavonoids. The detailed analysis identified MdLAC7's (laccase 7) role in the preharvest apple peel browning process. Transient injection, overexpression, and CRISPR/Cas9 knockout of the MdLAC7 gene in apple fruit and calli identified vallinic acid, anthocyanidin, tannic acid, sinapic acid, and catechinic acid as its catalytic substrates. In addition, yeast one-hybrid assay, electrophoretic mobility shift assay, luciferase reporter assay, and ChIP-PCR analysis revealed that MdWRKY31 binds to the promoter of MdLAC7 and positively regulates its activity to promote peel browning of bagged fruits (dark conditions). Interestingly, upon light exposure, the light-responsive transcription factor MdHY5 (ELONGATED HYPOCOTYL 5) bound to the promoter of MdWRKY31 and inhibited the gene's expression, thereby indirectly inhibiting the function of MdLAC7. Subsequent analysis showed that MdHY5 binds to the MdLAC7 promoter at the G-box1/2 site and directly inhibits its expression in vivo. Thus, the study revealed the MdLAC7-mediated mechanism regulating preharvest apple peel browning and demonstrated the role of light in inhibiting MdLAC7 activity and subsequently reducing peel browning. These results provide theoretical guidance for producing high-quality apple fruits.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Transcriptoma/genética , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Metabolómica
2.
Brain Behav Immun ; 120: 430-438, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897328

RESUMEN

BACKGROUND: Recent studies have associated immune abnormalities with dementia. IL-6 is a crucial cytokine in inflammatory responses, and recent evidence has linked elevated IL-6 levels to changes in brain structure and cognitive decline. However, the connection between IL-6 levels, cognition, brain volumes, and dementia risk requires exploration in large prospective cohorts. METHODS: This study utilized a longitudinal cohort from the UK Biobank to analyze the correlation between IL-6 expression levels, cognitive performance, and cortical and subcortical brain volumes through linear regression. Additionally, we assessed the association between IL-6 levels and long-term dementia risk using Cox regression analysis. We also used one-sample Mendelian randomization to analyze the impact of genetic predisposition of dementia on elevated IL-6 levels. RESULTS: A total of 50,864 participants were included in this study, with 1,391 new cases of all-cause dementia identified. Higher plasma IL-6 levels are associated with cortical and subcortical atrophy in regions such as the fusiform, thalamus proper, hippocampus, and larger ventricle volumes. IL-6 levels are negatively associated with cognitive performance in pair matching, numeric memory, prospective memory, and reaction time tests. Furthermore, elevated IL-6 levels are linked to a 23-35 % increased risk of all-cause dementia over an average follow-up period of 13.2 years. The one-sample Mendelian randomization analysis did not show associations between the genetic predisposition of dementia and elevated IL-6 levels. CONCLUSIONS: Increased IL-6 levels are associated with worse cognition, brain atrophy, and a heightened risk of all-cause dementia. Our study highlights the need to focus on the role of peripheral IL-6 levels in managing brain health and dementia risk.

3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36611228

RESUMEN

AIMS: Root-knot nematodes (RKNs) are plant pathogens that cause huge economic losses worldwide. The biological management of RKNs may be a sustainable alternative to chemical control methods. Here, the biocontrol potential of Methylorubrum rhodesianum M520 against the RKN Meloidogyne incognita was investigated to theoretically support its application as a biocontrol agent in field production. METHODS AND RESULTS: In-vitro assays showed 91.9% mortality of M. incognita second-stage juveniles in the presence of strain M520 and that the hatching rate of M. incognita eggs was 21.7% lower than that of eggs treated with sterile water. In pot experiments, the M520 treatment caused 70.8% reduction in root-knots and increased plant shoot length and stem and root fresh weights, compared to control plant values. In split-root experiments, cucumber roots treated with M520 showed 25.6% decrease in root gall number, compared to that in control roots. CONCLUSION: M520 has multiple mechanisms against RKNs and might be used as a biocontrol agent against M. incognita in cucumber, laying a foundation for further studying M520 biocontrol against RKNs.


Asunto(s)
Cucumis sativus , Methylobacteriaceae , Tylenchida , Tylenchoidea , Animales , Raíces de Plantas
4.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177571

RESUMEN

Accurate prediction of wind power is of great significance to the stable operation of the power system and the vigorous development of the wind power industry. In order to further improve the accuracy of ultra-short-term wind power forecasting, an ultra-short-term wind power forecasting method based on the CGAN-CNN-LSTM algorithm is proposed. Firstly, the conditional generative adversarial network (CGAN) is used to fill in the missing segments of the data set. Then, the convolutional neural network (CNN) is used to extract the eigenvalues of the data, combined with the long short-term memory network (LSTM) to jointly construct a feature extraction module, and add an attention mechanism after the LSTM to assign weights to features, accelerate model convergence, and construct an ultra-short-term wind power forecasting model combined with the CGAN-CNN-LSTM. Finally, the position and function of each sensor in the Sole du Moulin Vieux wind farm in France is introduced. Then, using the sensor observation data of the wind farm as a test set, the CGAN-CNN-LSTM model was compared with the CNN-LSTM, LSTM, and SVM to verify the feasibility. At the same time, in order to prove the universality of this model and the ability of the CGAN, the model of the CNN-LSTM combined with the linear interpolation method is used for a controlled experiment with a data set of a wind farm in China. The final test results prove that the CGAN-CNN-LSTM model is not only more accurate in prediction results, but also applicable to a wide range of regions and has good value for the development of wind power.

5.
Nano Lett ; 22(2): 622-629, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34982564

RESUMEN

Perpendicular magnetic tunnel junctions (p-MTJs) switched utilizing bipolar electric fields have extensive applications in energy-efficient memory and logic devices. Voltage-controlled magnetic anisotropy linearly lowers the energy barrier of the ferromagnetic layer via the electric field effect and efficiently switches p-MTJs only with a unipolar behavior. Here, we demonstrate a bipolar electric field effect switching of 100 nm p-MTJs with a synthetic antiferromagnetic free layer through voltage-controlled exchange coupling (VCEC). The switching current density, ∼1.1 × 105 A/cm2, is 1 order of magnitude lower than that of the best-reported spin-transfer torque devices. Theoretical results suggest that the electric field induces a ferromagnetic-antiferromagnetic exchange coupling transition of the synthetic antiferromagnetic free layer and generates a fieldlike interlayer exchange coupling torque, which causes the bidirectional magnetization switching of p-MTJs. These results could eliminate the major obstacle in the development of spin memory devices beyond their embedded applications.

6.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298341

RESUMEN

Powdery mildew is an apple disease caused by the obligate trophic fungus Podosphaera leucotricha. Basic helix-loop-helix (bHLH) transcription factors play important roles in plant development and stress responses, and they have been widely studied in model plants such as Arabidopsis thaliana. However, their role in the stress response of perennial fruit trees remains unclear. Here, we investigated the role of MdbHLH093 in the powdery mildew of apples. The expression of MdbHLH093 was significantly induced during the infection of apples with powdery mildew, and the allogenic overexpression of MdbHLH093 in A. thaliana enhanced the resistance to powdery mildew by increasing the accumulation of hydrogen peroxide (H2O2) and activating the salicylic acid (SA) signaling pathway. The transient overexpression of MdbHLH093 in apple leaves increased the resistance to powdery mildew. Conversely, when MdbHLH093 expression was silenced, the sensitivity of apple leaves to powdery mildew was increased. The physical interaction between MdbHLH093 and MdMYB116 was demonstrated by yeast two-hybrid, bi-molecular fluorescence complementation, and split luciferase experiments. Collectively, these results indicate that MdbHLH093 interacts with MdMYB116 to improve apple resistance to powdery mildew by increasing the accumulation of H2O2 and activating the SA signaling pathway, as well as by providing a new candidate gene for resistance molecular breeding.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico , Erysiphe , Arabidopsis/genética , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
7.
Plant Biotechnol J ; 20(9): 1683-1700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35527510

RESUMEN

Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.


Asunto(s)
Malus , MicroARNs , Proantocianidinas , Antocianinas , Arabidopsis/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis
8.
Environ Res ; 209: 112884, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35131319

RESUMEN

The vitality and diversity of soil microbial metabolism are the core of soil function expression, cover crop is an environmentally friendly agricultural production practice; however, shifts in soil microbial metabolic activities along time gradient of cover crop remain unclear. Here, we used metagenomic and biological techniques to investigate soil microbial potential function and carbon (C) source utilization capacity in the time series of white clover (WC, Trifolium repens L.) for 6, 10, and 15 years in a typical semiarid apple orchard. Conventional tillage (CT) was taken as the control. This study demonstrated that living mulch 6 years of WC had little effect on soil microbial functions. However, after 10 and 15 years of crop cover, an enrichment of genes related to amino acid metabolism, carbon cycle, and nitrogen metabolism was observed in soil microorganisms. Furthermore, average well color development (AWCD) was increased in 10 and 15 years of cover crop, soil microbiome exhibited a stronger preference for carbohydrates, amino acids, and polymers as C sources. The results mainly provided insight into the variation character of microbial metabolic function under increasing duration of cover crop.


Asunto(s)
Microbiología del Suelo , Suelo , Agricultura/métodos , Biodegradación Ambiental , Carbono , Suelo/química
9.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684872

RESUMEN

Under the framework of Bayesian theory, a probabilistic method for damage diagnosis of latticed shell structures based on temperature-induced strain is proposed. First, a new damage diagnosis index is proposed based on the correlation between temperature-induced strain and structural parameters. Then, Markov Chain Monte Carlo is adopted to analyze the newly proposed diagnosis index, based on which the frequency distribution histogram for the posterior probability of the diagnosis index is obtained. Finally, the confidence interval of the damage diagnosis is determined by the posterior distribution of the initial state (baseline condition). The damage probability of the unknown state is also calculated. The proposed method was validated by applying it to a latticed shell structure with finite element developed, where the rod damage and bearing failure were diagnosed based on importance analysis and temperature sensitivity analysis of the rod. The analysis results show that the proposed method can successfully consider uncertainties in the strain response monitoring process and effectively diagnose the failure of important rods in radial and annular directions, as well as horizontal (x- and y-direction) bearings of the latticed shell structure.


Asunto(s)
Teorema de Bayes , Cadenas de Markov , Método de Montecarlo , Probabilidad , Temperatura
10.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328360

RESUMEN

Aroma is a key quality attribute of apples, making major contributions to commercial value and consumer choice. However, the mechanism underlying molecular regulation of aroma formation genes and transcription factors remains poorly understood in apples. Here, we investigated the aroma volatile profiles of two apple varieties with distinctive flavors using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 35 volatile compounds were identified in Granny Smith and Jonagold apples. Aldehydes were the most abundant volatiles contributing to the aroma in Granny Smith apple while esters were the dominant volatile compounds in Jonagold apple. In order to know more about the expression levels of aroma-related genes involved in the metabolic pathways, transcriptome sequencing of these two different apple varieties was conducted utilizing the Illumina platform. In total, 94 differentially expressed genes (DEGs) were found in the fatty acid metabolism, amino acid metabolism, the mevalonate pathway and phenylpropanoid pathway. Furthermore, compared to the Granny Smith apple, the expression of multiple genes and transcription factors were upregulated in the Jonagold apple, which might play important roles in the synthesis of aroma volatile compounds. Our study contributes toward better understanding on the molecular mechanism of aroma synthesis in apples and provides a valuable reference for metabolic engineering and flavor improvement in the future.


Asunto(s)
Malus , Compuestos Orgánicos Volátiles , Frutas/química , Frutas/genética , Cromatografía de Gases y Espectrometría de Masas/métodos , Perfilación de la Expresión Génica , Malus/química , Malus/genética , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Factores de Transcripción/genética , Compuestos Orgánicos Volátiles/análisis
11.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744900

RESUMEN

The bagging of fruits provides efficient protection from high-intensity sunlight and improves fruit color and quality. However, bagged fruit suddenly exposed to bright light can cause sunburn and destroys the peel cell structure. In this study, fruits from ten-year-old apple trees of 'Gala' variety were debagged, and the effect of sunburn on fruits was divided into: (1) normal peels (BFN), (2) peels with albefaction (BFA), and (3) browning (BFB). The non-bagging fruits (NBF) were set as a control to study the physiological characteristics of apple fruits with different levels of sunburn. Our results showed that in the early stages of debagged fruits' sunburn, the cell structure of the peel was partially destroyed, the color of the injured fruit surface turned white, and the peroxidation in the cell membrane of the peel increased. Initially, the fruit improved its photosynthetic protection ability, and the activity of antioxidants and phenolics was enhanced, to cope with external injury. However, with the increase in duration of high-intensity sunlight, the cell structure of the peel was severely damaged, and the increase in membrane peroxidation resulted in brown coloration of fruits. Under the same conditions, the photoprotection ability and antioxidant enzyme activity of non-bagged fruits showed higher levels. In conclusion, the non-bagged fruits were more adaptable to high-intensity sunlight as compared to debagged fruits.


Asunto(s)
Malus , Quemadura Solar , Antioxidantes/metabolismo , Frutas/metabolismo , Malus/metabolismo , Quemadura Solar/metabolismo , Luz Solar/efectos adversos
12.
BMC Plant Biol ; 21(1): 231, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030661

RESUMEN

BACKGROUND: Aroma is one the most crucial inherent quality attributes of fruit. 'Ruixue' apples were selected from a cross between 'Pink Lady' and 'Fuji', a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in 'Ruixue' apples or the genetic characters of 'Ruixue' and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood. RESULTS: Volatile aroma compounds were putatively identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. On the basis of a heatmap dendrogram, these aroma compounds clustered into seven groups. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of 'Pink Lady' and 'Fuji' apples, and they included butyl 2-methylbutanoate; propanoic acid, hexyl ester; propanoic acid, hexyl ester; hexanoic acid, hexyl ester; acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of 'Ruixue', and they mainly included hexanal; 2-hexenal; octanal; (E)-2-octenal; nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of 'Ruixue' and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may volatile regulate biosynthesis. CONCLUSIONS: Our initial study facilitates a better understanding of the volatile compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between 'Ruixue' and its parents.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Malus/crecimiento & desarrollo , Malus/genética , Malus/metabolismo , Odorantes , Compuestos Orgánicos Volátiles/metabolismo , China , Perfilación de la Expresión Génica , Variación Genética , Genotipo
13.
BMC Plant Biol ; 21(1): 209, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964877

RESUMEN

BACKGROUND: Bagging is one of the most important techniques for producting high-quality fruits. In the actual of cultivating, we found a new kind of browning in peel of apple fruit that occurs before harvest and worsen during storage period. There are many studies on metabonomic analysis of browning about storage fruits, but few studies on the mechanism of browning before harvest. RESULTS: In this study, five-year-old trees of 'Rui Xue' (CNA20151469.1) were used as materials. Bagging fruits without browning (BFW) and bagging fruits with browning (BFB) were set as the experimental groups, non-bagging fruits (NBF) were set as control. After partial least squares discriminant analysis (PLS-DA), 50 kinds of metabolites were important with predictive VIP > 1 and p-value < 0.05. The most important differential metabolites include flavonoids and lipids molecules, 11 flavonoids and 6 lipids molecules were significantly decreased in the BFW compared with NBF. After browning, 11 flavonoids and 7 lipids were further decreased in BFB compared with BFW. Meanwhile, the significantly enriched metabolic pathways include galactose metabolism, ABC membrane transporter protein, flavonoid biosynthesis and linoleic acid metabolism pathways et al. Physiological indicators show that, compared with NBF, the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2-) in peel of BFW and BFB were significantly increased, and the difference of BFB was more significant. Meanwhile, the antioxidant enzyme activities of BFW and BFB were inhibited, which accelerated the destruction of cell structure. In addition, the metabolome and physiological data showed that the significantly decrease of flavonoid was positively correlated with peel browning. So, we analyzed the expression of flavonoid related genes and found that, compared with NBF, the flavonoid synthesis genes MdLAR and MdANR were significantly up-regulated in BFW and BFB, but, the downstream flavonoids-related polymeric genes MdLAC7 and MdLAC14 were also significantly expressed. CONCLUSIONS: Our findings demonstrated that the microenvironment of fruit was changed by bagging, the destruction of cell structure, the decrease of flavonoids and the increase of triterpenoids were the main reasons for the browning of peel.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Malus/crecimiento & desarrollo , Malus/genética , Malus/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variación Genética , Genotipo , Reacción de Maillard , Metaboloma
14.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071930

RESUMEN

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play important roles in plant development and stress response. Although AP2/ERF genes have been extensively investigated in model plants such as Arabidopsis thaliana, little is known about their role in biotic stress response in perennial fruit tree crops such as apple (Malus × domestica). Here, we investigated the role of MdERF100 in powdery mildew resistance in apple. MdERF100 localized to the nucleus but showed no transcriptional activation activity. The heterologous expression of MdERF100 in Arabidopsis not only enhanced powdery mildew resistance but also increased reactive oxygen species (ROS) accumulation and cell death. Furthermore, MdERF100-overexpressing Arabidopsis plants exhibited differential expressions of genes involved in jasmonic acid (JA) and salicylic acid (SA) signaling when infected with the powdery mildew pathogen. Additionally, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that MdERF100 physically interacts with the basic helix-loop-helix (bHLH) protein MdbHLH92. These results suggest that MdERF100 mediates powdery mildew resistance by regulating the JA and SA signaling pathways, and MdbHLH92 is involved in plant defense against powdery mildew. Overall, this study enhances our understanding of the role of MdERF genes in disease resistance, and provides novel insights into the molecular mechanisms of powdery mildew resistance in apple.


Asunto(s)
Arabidopsis/genética , Resistencia a la Enfermedad/genética , Expresión Génica , Malus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo
15.
Molecules ; 26(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557222

RESUMEN

'Orin' is a popular apple cultivar, which has a yellow-green appearance, pleasant taste, and unique aroma. However, few studies on the fruit quality characteristics of 'Orin' apples have been reported before. In this study, changes of the physiological characteristics were measured at different ripening stages, and the soluble sugars and organic acids were determined by high-performance liquid chromatography (HPLC). Volatile compounds were identified using the headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). During the fruit ripening, the 'Orin' apple fruit weight, size, and total soluble solid were gradually increased by contrast with the titratable acidity, and the firmness decreased. The content of four soluble sugars reached the maximum at the 180 days after full bloom (DAFB) stage. Malic acid was measured as the most abundant organic acid in 'Orin' apples. Ethyl butyrate, hexyl propanoate, hexyl acetate and butyl acetate belonging to esters with high odor activity values (OAVs) could be responsible for the typical aroma of 'Orin' apples. The aim of this work was to provide information on the flavor characteristics of 'Orin' apples and promote this apple cultivar for marketing and processing in the future.


Asunto(s)
Ácidos/análisis , Malus/química , Malus/crecimiento & desarrollo , Azúcares/análisis , Azúcares/química , Compuestos Orgánicos Volátiles/análisis , Solubilidad
16.
J Environ Manage ; 271: 110985, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32579532

RESUMEN

To improve our understanding about the responses of microbial functional diversity to different mulching practices, this study used a metagenomic approach to reveal soil microbial functional specificity under four tillage regimes: conventional tillage (CT), organic mulch practices with ryegrass (Lolium perenne L.) intercropping cover (RE) and cornstalk mulch (CS), and inorganic mulching with black ground fabric (BF) in a 7-year field experiment in an apple orchard of the Loess Plateau in China. Enzyme activity and soil physicochemical properties were measured. A redundancy analysis showed that the RE and CS treatments had positive effects on soil nutrient and enzyme activity compared to that of the BF and CT treatments. The CS and RE treatments increased ß-glucosidase, cellobiohydrolase, and ß-xylosidase activities. In addition, the CS treatment significantly enhanced the ß-N-acetylglucosaminidase and urease activities compared to that under CT treatment. However, the activity of these enzyme was reduced in the BF treatment compared with that of the CT treatment. The results also indicated that the enzymes activities were not completely consistent with the changing trends of the genes encoding these enzymes. In addition, the RE and CS treatments also increased the abundance of genes encoding carbohydrate enzymes. It is interesting that the RE and CS treatments had more pathway genes associated with the carbon cycle, nitrogen cycle, and amino acid metabolism compared with the BF treatment. Remarkably, RE and CS treatments effectively increased the abundance of carbon fixation gene cbbL compared to CT treatment. In summary, organic mulching practices increased the soil microbiological functional diversity related to the carbon and nitrogen cycle, while inorganic mulching practice reduced them. This study enhanced our understanding of how mulching practices may alter soil microbial functional diversity and benefit soil quality.


Asunto(s)
Microbiología del Suelo , Suelo , Agricultura , Carbono , China
17.
BMC Genomics ; 20(1): 353, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072309

RESUMEN

BACKGROUND: Bagging is commonly used to enhance red pigmentation and thereby improve fruit quality of apples (Malus domestica). The green-skinned apple cultivar 'Granny Smith' develops red pigmentation after bagging removal, but the signal transduction pathways mediating light-induced anthocyanin accumulation in apple peel are yet to be defined. The aim of this study was to identify the mechanisms underpinning red pigmentation in 'Granny Smith' after bag removal based on transcriptome sequencing. RESULTS: The anthocyanin content in apple peel increased considerably after bag removal, while only trace amounts of anthocyanins were present in the peel of unbagged and bagged fruits. RNA sequencing identified 18,152 differentially expressed genes (DEGs) among unbagged, bagged, and bag-removed fruits at 0, 4, and 10 days after bag removal. The DEGs were implicated in light signal perception and transduction, plant hormone signal transduction, and antioxidant systems. Weighted gene co-expression network analysis of DEGs generated a module of 23 genes highly correlated with anthocyanin content. The deletion of - 2026 to - 1870 bp and - 1062 to - 964 bp regions of the MdMYB1 (LOC103444202) promoter induced a significant decrease in glucuronidase activity and anthocyanin accumulation in apple peel. CONCLUSIONS: Bagging treatment can induce red pigmentation in 'Granny Smith' via altering the expression patterns of genes involved in crucial signal transduction and biochemical metabolic pathways. The - 2026 to - 1870 bp and - 1062 to - 964 bp regions of the MdMYB1 promoter are essential for MdMYB1-mediated regulation of anthocyanin accumulation in the 'Granny Smith' apple cultivar. The findings presented here provide insight into the mechanisms of coloration in the peel of 'Granny Smith' and other non-red apple cultivars.


Asunto(s)
Antocianinas/biosíntesis , Frutas/genética , Perfilación de la Expresión Génica/métodos , Malus/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Pigmentación , Proteínas de Plantas/genética
18.
Nat Mater ; 17(9): 800-807, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061733

RESUMEN

The spin-orbit torque (SOT) that arises from materials with large spin-orbit coupling promises a path for ultralow power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BixSe(1-x) thin films in BixSe(1-x)/Co20Fe60B20 heterostructures by using d.c. planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin torque efficiency (θS) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08 using the d.c. planar Hall and ST-FMR methods, respectively. Moreover, switching of the perpendicular CoFeB multilayers using the SOT from the BixSe(1-x) was observed at room temperature with a low critical magnetization switching current density of 4.3 × 105 A cm-2. Quantum transport simulations using a realistic sp3 tight-binding model suggests that the high SOT in sputtered BixSe(1-x) is due to the quantum confinement effect with a charge-to-spin conversion efficiency that enhances with reduced size and dimensionality. The demonstrated θS, ease of growth of the films on a silicon substrate and successful growth and switching of perpendicular CoFeB multilayers on BixSe(1-x) films provide an avenue for the use of BixSe(1-x) as a spin density generator in SOT-based memory and logic devices.

19.
Int J Mol Sci ; 20(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083412

RESUMEN

Apple (Malus × domestica Borkh.) is one of the most important cultivated tree fruit crops worldwide. However, sustainable apple production is threatened by powdery mildew (PM) disease, which is caused by the obligate biotrophic fungus Podosphaera leucotricha. To gain insight into the molecular basis of the PM infection and disease progression, RNA-based transcriptional profiling (RNA-seq) was used to identify differentially expressed genes (DEGs) in apples following inoculation with P. leucotricha. Four RNA-seq libraries were constructed comprising a total of 214 Gb of high-quality sequence. 1177 DEGs (661 upregulated and 629 downregulated) have been identified according to the criteria of a ratio of infection/control fold change > 2, and a false discovery rate (FDR) < 0.001. The majority of DEGs (815) were detected 12 h after inoculation, suggesting that this is an important time point in the response of the PM infection. Gene annotation analysis revealed that DEGs were predominately associated with biological processes, phenylpropanoid biosynthesis, hormone signal transduction and plant-pathogen interactions. Genes activated by infection corresponded to transcription factors (e.g., AP2/ERF, MYB, WRKY and NAC) and synthesis of defense-related metabolites, including pathogenesis-related genes, glucosidase and dehydrin. Overall, the information obtained in this study enriches the resources available for research into the molecular-genetic mechanisms of the apple/powdery mildew interactions, and provides a theoretical basis for the development of new apple varieties with resistance to PM.


Asunto(s)
Ascomicetos/fisiología , Perfilación de la Expresión Génica , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Malondialdehído/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
20.
BMC Plant Biol ; 18(1): 108, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871614

RESUMEN

BACKGROUND: Fruit color in apple (Malus domestica Borkh.) is ascribed mainly to the accumulation of anthocyanin pigments, and is an important trait for determining fruit market acceptance. Bagging is a commonly used treatment to enhance the red pigmentation in apple skin. The MdMYB1 transcription factor gene plays an important role in the biosynthesis of anthocyanin in apple after bag removal, but little is known about how MdMYB1 transcription is regulated. RESULTS: In this study, we investigated pigmentation in the non-red skinned cultivars 'Granny Smith' and 'Golden Delicious' after bag removal. The fruit skins of the two cultivars showed red/pink pigmentation after bag treatment. Transcript levels of MdMYB1, the master regulator of anthocyanin biosynthesis in apple, increased, and showed a correlation with anthocyanin content in both cultivars after bag removal. The MdMYB1 genomic sequences were compared in the two cultivars, which showed that the green-fruited cultivar 'Granny Smith' harbors the MdMYB1-1 and MdMYB1-2 alleles, while the yellow-fruited cultivar 'Golden Delicious' harbors only MdMYB1-2. A comparison of methylation levels in the 2 kb region upstream of the MdMYB1 ATG between the bag-treated fruits after removal from the bags and the unbagged fruits showed a correlation between hypomethylation and the red-skin phenotype in 'Granny Smith'. Moreover, 'Granny Smith' fruits responded to treatment with 5-aza-2'-deoxycytidine, an inducer of DNA demethylation. An investigation of the MdMYB1 promoter in 'Granny Smith' showed reduced methylation in the regions - 2026 to - 1870 bp, - 1898 to - 1633 bp, and - 541 to - 435 bp after bag removal and 5-aza-2'-deoxycytidine treatments. CONCLUSIONS: Differences in anthocyanin levels between 'Granny Smith' and 'Golden Delicious' can be explained by differential accumulation of MdMYB1-specific mRNA. Different levels of MdMYB1 transcripts in the two cultivars are associated with methylation levels in the promoter region. Hypomethylation of the MdMYB1 promoter is correlated with the formation of red pigmentation in 'Granny Smith' fruit skins. As a result, red pigmentation in Granny Smith' was more intense than in 'Golden Delicious' fruits after bag removal.


Asunto(s)
Antocianinas/metabolismo , Metilación de ADN/efectos de los fármacos , Malus/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Alelos , Decitabina/farmacología , Frutas/genética , Frutas/metabolismo , Malus/metabolismo , Fenotipo , Pigmentación/efectos de los fármacos , Proteínas de Plantas/genética , ARN Mensajero , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA