Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cancer Biol ; 106-107: 43-57, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214157

RESUMEN

Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.

2.
Cell Mol Life Sci ; 81(1): 427, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377807

RESUMEN

The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3ßi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Estratos Germinativos , Células Madre Pluripotentes , Animales , Bovinos , Diferenciación Celular/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Linaje de la Célula/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Desarrollo Embrionario/genética , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Técnicas de Cultivo de Célula/métodos
3.
Drug Resist Updat ; 71: 101002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678078

RESUMEN

Adenocarcinoma is a common type of malignant tumor, originating from glandular epithelial cells in various organs, such as pancreas, breast, lung, stomach, colon, rectus, and prostate. For patients who lose the opportunity for radical surgery, medication is available to provide potential clinical benefits. However, drug resistance is a big obstacle to obtain desired clinical prognosis. In this review, we provide a summary of treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs, including pancreatic cancer, gastric adenocarcinoma, colorectal adenocarcinoma, lung adenocarcinoma, and prostate cancer. Although the underlying molecular mechanisms involved in drug resistance of adenocarcinoma vary from one organ to the other, there are several targets that are universal for drug resistance in adenocarcinoma, and targeting these molecules could potentially reverse drug resistance in the treatment of adenocarcinomas.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Neoplasias Pancreáticas , Neoplasias de la Próstata , Masculino , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética
4.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274868

RESUMEN

Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.


Asunto(s)
Microbioma Gastrointestinal , Polifenoles , , Microbioma Gastrointestinal/efectos de los fármacos , Té/química , Humanos , Polifenoles/farmacología , Polifenoles/química , Animales , Fermentación , Heces/microbiología
5.
Appl Opt ; 60(22): 6566-6572, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612897

RESUMEN

Coal and gangue (rock) identification is the essential process in a coal preparation plant. In an actual coal preparation plant, the existing classification methods have many disadvantages in safety and identification rate. We utilized the echo intensity image (EII) of lidar for coal and gangue identification for the first time, to the best of our knowledge, and achieved outstanding recognition results with a convolutional neural network. First, we acquire the information of the 3D point cloud, including the distance and the echo intensity, and decompose them into two channels. Then, we utilize the distance channel to remove the background noises and separate the object and the echo intensity channel to construct the 2D EII. Finally, we prune the dense convolutional network (DenseNet-121) to DenseNet-40 for the real-time identification and compare its F1 score with the other two traditional recognition algorithms. The experiment shows that the F1 score of the DenseNet-40 is up to 0.96, which indicates the DenseNet-40 is provably higher than other traditional algorithms in accuracy. Through trial and error, we find that the echo intensity of lidar can clearly show the texture information of coal and gangue. After combining with the DenseNet-40, it has more benefits than the existing classification methods in accuracy, efficiency, and robustness.

6.
Immunology ; 160(1): 52-63, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32052861

RESUMEN

As a pineal gland hormone, melatonin acts through its receptors to modulate the immune system. The immune system is composed of primary and secondary organs, and immune organs are adapted to the presence of the fetal alloantigen during pregnancy. However, it is unclear whether melatonin affects maternal immune organs during early pregnancy in sheep. In this study, the ovine thymus, lymph node, spleen and liver were sampled at day 16 of the oestrous cycle, and at days 13, 16 and 25 of pregnancy. The expression of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2) and cluster of differentiation 4 (CD4) was detected by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry experiments. Our results showed that during early pregnancy there was an upregulation of MT1 mRNA and protein in the thymus, lymph node and liver, and there was a downregulation in the spleen. The expression of MT2 mRNA and protein was increased in the thymus but decreased in the spleen and liver, and there was no significant change in the lymph node during early pregnancy. CD4 protein was upregulated in the thymus, lymph node and liver, but there were no significant changes in the spleen during early pregnancy. In conclusion, early pregnancy induces tissue-specific expression of MT1, MT2 and CD4, which may be due to the different functions of the thymus, lymph node, spleen and liver. Further, melatonin is involved in immune regulation of the maternal thymus, lymph node, spleen and liver during early pregnancy in sheep.


Asunto(s)
Antígenos CD4/metabolismo , Histocompatibilidad Materno-Fetal , Melatonina/metabolismo , Preñez/inmunología , Receptores de Melatonina/metabolismo , Ovinos/inmunología , Animales , Femenino , Perfilación de la Expresión Génica , Tolerancia Inmunológica , Hígado/inmunología , Hígado/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología , Bazo/inmunología , Bazo/metabolismo , Timo/inmunología , Timo/metabolismo , Regulación hacia Arriba/inmunología
7.
Light Sci Appl ; 13(1): 8, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177126

RESUMEN

Polarization-independent phase modulators based upon liquid crystals (LCs) with a simple device architecture have long been desired for a range of optical applications. Recently, researchers have demonstrated a novel fabrication procedure using cholesteric LCs as a primer for achieving low polarization dependence coupled with a large phase modulation depth.

8.
J Hazard Mater ; 476: 135243, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029182

RESUMEN

Cadmium (Cd) pollution poses significant threats to soil organisms and human health by contaminating the food chain. This study aimed to assess the impact of various concentrations (50, 250, and 500 mg·kg-1) of zinc oxide nanoparticles (ZnO NPs), bulk ZnO, and ZnSO4 on morphological changes and toxic effects of Cd in the presence of earthworms and spinach. The results showed that Zn application markedly improved spinach growth parameters (such as fresh weight, plant height, root length, and root-specific surface area) and root morphology while significantly reducing Cd concentration and Cd bioconcentration factors (BCF-Cd) in spinach and earthworms, with ZnO NPs exhibiting the most pronounced effects. Earthworm, spinach root, and shoot Cd concentration decreased by 82.3 %, 77.0 %, and 75.6 %, respectively, compared to CK. Sequential-step extraction (BCR) analysis revealed a shift in soil Cd from stable to available forms, consistent with the available Cd (DTPA-Cd) results. All Zn treatments significantly reduced Cd accumulation, alleviated Cd-induced stress, and promoted spinach growth, with ZnO NPs demonstrating the highest Cd reduction and Zn bioaugmentation efficiencies compared to bulk ZnO and ZnSO4 at equivalent concentrations. Therefore, ZnO NPs offer a safer and more effective option for agricultural production and soil heavy metal pollution management than other Zn fertilizers.


Asunto(s)
Cadmio , Oligoquetos , Contaminantes del Suelo , Spinacia oleracea , Óxido de Zinc , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Cadmio/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Oligoquetos/efectos de los fármacos , Oligoquetos/metabolismo , Oligoquetos/crecimiento & desarrollo , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Biofortificación , Zinc/toxicidad , Sulfato de Zinc/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Suelo/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
9.
Cancer Lett ; 588: 216738, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38401887

RESUMEN

The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/ß-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Apoptosis , Pronóstico
10.
Front Pharmacol ; 14: 1193610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497113

RESUMEN

Background and aims: Hypoglycemic agents are the primary therapeutic approach for the treatment of diabetes and have been postulated to impact pancreatic cancer (PC) incidence in diabetic patients. We conducted a meta-analysis to further evaluate and establish the associations between four common types of hypoglycemic agents [metformin, sulfonylureas, thiazolidinediones (TZDs), and insulin] and PC incidence in individuals with diabetes mellitus (DM). Methods: A comprehensive literature search of PubMed, Web of Science, Embase, and the Cochrane Library identified studies that analyzed the relationship between hypoglycemic agents and PC published between January 2012 and September 2022. Randomized control trials (RCTs), cohorts, and case-control studies were included if there was clear and evaluated defined exposure to the involved hypoglycemic agents and reported PC outcomes in patients with DM. Furthermore, reported relative risks or odds ratios (ORs) or other provided data were required for the calculation of odds ratios. Summary odds ratio estimates with a 95% confidence interval (CI) were estimated using the random-effects model. Additionally, subgroup analysis was performed to figure out the source of heterogeneity. Sensitivity analysis and publication bias detection were also performed. Results: A total of 11 studies were identified that evaluated one or more of the hypoglycemic agents, including three case-control studies and eight cohort studies. Among these, nine focused on metformin, six on sulfonylureas, seven on TZDs, and seven on insulin. Meta-analysis of the 11 observational studies reported no significant association between metformin (OR = 1.04, 95% CI 0.73-1.46) or TZDs (OR = 1.13, 95% CI 0.73-1.75) and PC incidence, while the risk of PC increased by 79% and 185% with sulfonylureas (OR = 1.79, 95% CI 1.29-2.49) and insulin (OR = 2.85, 95% CI 1.75-4.64), respectively. Considerable heterogeneity was observed among the studies and could not be fully accounted for by study design, region, or adjustment for other hypoglycemic agents. Conclusion: Sulfonylureas and insulin may increase the incidence of pancreatic cancer in diabetic patients, with varying effects observed among different ethnicities (Asian and Western). Due to significant heterogeneity across studies, further interpretation of the relationship between hypoglycemic agents and pancreatic cancer incidence in diabetic patients requires well-adjusted data and better-organized clinical trials.

11.
Front Pharmacol ; 14: 1216059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538177

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a serious complication of cirrhosis. Currently, non-selective beta-blockers (NSBBs) are commonly used to treat portal hypertension in patients with cirrhosis. The latest research shows that NSBBs can induce apoptosis and S-phase arrest in liver cancer cells and inhibit the development of hepatic vascular endothelial cells, which may be effective in preventing HCC in cirrhosis patients. Aim: To determine the relationship between different NSBBs and HCC incidence in patients with cirrhosis. Methods: We searched the Cochrane database, MEDLINE, EMBASE, PubMed, and Web of Science. Cohort studies, case‒control studies, and randomized controlled trials were included if they involved cirrhosis patients who were divided into an experimental group using NSBBs and a control group with any intervention. Based on heterogeneity, we calculated odds ratio (OR) and 95% confidence interval (CI) using random-effect models. We also conducted subgroup analysis to explore the source of heterogeneity. Sensitivity analysis and publication bias detection were performed. Results: A total of 47 studies included 38 reporting HCC incidence, 26 reporting HCC-related mortality, and 39 reporting overall mortality. The HCC incidence between the experimental group and the control group was OR = 0.87 (0.69 and 1.10), p = 0.000, and I2 = 81.8%. There was no significant association between propranolol (OR = 0.94 and 95%CI 0.62-1.44) or timolol (OR = 1.32 and 95%CI 0.44-3.95) and HCC incidence, while the risk of HCC decreased by 26% and 38% with nadolol (OR = 0.74 and 95%CI 0.64-0.86) and carvedilol (OR = 0.62 and 95%CI 0.52-0.74), respectively. Conclusion: Different types of NSBB have different effects on the incidence of patients with cirrhosis of the liver, where nadolol and carvedilol can reduce the risk. Also, the effect of NSBBs may vary in ethnicity. Propranolol can reduce HCC incidence in Europe and America. Systematic Review Registration: identifier https://CRD42023434175, https://www.crd.york.ac.uk/PROSPERO/.

12.
Front Chem ; 11: 1079288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825225

RESUMEN

Introduction: Traditional Chinese medicine (TCM) has the advantages of syndrome differentiation and rapid determination of etiology, and many TCM prescriptions have been applied to the clinical treatment of coronavirus disease 2019 (COVID-19). Among them, Jinbei Oral Liquid (Jb.L) has also shown an obvious curative effect in the clinic, but the related material basic research is relatively limited. Methods: Therefore, in this process, a systematic data acquisition and mining strategy was established using ultra-high- performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Results and Discussion: With the optimized conditions, a total of 118 peaks were tentatively characterized, including 43 flavonoids, 26 phenylpropanoids, 14 glycosides, 9 phthalides, 8 alkaloids and others. To determine the content of relevant pharmacological ingredients, we firstly exploited the ultra-performance liquid chromatography method coupled with triple-quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method for simultaneous detection of 31 active ingredients within 17 min, and the validation of methodology showed that this method has good precision and accuracy. Moreover, analyzing the pharmacology of 31 individual of the medicinal material preliminarily confirmed the efficacy of Jb.L and laid a foundation for an in-depth study of network pharmacology.

13.
Nutrients ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297104

RESUMEN

As centenarians provide a paradigm of healthy aging, investigating the comprehensive metabolic profiles of healthy centenarians is of utmost importance for the pursuit of health and longevity. However, relevant reports, especially studies considering the dietary influence on metabolism, are still limited, mostly lacking the guidance of a model of healthy aging. Therefore, exploring the signatures of the integrative metabolic profiles of the healthy centenarians from a famous longevous region, Bama County, China, should be an effective way. The global metabolome in urine and the short-chain fatty acids (SCFAs) in the feces of 30 healthy centenarians and 31 elderly people aged 60−70 from the longevous region were analyzed by non-targeted metabolomics combined with metabolic target analysis. The results showed that the characteristic metabolites related to longevity were mostly summarized into phosphatidylserine, lyso-phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, bile acids, and amino acids (p < 0.05). Six metabolic pathways were found significant relevant to longevity. Furthermore, acetic acid, propionic acid, butyric acid, valeric acid, and total SCFA were significantly increased in the centenarian group (p < 0.05) and were also positively associated with the dietary fiber intake (p < 0.01). It was age-accompanied and diet-associated remodeling of phospholipid, amino acid, and SCFA metabolism that expressed the unique metabolic signatures related to exceptional longevity. This metabolic remodeling is suggestive of cognitive benefits, better antioxidant capacity, the attenuation of local inflammation, and health-span-promoting processes, which play a critical and positive role in shaping healthy aging.


Asunto(s)
Longevidad , Propionatos , Anciano de 80 o más Años , Anciano , Humanos , Aminoácidos , Fosfatidiletanolaminas , Fosfolípidos , Centenarios , Fosfatidilserinas , Antioxidantes , Dieta , China , Ácidos Grasos Volátiles , Ácido Butírico , Fibras de la Dieta , Acetatos , Fosfatidilinositoles , Ácidos y Sales Biliares , Fosfatidilcolinas
14.
EPJ Quantum Technol ; 9(1): 1, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35098151

RESUMEN

Electromagnetic filtering is essential for the coherent control, operation and readout of superconducting quantum circuits at milliKelvin temperatures. The suppression of spurious modes around transition frequencies of a few GHz is well understood and mainly achieved by on-chip and package considerations. Noise photons of higher frequencies - beyond the pair-breaking energies - cause decoherence and require spectral engineering before reaching the packaged quantum chip. The external wires that pass into the refrigerator and go down to the quantum circuit provide a direct path for these photons. This article contains quantitative analysis and experimental data for the noise photon flux through coaxial, filtered wiring. The attenuation of the coaxial cable at room temperature and the noise photon flux estimates for typical wiring configurations are provided. Compact cryogenic microwave low-pass filters with CR-110 and Esorb-230 absorptive dielectric fillings are presented along with experimental data at room and cryogenic temperatures up to 70 GHz. Filter cut-off frequencies between 1 to 10 GHz are set by the filter length, and the roll-off is material dependent. The relative dielectric permittivity and magnetic permeability for the Esorb-230 material in the pair-breaking frequency range of 75 to 110 GHz are measured, and the filter properties in this frequency range are calculated. The estimated dramatic suppression of the noise photon flux due to the filter proves its usefulness for experiments with superconducting quantum systems.

15.
Cell Res ; 32(4): 383-400, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34848870

RESUMEN

Pig epiblast-derived pluripotent stem cells are considered to have great potential and broad prospects for human therapeutic model development and livestock breeding. Despite ongoing attempts since the 1990s, no stably defined pig epiblast-derived stem cell line has been established. Here, guided by insights from a large-scale single-cell transcriptome analysis of pig embryos from embryonic day (E) 0 to E14, specifically, the tracing of pluripotency changes during epiblast development, we developed an in vitro culture medium for establishing and maintaining stable pluripotent stem cell lines from pig E10 pregastrulation epiblasts (pgEpiSCs). Enabled by chemical inhibition of WNT-related signaling in combination with growth factors in the FGF/ERK, JAK/STAT3, and Activin/Nodal pathways, pgEpiSCs maintain their pluripotency transcriptome features, similar to those of E10 epiblast cells, and normal karyotypes after more than 240 passages and have the potential to differentiate into three germ layers. Strikingly, ultradeep in situ Hi-C analysis revealed functional impacts of chromatin 3D-spatial associations on the transcriptional regulation of pluripotency marker genes in pgEpiSCs. In practice, we confirmed that pgEpiSCs readily tolerate at least three rounds of successive gene editing and generated cloned gene-edited live piglets. Our findings deliver on the long-anticipated promise of pig pluripotent stem cells and open new avenues for biological research, animal husbandry, and regenerative biomedicine.


Asunto(s)
Estratos Germinativos , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Línea Celular , Porcinos , Transcriptoma
16.
Animals (Basel) ; 11(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920315

RESUMEN

Melatonin enhances the quality and in vitro maturation (IVM) of oocytes under heat stress (HS), but the mechanism of melatonin in reducing HS injury on oocytes is not fully understood. In this study, porcine cumulus-oocyte complexes (COCs) were randomly divided into three groups. The COCs of the control group were cultured at 38.5 °C for 42 h, and the COCs of the HS group were cultured at 41.5 °C for 4 h, and then transferred into 38.5 °C for 38 h. The COCs of the HS + melatonin group were cultured with 10-9 M melatonin under the same conditions as the HS group. The survival rate, maturation rate, distribution of α-tubulin and F-actin of the oocytes were assessed. In addition, the expression profiles for genes related to the oocyte maturation, including heat shock protein 70 (HSP70), nuclear factor erythroid 2-related factor 2 (NRF2), cyclin-dependent kinase 1 (CDK1), growth differentiation factor 9 (GDF9) were analyzed by real-time quantitative PCR. The results showed that HS decreased the survival rate and maturation rate, distribution of α-tubulin and F-actin, but melatonin treatment could partly counteract these adverse effects. In addition, HS increased expression of HSP70 and NRF2 mRNA, and melatonin treatment had a similar effect on HSP70 expression, but had a contrary effect on NRF2 expression. Furthermore, HS inhibited expression of CDK1 and GDF9 mRNA, but melatonin treatment could weaken the effect on GDF9 expression induced by HS. In summary, melatonin treatment could attenuate the unfavorable effects induced by HS to enhance developmental competence of porcine oocytes during IVM.

17.
IEEE Trans Biomed Eng ; 68(8): 2348-2359, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33156778

RESUMEN

OBJECTIVE: The invisibility of domestic oocyte nucleus in bright field currently forces operators to blindly aspirate nucleus out in oocyte enucleation, usually causing large cytoplasm losses and poor developmental competences of cloned embryos. Although fluorescent labeling of nucleus allows for nucleus localization, the involved photobleaching problems and barriers to the execution of enucleation process limit its online-application in oocyte enucleation. This paper reports a novel label-free oocyte enucleation method for precise removal of the nucleus with less cytoplasm loss. METHODS: The relative positions between the injection pipette and nucleus for complete removal of nucleus with less cytoplasm loss were determined through a finite element modeling of nucleus aspiration. To position injection pipette to the above positions relative to nucleus, the appropriate oocyte orientation and trajectory of injection pipette inside oocyte were derived according to the offline-calibrated 3-D distribution of nucleus and the simulated dynamic drift of nucleus that occurs as injection pipette is maneuvered inside oocyte. Finally, a robotic label-free precise enucleation procedure was established. RESULTS: The experimental results on more than 1000 porcine oocytes proved that this system is capable of reducing cytoplasm loss by 60% at the same level of enucleation success rate and almost doubling the cleavage rate of clone embryos in comparison to blind aspiration method. CONCLUSIONS: The results prove that our method significantly improves the developmental competence of cloned embryos in comparison to manual enucleation method. SIGNIFICANCE: Our method is expected to improve the extremely low success rate of animal cloning in the future.


Asunto(s)
Clonación de Organismos , Procedimientos Quirúrgicos Robotizados , Animales , Núcleo Celular , Técnicas de Transferencia Nuclear , Oocitos , Porcinos
18.
Animals (Basel) ; 10(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012669

RESUMEN

Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus-oocyte complexes were cultured in TCM199 medium with non-treated (control), 10-5 M luzindole (melatonin receptor antagonist), 10-5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10-5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.

19.
PeerJ ; 8: e9913, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083108

RESUMEN

The MPF and MAPK genes play crucial roles during oocyte maturation processes. However, the pattern of MPF and MAPK gene expression induced by melatonin (MT) and its correlation to oocyte maturation quality during the process of porcine oocyte maturation in vitro remains unexplored. To unravel it, in this study, we cultured the porcine oocytes in maturation medium supplemented with 0, 10-6, 10-9, and 10-12 mol/L melatonin. Later, we analyzed the MPF and MAPK gene expression levels by RT-PCR and determined the maturation index (survival and maturation rate of oocytes). The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation distribution after porcine oocyte maturation in vitro was also evaluated. We also assessed the effects of these changes on parthenogenetic embryonic developmental potential. The oocytes cultured with 10-9mol/L melatonin concentration showed higher oocyte maturation rate, and MPF and MAPK genes expression levels along with better mitochondrial distribution than the 0, 10-6, and 10-12 mol/L melatonin concentrations (p < 0.05). No significant difference was observed in the survival rates when the oocytes were cultured with different melatonin concentrations. The expression of the MPF gene in the oocytes cultured with 10-6 mol/L melatonin was higher than with 10-12 and 0 mol/L melatonin, and the expression of the MAPK gene in 10-6 and 10-12 group was higher than the control (p < 0.05). As far as the embryonic developmental potential is concerned, the cleavage and blastocyst rate of oocytes cultured with 10-6 and 10-9 mol/L melatonin was significantly higher than the 10-12 mol/L melatonin and control. In conclusion, 10-9-10-6 mol/L melatonin significantly induced the MPF and MAPK gene expression; besides, it could also be correlated with GSH content of single oocyte, mitochondrial maturation distribution, and the first polar body expulsion. These changes were also found to be associated with parthenogenetic embryo developmental potential in vitro.

20.
Anim Sci J ; 91(1): e13378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32329195

RESUMEN

Interferon-tau (IFNT) regulates maternal recognition during early pregnancy in ruminants. The liver can serve as a hematopoietic organ, and it has immune functions. This study hypothesized whether mRNA and proteins of interferon-stimulated genes (ISGs) induced by early pregnancy are upregulated in maternal liver. Therefore, we determined the expression of interferon-stimulated gene 15-kDa protein (ISG15), 2',5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance protein 1 (MX1), interferon-gamma-inducible protein 10 (IP-10), and signal transducer and activator of transcription 1 (STAT1) in maternal livers during early pregnancy in sheep. Ovine livers were sampled on day 16 of the estrous cycle, and days 13, 16, and 25 of pregnancy, and expression of ISGs was detected by quantitative real-time PCR, Western blot, and immunohistochemistry analysis. Our results showed that there were increases in expression of the mRNA and proteins of ISG15, OAS1, IP-10, STAT1, and MX1 during early pregnancy. STAT1 protein was limited to the hepatocytes, and endothelial cells of proper hepatic arteries and hepatic portal veins. In conclusion, the upregulation of ISG15, OAS1, IP-10, STAT1, and MX1 proteins may be implicated in maternal hepatic immune adjustment and other functions during early pregnancy in sheep.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Hígado/metabolismo , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Preñez/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Ovinos/genética , Ovinos/fisiología , Ubiquitinas/genética , Ubiquitinas/metabolismo , Animales , Ciclo Estral/genética , Ciclo Estral/metabolismo , Femenino , Hígado/inmunología , Embarazo , Preñez/inmunología , Ovinos/inmunología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA