Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37708416

RESUMEN

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Asunto(s)
Tephritidae , Animales , Geografía , Medición de Riesgo
2.
Ecol Appl ; 29(8): e01991, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31400182

RESUMEN

In the six decades since 1960, the oriental fruit fly, Bactrocera dorsalis (Hendel), has been announced successfully eradicated in California by the U.S. Department of Agriculture a total of 564 times. This includes eradication declarations in one city a total of 25 different years, in 12 cities 8-19 different years, and in 101 cities 2-7 different years. We here show that the false negatives in declaring elimination success hinge on the easily achieved regulatory criteria, which have virtually guaranteed the failure of complete extirpation of this pest. Analyses of the time series of fly detection over California placed on a grid of 100-km2 cells revealed (1) partial success of the eradication program in controlling the invasion of the oriental fruit fly; (2) low prevalence of the initial detection in these cells is often followed by high prevalence of recurrences; (3) progressively shorter intervals between years of consecutive detections; and (4) high likelihood of early-infested cells also experiencing the most frequent outbreaks. Facing the risk of recurrent invasions, such short-term eradication programs have only succeeded annually according to the current regulatory criteria but have failed to achieve the larger goal of complete extirpation of the oriental fruit fly. Based on the components and running costs of the current programs, we further estimated the efficiency of eradication programs with different combinations of eradication radius, duration, and edge impermeability in reducing invasion recurrences and slowing the spread of the oriental fruit fly. We end with policy implications including the need for agricultural agencies worldwide to revisit eradication protocols in which monitoring and treatments are terminated when the regulatory criteria for declaring eradication are met. Our results also have direct implications to invasion biologists and agriculture policy makers regarding long-term risks of short-term expediency.


Asunto(s)
Tephritidae , Animales , California , Recurrencia , Estados Unidos
3.
Int J Mol Sci ; 19(2)2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385681

RESUMEN

Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactroceradorsalis Hendel and Bactroceracorrecta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor (EGFR), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects.


Asunto(s)
Vuelo Animal/fisiología , Perfilación de la Expresión Génica , Genes de Insecto/fisiología , Tephritidae/fisiología , Animales , Especificidad de la Especie
4.
J Invertebr Pathol ; 122: 10-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25111763

RESUMEN

The sweetpotato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is one of the most important pests of sweet potatoes in the world. With free trade between the United States and the U.S.-controlled Mariana Islands, C. formicarius has spread along with this commodity. Because of the cryptic nature of the larvae and nocturnal activity of the adults, and the cancellation of long-residual pesticides, this pest has become increasingly difficult to control. Therefore, the present study sought to explore and to compare the effectiveness of Metarhizium brunneum F52 (90ml a.i./ha), Beauveria bassiana GHA (40ml a.i./ha), spinosad (90g a.i./ha), azadirachtin (1484ml a.i./ha), B. bassiana+M. brunneum (20ml a.i./ha+45ml a.i./ha), B. bassiana+azadirachtin (20ml a.i./ha+742ml a.i./ha), B. bassiana+spinosad (20ml a.i./ha+45ml a.i./ha), M. brunneum+azadirachtin (45ml a.i./ha+742ml a.i./ha) and M. brunneum+spinosad (45ml a.i./ha+45 grams a.i./ha) in controlling this pest in both the laboratory and the field. The treatment with B. bassiana+M. brunneum was the most effective in reducing tuber damage by C. formicarius, producing the highest yields. The most adult cadavers were found in plots treated with the combination of two fungi. This combined fungal formulation appears to be appropriate for the practical control of C. formicarius on sweet potatoes.


Asunto(s)
Beauveria , Metarhizium , Control Biológico de Vectores/métodos , Gorgojos/microbiología , Animales , Productos Agrícolas/microbiología , Ipomoea batatas/microbiología
5.
J Econ Entomol ; 107(2): 630-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24772543

RESUMEN

The intensification of agriculture has caused a decline in the complexity of agricultural landscapes because of the expansion of arable lands and the removal of natural habitats. These landscape changes, which have substantial effects on natural enemies (e.g., parasitoids) and on biological control services, have received considerable attention recently. In the current study, we analyzed the effects of landscape complexity on cereal aphids and their parasitic wasps in 24 sites during a period of 3 yr. In total, 11 primary parasitoid species and 6 hyperparasitoid species, comprising 5,220 individuals, were collected in our experiments. With the exception of two primary parasitic wasps (Trioxys asiaticus Telenga and Toxares sp.) and one hyperparasitic wasp (Dendrocerus carpenteri [Curtis]), most species were sensitive to landscape complexity after > or = 1 yr. Species diversity, primary parasitism, and hyperparasitism increased with increasing landscape complexity. However, the relationship between the population density of active primary parasitoids (effective primary parasitoids) and landscape complexity was indicated by a quadratic function, not a linear function. The effective population density of primary parasitoids was maximal (2.04 individuals per 100 wheat stems) if the percentage of noncrop habitat was 38%. The hypothesis that landscape complexity may enhance the activity or higher diversity of primary parasitoids and hyperparasitoids was well-supported by our study. However, the hyperparasitoids had a more sensitive response to landscape complexity than the primary parasitoids. Further studies should aim to enhance the biological pest control of primary parasitoids and suppress hyperparasitoids by habitat manipulation. This technique could be used effectively for pest management in mosaic landscapes through habitat rearrangement and reorganization.


Asunto(s)
Áfidos/fisiología , Áfidos/parasitología , Ambiente , Avispas/fisiología , Agricultura , Animales , China , Grano Comestible , Orientación , Control Biológico de Vectores , Densidad de Población , Estaciones del Año , Especificidad de la Especie
6.
J Econ Entomol ; 117(3): 1041-1046, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38482558

RESUMEN

Climate change involves changes in the pattern of temperature fluctuations and the frequency and magnitude of thermal extremes. It is essential to investigate how insects respond to increased temperature variations, especially for species that usually experience diel temperature variations extending to thermal performance limits. To explicitly elucidate the effects of sizes of amplitudes of temperature variations, we used daily alternating temperatures with an equivalent mean of 28 °C to investigate the impact of different fluctuation amplitudes (±â€…0 °C,  ±â€…2 °C,  ±â€…4 °C, and  ±â€…6 °C) across permissive temperature regimes on the performance of Spodoptera lituraFabricius, a highly destructive polyphagous pest of crops and vegetables in tropical and temperate climates. Amplitudes of temperature fluctuations significantly affected developmental durations, adult life spans, pupal weights, fecundity, and fertility of S. litura. The survival rates from the egg stage to the adult eclosion did not differ significantly across different temperature treatments. The developmental durations of individual life cycles significantly increased with larger amplitudes in 3 fluctuating temperature treatments. The pupal weight was significantly lower and the adult life span was significantly shorter in the ±â€…6 °C treatment in all treatments. Fecundity and fertility were significantly reduced in the ±â€…6 °C treatment, making the continuation of generations nearly impossible. The results should provide critical information for understanding the ecology of this widespread pest under diel, seasonal, and global climate changes.


Asunto(s)
Pupa , Spodoptera , Animales , Spodoptera/fisiología , Spodoptera/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/fisiología , Femenino , Fertilidad , Larva/crecimiento & desarrollo , Larva/fisiología , Cambio Climático , Masculino , Calor , Longevidad , Temperatura
7.
Arthritis Res Ther ; 26(1): 62, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454506

RESUMEN

BACKGROUND: Primary Sjogren's syndrome (pSS) is a complex autoimmune disease featuring damage to salivary and lacrimal glands, with the possibility of manifestations across multiple organs. Antibody-producing B cells have long been appreciated to play a significant role in pSS pathogenesis, with a number of autoreactive antibody species having been identified to be elevated in pSS patients. While several studies have attempted to characterize the BCR repertoires of peripheral blood B cells in pSS patients, much remains unknown about the repertoire characteristics of gland-infiltrating B cells. METHODS: Through paired scRNAseq and scBCRseq, we profiled the BCR repertoires of both infiltrating and circulating B cells in a small cohort of patients. We further utilize receptor reconstruction analyses to further investigate repertoire characteristics in a wider cohort of pSS patients previously profiled through RNAseq. RESULTS: Via integrated BCR and transcriptome analysis of B cell clones, we generate a trajectory progression pattern for infiltrated memory B cells in pSS. We observe significant differences in BCR repertoires between the peripheral blood and labial gland B cells of pSS patients in terms of relative expansion, isotype usage, and BCR clustering. We further observe significant decreases in IgA2 isotype usage among pSS patient labial and parotid gland B cells these analyses relative to controls as well as a positive correlation between kappa/lambda light chain usage and clinical disease activity. CONCLUSIONS: Through BCR repertoire analysis of pSS patient salivary glands, we identify a number of novel repertoire characteristics that may serve as useful indicators of clinical disease and disease activity. By collecting these BCR repertoires into an accessible database, we hope to also enable comparative analysis of patient repertoires in pSS and potentially other autoimmune disorders.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Glándulas Salivales/patología , Glándulas Salivales Menores/patología , Linfocitos B , Receptores de Antígenos de Linfocitos B/genética
8.
Sci Rep ; 14(1): 11799, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782981

RESUMEN

To address the issues of low accuracy and slow response speed in tea disease classification and identification, an improved YOLOv7 lightweight model was proposed in this study. The lightweight MobileNeXt was used as the backbone network to reduce computational load and enhance efficiency. Additionally, a dual-layer routing attention mechanism was introduced to enhance the model's ability to capture crucial details and textures in disease images, thereby improving accuracy. The SIoU loss function was employed to mitigate missed and erroneous judgments, resulting in improved recognition amidst complex image backgrounds.The revised model achieved precision, recall, and average precision of 93.5%, 89.9%, and 92.1%, respectively, representing increases of 4.5%, 1.9%, and 2.6% over the original model. Furthermore, the model's volum was reduced by 24.69M, the total param was reduced by 12.88M, while detection speed was increased by 24.41 frames per second. This enhanced model efficiently and accurately identifies tea disease types, offering the benefits of lower parameter count and faster detection, thereby establishing a robust foundation for tea disease monitoring and prevention efforts.


Asunto(s)
Enfermedades de las Plantas , , Algoritmos , Camellia sinensis/clasificación , Procesamiento de Imagen Asistido por Computador/métodos
9.
J Insect Sci ; 13: 162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24773471

RESUMEN

Insect communities depend on both their local environment and features of the surrounding habitats. Diverse plant communities may enhance the abundance and species diversity of local natural enemies, which is possible due to a higher abundance and species diversity in complex landscapes. This hypothesis was tested using cereal aphid parasitoids and hyper-parasitoids by comparing 18 spring wheat fields, Triticum aestivum L. (Poales: Poaceae), in structurally-complex landscapes (dominated by semi-natural habitat, > 50%, n = 9) and structurally-simple landscapes dominated by arable landscape (dominated by crop land, > 80%, n = 9). The agricultural landscape structure had significant effects on the number of parasitoid and hyper-parasitoid species, as 26 species (17 parasitoids and 9 hyper-parasitoids) were found in the complex landscapes and 21 were found in the simple landscapes (14 parasitoids and 7 hyper-parasitoids). Twenty-one species occurred in both landscape types, including 14 parasitoids and 7 hyper-parasitoids species. The species diversity of parasitoids and hyper-parasitoids were significantly different between the complex and simple landscapes. In addition, arable fields in structurally-simple agricultural landscapes with little semi-natural habitats could support a lower diversity of cereal aphid parasitoids and hyper-parasitoids than structurally-complex landscapes. These findings suggest that cereal aphid parasitoids and hyper-parasitoids need to find necessary resources in structurally-complex landscapes, and generalizations are made concerning the relationship between landscape composition and biodiversity in agricultural landscapes. Overall, abundance, species richness, and species diversity increased with increasing plant diversity and landscape complexity in spring wheat fields and increasing amounts of semi-natural habitats in the surrounding landscape.


Asunto(s)
Áfidos/parasitología , Biodiversidad , Ecosistema , Avispas/fisiología , Animales , Agentes de Control Biológico , China , Productos Agrícolas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
10.
J Agric Food Chem ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021960

RESUMEN

Germs associated with insect eggs can profoundly mediate interactions between host plants and herbivores, with the potential to coordinate plant physiological reactions with cascading effects on insect fitness. An experimental system was established including the oriental fruit fly (OFF, Bactrocera dorsalis) and tomato to examine the functions of egg-associated germs in mediating plant-herbivore interactions. OFF feeding resulted in significantly increased tannins, flavonoids, amino acids, and salicylic acid in the host tomato. These defensive responses of tomato were induced by the egg-associated germs, including Lactococcus sp., Brevundimonas sp., and Vagococcus sp. Tannins and flavonoids had no significant feedback effects on the pupal weight of OFF, while pupal biomass was significantly decreased by tannins and flavonoids in the germ-free treatment. Metabolome analysis showed that OFF mainly induced metabolic changes in carboxylic acid derivatives. Phenylalanine significantly induced downstream metabolic changes associated with phenylpropanoid accumulation. Finally, we conclude that the effects of egg-associated germs played an important role in facilitating OFF population adaptation and growth by mediating plant defenses, which provides a new paradigm for exploring the interaction of plant-pest and implementing effective pest biocontrol.

11.
Microbiome ; 11(1): 213, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759251

RESUMEN

BACKGROUND: Changes in population heterozygosity and genetic diversity play important roles in mediating life history traits of organisms; these changes often lead to phenotypic evolution in offspring, which become superior to their parents. In the present study, we examined phenotypic differentiation, the intestinal microbiome composition, and metabolism shift in the oriental fruit fly (Bactrocera dorsalis) by comparing an inbred (monophyletic) original population and an outbred (mixed) invasive population. RESULTS: The results showed that the outbred population of B. dorsalis had significantly higher biomass, adult longevity, and fecundity than the inbred population. Additionally, intestinal microflora analysis revealed that both Diutina rugosa and Komagataeibacter saccharivorans were significantly enriched in the outbred population with higher genetic heterozygosity. D. rugosa enrichment altered amino acid metabolism in the intestinal tract, and supplementing essential amino acids (e.g. histidine and glutamine) in the diet led to an increase in pupal weight of the outbred population. Additionally, transcriptome analysis revealed that the HSPA1S gene was significantly downregulated in the outbred population. HSPA1S was involved in activation of the JNK-MAPK pathway through negative regulation, caused the upregulation of juvenile hormone (JH), and led to an increase in biomass in the outbred flies. CONCLUSION: In conclusion, the outbred population had an altered intestinal microbe composition, mediating metabolism and transcriptional regulation, leading to phenotypic differentiation; this may be a potential mechanism driving the global invasion of B. dorsalis. Thus, multiple introductions could lead to invasiveness enhancement in B. dorsalis through population mixing, providing preliminary evidence that changes in the intestinal microbiome can promote biological invasion. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Tephritidae , Animales , Microbioma Gastrointestinal/genética , Drosophila/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
12.
Artículo en Inglés | MEDLINE | ID: mdl-37656640

RESUMEN

Graph clustering based on graph contrastive learning (GCL) is one of the dominant paradigms in the current graph clustering research field. However, those GCL-based methods often yield false negative samples, which can distort the learned representations and limit clustering performance. In order to alleviate this issue, we propose the idea of maintaining mutual information (MI) between the representations and the inputs to mitigate the loss of semantic information of false negative samples. We demonstrate the validity of this proposal through relevant experiments. Since maximizing MI can be approximately replaced by minimizing reconstruction error, we further propose a graph clustering method based on GCL penalized by reconstruction error, in which our carefully designed reconstruction decoder, as well as reconstruction error term, improve the clustering performance. In addition, we use a pseudo-label-guided strategy to improve the GCL process and further alleviate the problem of false negative samples. Our experiment results demonstrate the superiority and great potential of our proposed graph clustering method compared with state-of-the-art algorithms.

13.
Sci Data ; 10(1): 675, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794161

RESUMEN

Tephritidae pests are significant agricultural pests with a notable impact on the economy, with a wide range of species and most having broad host ranges and strong reproductive abilities. However, the wolfberry fruit fly, Neoceratitis asiatica (Becker), is a Tephritidae fly which only harms wolfberry. Here, we assembled and annotated N. asiatica genome at the chromosome level and compared it with the genomic and transcriptomic information from other Tephritidae flies. The assembled genome of N. asiatica had a size of 563.8 Mb and achieved a completeness level of 99.1%, 18,387 genes were annotated totally. All contigs were assembled into 7 linkage groups with an N50 of 93.166 Mb assisted by the Hi-C technique. The high-quality genome developed here will provide a significant resource for exploring the genetic basis of the adaptive and reproductive differences among various Tephritidae pests, and provides an important theoretical basis for the prevention and control of Tephritidae pests.


Asunto(s)
Genoma de los Insectos , Tephritidae , Animales , Cromosomas , Genómica/métodos , Lycium , Tephritidae/genética
14.
Front Plant Sci ; 14: 1238656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841613

RESUMEN

Introduction: Erigeron philadelphicus and Erigeron annuus are two ecologically destructive invasive plants from the Asteraceae family. Predicting the potential distribution pattern of two invasive alien Erigeron weeds can provide a scientific basis for prevent the further spread of these two weeds in China under climate change. Methods: Based on historical occurrence datasets and environmental variables, we optimized a MaxEnt model to predict the potential suitable habitats of E. philadelphicus and E. annuus. We also analyzed the shifts of distribution centroids and patterns under climate change scenarios. Results: The key variables that affect the potential geographical distribution of E. annuus and E. philadelphicus, respectively, are temperature seasonality and precipitation of the driest month. Moreover, topsoil sodicity and topsoil salinity also influence the distribution of E. philadelphicus. Under climate change, the overall suitable habitats for both invasive alien Erigeron weeds are expected to expand. The potential geographical distribution of E. annuus exhibited the highest expansion under the SSP245 climate scenario (medium forcing scenarios), whereas E. philadelphicus had the highest expansion under the SSP126 climate scenario (lower forcing scenarios) globally. The future centroid of E. annuus is projected to shift to higher latitudes specifically from Hubei to Hebei, whereas E. philadelphicus remains concentrated primarily in Hubei Province. The overlapping suitable areas of the two invasive alien Erigeron plants mainly occur in Jiangsu, Zhejiang, Fujian, Jiangxi, Hunan, Guizhou, and Chongqing, within China. Discussion: Climate change will enable E. annuus to expand into northeastern region and invade Yunnan Province whereas E. philadelphicus was historically the only suitable species. E. annuus demonstrates a greater potential for invasion and expansion under climate change, as it exhibits higher environmental tolerance. The predictive results obtained in this study can serve as a valuable reference for early warning systems and management strategies aimed at controlling the spread of these two invasive plants.

15.
Microbiol Spectr ; 11(6): e0142223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37787562

RESUMEN

IMPORTANCE: As a current biocontrol resource, entomopathogenic nematodes and their symbiotic bacterium can produce many toxin factors to trigger insect sepsis, having the potential to promote sustainable pest management. In this study, we found Steinernema feltiae and Xenorhabdus bovienii were highly virulent against the insects. After infective juvenile injection, Galleria mellonella quickly turned black and softened with increasing esterase activity. Simultaneously, X. bovienii attacked hemocytes and released toxic components, resulting in extensive hemolysis and sepsis. Then, we applied high-resolution mass spectrometry-based metabolomics and found multiple substances were upregulated in the host hemolymph. We found extremely hazardous actinomycin D produced via 3-hydroxyanthranilic acid metabolites. Moreover, a combined transcriptomic analysis revealed that gene expression of proteins associated with actinomycin D was upregulated. Our research revealed actinomycin D might be responsible for the infestation activity of X. bovienii, indicating a new direction for exploring the sepsis mechanism and developing novel biotic pesticides.


Asunto(s)
Dípteros , Rabdítidos , Sepsis , Animales , Dactinomicina , Insectos , Rabdítidos/microbiología , Simbiosis
16.
Front Plant Sci ; 14: 1252455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148864

RESUMEN

Introduction: The primary metabolism of plants, which is mediated by nitrogen, is closely related to the defense response to insect herbivores. Methods: An experimental system was established to examine how nitrogen mediated tomato resistance to an insect herbivore, the oriental fruit fly (Bactrocera dorsalis). All tomatoes were randomly assigned to the suitable nitrogen (control, CK) treatment, nitrogen excess (NE) treatment and nitrogen deficiency (ND) treatment. Results: We found that nitrogen excess significantly increased the aboveground biomass of tomato and increased the pupal biomass of B. dorsalis. Metabolome analysis showed that nitrogen excess promoted the biosynthesis of amino acids in healthy fruits, including γ-aminobutyric acid (GABA), arginine and asparagine. GABA was not a differential metabolite induced by injury by B. dorsalis under nitrogen excess, but it was significantly induced in infested fruits at appropriate nitrogen levels. GABA supplementation not only increased the aboveground biomass of plants but also improved the defensive response of tomato. Discussion: The biosynthesis of GABA in tomato is a resistance response to feeding by B. dorsalis in appropriate nitrogen, whereas nitrogen excess facilitates the pupal weight of B. dorsalis by inhibiting synthesis of the GABA pathway. This study concluded that excess nitrogen inhibits tomato defenses in plant-insect interactions by inhibiting GABA synthesis, answering some unresolved questions about the nitrogen-dependent GABA resistance pathway to herbivores.

17.
J Leukoc Biol ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395700

RESUMEN

Primary Sjogren's syndrome (pSS) is a complex chronic autoimmune disease in which local tissue damage in exocrine glands are combined with broader systemic involvement across the body in tissues including the skin. These combined manifestations negatively impact patient health and quality of life. While studies have previously reported differences in immune cell composition in the peripheral blood of pSS patients relative to healthy controls, a detailed immune cell landscape of the damaged exocrine glands of these patients remains lacking. Through single-cell transcriptomics and repertoire sequencing of immune cells in paired peripheral blood samples and salivary gland biopsies, we present here a preliminary picture of adaptive immune response in pSS. We characterize a number of points of divergence between circulating and glandular immune responses that have been hitherto underappreciated, and identify a novel population of CD8+CD9+ cells with tissue-residential properties that are highly enriched in the salivary glands of pSS patients. Through comparative analyses with other sequencing data, we also observe a potential connection between these cells and the tissue-resident memory cells found in cutaneous vasculitis lesions. Together, these results indicate a potential role for CD8+CD9+ cells in mediating glandular and systemic effects associated with pSS and other autoimmune disorders.

18.
J Adv Res ; 53: 61-74, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36574947

RESUMEN

INTRODUCTION: The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural pests worldwide, with highly debated species delimitation, origin, and global spread routes. OBJECTIVES: Our study intended to (i) resolve the taxonomic uncertainties between B. dorsalis and B. carambolae, (ii) reveal the population structure and global invasion routes of B. dorsalis across Asia, Africa, and Oceania, and (iii) identify genomic regions that are responsible for the thermal adaptation of B. dorsalis. METHODS: Based on a high-quality chromosome-level reference genome assembly, we explored the population relationship using a genome-scale single nucleotide polymorphism dataset generated from the resequencing data of 487 B. dorsalis genomes and 25 B. carambolae genomes. Genome-wide association studies and silencing using RNA interference were used to identify and verify the candidate genes associated with extreme thermal stress. RESULTS: We showed that B. dorsalis originates from the Southern India region with three independent invasion and spread routes worldwide: (i) from Northern India to Northern Southeast Asia, then to Southern Southeast Asia; (ii) from Northern India to Northern Southeast Asian, then to China and Hawaii; and (iii) from Southern India toward the African mainland, then to Madagascar, which is mainly facilitated by human activities including trade and immigration. Twenty-seven genes were identified by a genome-wide association study to be associated with 11 temperature bioclimatic variables. The Cyp6a9 gene may enhance the thermal adaptation of B. dorsalis and thus boost its invasion, which tended to be upregulated at a hardening temperature of 38 °C. Functional verification using RNA interference silencing against Cyp6a9, led to the specific decrease in Cyp6a9 expression, reducing the survival rate of dsRNA-feeding larvae exposed to extreme thermal stress of 45 °C after heat hardening treatments in B. dorsalis. CONCLUSION: This study provides insights into the evolutionary history and genetic basis of temperature adaptation in B. dorsalis.


Asunto(s)
Tephritidae , Animales , Humanos , Tephritidae/genética , Estudio de Asociación del Genoma Completo , Temperatura , Larva
19.
Front Microbiol ; 13: 1042145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439848

RESUMEN

The entomopathogenic nematode (EPN) Steinernema feltiae, which carries the symbiotic bacterium Xenorhabdus bovienii in its gut, is an important biocontrol agent. This EPN could produce a suite of complex metabolites and toxin proteins and lead to the death of host insects within 24-48 h. However, few studies have been performed on the key biomarkers released by EPNs to kill host insects. The objective of this study was to examine what substances produced by EPNs cause the death of host insects. We found that all densities of nematode suspensions exhibited insecticidal activities after hemocoelic injection into Galleria mellonella larvae. EPN infection 9 h later led to immunosuppression by activating insect esterase activity, but eventually, the host insect darkened and died. Before insect immunity was activated, we applied a high-resolution mass spectrometry-based metabolomics approach to determine the hemolymph of the wax moth G. mellonella infected by EPNs. The results indicated that the tryptophan (Trp) pathway of G. mellonella was significantly activated, and the contents of kynurenine (Kyn) and 3-hydroxyanthranilic acid (3-HAA) were markedly increased. Additionally, 3-HAA was highly toxic to G. mellonella and resulted in corrected mortalities of 62.50%. Tryptophan metabolites produced by EPNs are a potential marker to kill insects, opening up a novel line of inquiry into exploring the infestation mechanism of EPNs.

20.
Insects ; 13(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35055922

RESUMEN

Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People's Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA