RESUMEN
Phytoplankton blooms in coastal oceans can be beneficial to coastal fisheries production and ecosystem function, but can also cause major environmental problems1,2-yet detailed characterizations of bloom incidence and distribution are not available worldwide. Here we map daily marine coastal algal blooms between 2003 and 2020 using global satellite observations at 1-km spatial resolution. We found that algal blooms occurred in 126 out of the 153 coastal countries examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms increased significantly (P < 0.05) over the study period, whereas blooms weakened in tropical and subtropical areas of the Northern Hemisphere. We documented the relationship between the bloom trends and ocean circulation, and identified the stimulatory effects of recent increases in sea surface temperature. Our compilation of daily mapped coastal phytoplankton blooms provides the basis for global assessments of bloom risks and benefits, and for the formulation or evaluation of management or policy actions.
Asunto(s)
Ecosistema , Eutrofización , Océanos y Mares , Fitoplancton , Fitoplancton/crecimiento & desarrollo , Temperatura , Movimientos del Agua , Medición de Riesgo , Política Ambiental , Ecología , Floraciones de Algas Nocivas , Clima Tropical , Historia del Siglo XXI , Mapeo GeográficoRESUMEN
The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO2 emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven "dual-oxidation" seawater electrolyzer system for low-carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO4 cathode materials. In-depth mechanism studies reveal that the electric field-driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual-oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic-driven seawater electrolyzer, paving the way for low-carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.
RESUMEN
Despite the known direct toxicity of various antibiotics to aquatic organisms, the potential chronic impact through intergenerational transmission on reproduction remains elusive. Here, we exposed zebrafish to a mixture of 15 commonly consumed antibiotics at environmentally relevant concentrations (1 and 100 µg L-1) with a cross-mating design. A high accumulation of antibiotics was detected in the ovary (up to 904.58 ng g-1) and testis (up to 1704.49 ng g-1) of F0 fish. The transmission of antibiotics from the F0 generation to the subsequent generation (F1 offspring) was confirmed with a transmission rate (ki) ranging from 0.11 to 2.32. The maternal transfer of antibiotics was significantly higher, relative to paternal transfer, due to a greater role of transmission through ovarian enrichment and oviposition compared to testis enrichment. There were similar impairments in reproductive and developmental indexes on F1 eggs found following both female and male parental exposure. Almost all antibiotics were eliminated in F2 eggs in comparison to F1 eggs. However, there were still reproductive and developmental toxic responses observed in F2 fish, suggesting that antibiotic concentration levels were not the only criterion for evaluating the toxic effects for each generation. These findings unveil the intergenerational transmission mechanism of antibiotics in fish models and underscore their potential and lasting impact in aquatic environments.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Femenino , Reproducción , Testículo , Contaminantes Químicos del Agua/toxicidadRESUMEN
Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.
Asunto(s)
Homeostasis , Larva , PPAR alfa , Pez Cebra , Animales , Larva/efectos de los fármacos , Larva/metabolismo , PPAR alfa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Fluorocarburos , Ácidos SulfónicosRESUMEN
Perfluorooctane sulfonamide (PFOSA) is an immediate perfluorooctanesulfonate (PFOS) precursor (PreFOS). Previous studies have shown PFOSA to induce stronger toxic responses compared to other perfluorinated compounds (PFCs). However, the specific nature of PFOSA-induced toxicity, whether autonomous or mediated by its metabolite PFOS, has not been fully elucidated. This study systematically investigates the immunomodulatory effects of PFOSA and PFOS in zebrafish (Danio rerio). Exposure to PFOSA compromised the zebrafish's ability to defend against pathogenic infections, as evidenced by increased bacterial adhesion to their skin and reduced levels of the biocidal protein lysozyme (LYSO). Moreover, PFOSA exposure was associated with disruptions in inflammatory markers and immune indicators, along with a decrease in immune cell counts. The findings from this study suggest that the immunotoxicity effects of PFOSA are primarily due to its own toxicity rather than its metabolite PFOS. This conclusion was supported by dose-dependent responses, the severity of observed effects, and multivariate analysis. In addition, our experiments using NF-κB-morpholino knock-down techniques further confirmed the role of the Nuclear factor-κappa B pathway in mediating PFOSA-induced immunotoxicity. In conclusion, this study reveals that PFOSA impairs the immune system in zebrafish through an autotoxic mechanism, providing valuable insights for assessing the ecological risks of PFOSA.
RESUMEN
Terrestrial Water Storage (TWS) plays a pivotal role in water resource management by providing a comprehensive measure of both surface water and groundwater availability. This study investigates changes in TWS driven by human activities from 2003 to 2023, and forecasts future TWS trends under various climate change and development scenarios. Our findings reveal a continuous decline in China's TWS since 2003, with an average annual decrease of approximately 1.36 mm. This reduction is primarily attributed to the combined effects of climate change and human activities, including irrigation, industrial water use, and domestic water consumption. Notably, TWS exhibits significant seasonal and annual fluctuations, with variations ranging ±10 mm. For the future period (2024-2030), we project greater disparities between water resource supply and demand in specific years for the Songliao, Southwest, and Yangtze basins. Consequently, future water resource management must prioritize water conservation during wet seasons, particularly in years when supply-demand conflicts for limited water resources intensify. This study is valuable for effective planning and sustainable utilization of water resources.
Asunto(s)
Cambio Climático , Abastecimiento de Agua , China , Humanos , Agua Subterránea , Conservación de los Recursos Hídricos , Recursos Hídricos , Estaciones del AñoRESUMEN
Perfluorononanoic acid (PFNA), commonly used as an alternative polyfluorinated compound (PFC) of perfluorooctanoic acid (PFOA), has been widely detected in the aquatic environment. Previous ecotoxicological and epidemiological results suggested that some neurobehavioral effects were associated with PFC exposure; however, the ecological impacts and underlying neurotoxicity mechanisms remain unclear, particularly in aquatic organisms during sensitive, early developmental stages. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of PFNA for 120 h, and the neurological effects of PFNA were comprehensively assessed using transcriptional, biochemical, morphological, and behavioral assays. RNA sequencing and advanced bioinformatics analyses predicted and characterized the key biological processes and pathways affected by PFNA exposure, which included the synaptogenesis signaling pathway, neurotransmitter synapse, and CREB signaling in neurons. Neurotransmitter levels (acetylcholine, glutamate, 5-hydroxytryptamine, γ-aminobutyric acid, dopamine, and noradrenaline) were significantly decreased in zebrafish larvae, and the Tg(gad67:GFP) transgenic line revealed a decreased number of GABAergic neurons in PFNA-treated larvae. Moreover, the swimming distance, rotation frequency, and activity degree were also significantly affected by PFNA, linking molecular-level changes to behavioral consequences.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Larva , Contaminantes Químicos del Agua/toxicidad , Embrión no MamíferoRESUMEN
Previous studies have reported the immunotoxicity of per- and polyfluoroalkyl substances (PFASs), but it remains a significant challenge to assess over 10,000 distinct PFASs registered in the distributed structure-searchable toxicity (DSSTox) database. We aim to reveal the mechanisms of immunotoxicity of different PFASs and hypothesize that PFAS immunotoxicity is dependent on the carbon chain length. Perfluorobutanesulfonic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) representing different carbon chain lengths (4-9) at environmentally relevant levels strongly reduced the host's antibacterial ability during the zebrafish's early-life stage. Innate and adaptive immunities were both suppressed after PFAS exposures, exhibiting a significant induction of macrophages and neutrophils and expression of immune-related genes and indicators. Interestingly, the PFAS-induced immunotoxic responses were positively correlated to the carbon chain length. Moreover, PFASs activated downstream genes of the toll-like receptor (TLR), uncovering a seminal role of TLR in PFAS immunomodulatory effects. Myeloid differentiation factor 88 (MyD88) morpholino knock-down experiments and MyD88 inhibitors alleviated the immunotoxicity of PFASs. Overall, the comparative results demonstrate differences in the immunotoxic responses of PFASs due to carbon chain length in zebrafish, providing new insights into the prediction and classification of PFASs mode of toxic action based on carbon chain length.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Pez Cebra , Carbono , Factor 88 de Diferenciación Mieloide , Fluorocarburos/toxicidadRESUMEN
Linking groundwater quality to health will make the invisible groundwater visible, but there are knowledge gaps to understand the linkage which requires cross-disciplinary convergent research. The substances in groundwater that are critical to health can be classified into five types according to the sources and characteristics: geogenic substances, biogenic elements, anthropogenic contaminants, emerging contaminants, and pathogens. The most intriguing questions are related to quantitative assessment of human health and ecological risks of exposure to the critical substances via natural or induced artificial groundwater discharge: What is the list of critical substances released from discharging groundwater, and what are the pathways of the receptors' exposure to the critical substances? How to quantify the flux of critical substances during groundwater discharge? What procedures can we follow to assess human health and ecological risks of groundwater discharge? Answering these questions is fundamental for humans to deal with the challenges of water security and health risks related to groundwater quality. This perspective provides recent progresses, knowledge gaps, and future trends in understanding the linkage between groundwater quality and health.
Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Agua , Contaminantes Químicos del Agua/análisis , Calidad del AguaRESUMEN
CH4 emissions from inland waters are highly uncertain in the current global CH4 budget, especially for streams, rivers, and other lotic systems. Previous studies have attributed the strong spatiotemporal heterogeneity of riverine CH4 to environmental factors such as sediment type, water level, temperature, or particulate organic carbon abundance through correlation analysis. However, a mechanistic understanding of the basis for such heterogeneity is lacking. Here, we combine sediment CH4 data from the Hanford reach of the Columbia River with a biogeochemical-transport model to show that vertical hydrologic exchange flows (VHEFs), driven by the difference between river stage and groundwater level, determine CH4 flux at the sediment-water interface. CH4 fluxes show a nonlinear relationship with the magnitude of VHEFs, where high VHEFs introduce O2 into riverbed sediments, which inhibit CH4 production and induce CH4 oxidation, and low VHEFs cause transient reduction in CH4 flux (relative to production) due to reduced advective CH4 transport. In addition, VHEFs lead to the hysteresis of temperature rise and CH4 emissions because high river discharge caused by snowmelt in spring leads to strong downwelling flow that offsets increasing CH4 production with temperature rise. Our findings reveal how the interplay between in-stream hydrologic flux besides fluvial-wetland connectivity and microbial metabolic pathways that compete with methanogenic pathways can produce complex patterns in CH4 production and emission in riverbed alluvial sediments.
Asunto(s)
Carbono , Metano , Metano/análisis , Ríos , Agricultura , Agua , Dióxido de Carbono/análisisRESUMEN
Increased human water use combined with climate change have aggravated water scarcity from the regional to global scales. However, the lack of spatially detailed datasets limits our understanding of the historical water use trend and its key drivers. Here, we present a survey-based reconstruction of China's sectoral water use in 341 prefectures during 1965 to 2013. The data indicate that water use has doubled during the entire study period, yet with a widespread slowdown of the growth rates from 10.66 km3â y-2 before 1975 to 6.23 km3â y-2 in 1975 to 1992, and further down to 3.59 km3â y-2 afterward. These decelerations were attributed to reduced water use intensities of irrigation and industry, which partly offset the increase driven by pronounced socioeconomic development (i.e., economic growth, population growth, and structural transitions) by 55% in 1975 to 1992 and 83% after 1992. Adoptions for highly efficient irrigation and industrial water recycling technologies explained most of the observed reduction of water use intensities across China. These findings challenge conventional views about an acceleration in water use in China and highlight the opposing roles of different drivers for water use projections.
Asunto(s)
Desaceleración , Abastecimiento de Agua , Agua , China , Geografía , Humanos , Factores SocioeconómicosRESUMEN
Little information is available on how the types, concentrations, and distribution of chemicals have evolved over the years. The objective of the present study is therefore to review the spatial and temporal distribution profile of emerging contaminants with limited toxicology data in the pearl river basin over the years to build up the emerging contaminants database in this region for risk assessment and regulatory purposes. The result revealed that seven groups of emerging contaminants were abundant in this region, and many emerging contaminants had been detected at much higher concentrations before 2011. Specifically, antibiotics, phenolic compounds, and acidic pharmaceuticals were the most abundant emerging contaminants detected in the aquatic compartment, while phenolic compounds were of the most profound concern in soil. Flame retardants and plastics were the most frequently studied chemicals in organisms. The abundance of the field concentrations and frequencies varied considerably over the years, and currently available data can hardly be used for regulation purposes. It is suggested that watershed management should establish a regular monitoring scheme and comprehensive database to monitor the distribution of emerging contaminants considering the highly condensed population in this region. The priority monitoring list should be formed in consideration of historical abundance, potential toxic effects of emerging contaminants as well as the distribution of heavily polluting industries in the region.
Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ríos/química , IndustriasRESUMEN
Glacier-fed lakes are characterized by cold temperatures, high altitudes, and nutrient-poor conditions. Despite these challenging conditions, near-surface sediments of glacier-fed lakes harbor rich microbial communities that are critical for ecosystem functioning and serve as a bridge between aquatic ecology and the deep subsurface biosphere. However, there is limited knowledge regarding the microbial communities and their assembly processes in these sediments, which are highly vulnerable to climate change. To fill this knowledge gap, this study systematically analyzed environmental variables, microbial communities, diversity, co-occurrence relationships, and community assembly processes in the near-surface sediments of a glacier-fed lake in the Tibetan Plateau. The results revealed distinct vertical gradients in microbial diversity and subcommunities, highlighting the significant influence of selection processes and adaptive abilities on microbial communities. Specifically, specialists played a crucial role within the overall microbial communities. Microbial assembly was primarily driven by homogeneous selection, but its influence declined with increasing depth. In contrast, homogenizing dispersal showed an opposite pattern, and the bottom layer exhibited heterogeneous selection and undominated processes. These patterns of microbial assembly were primarily driven by environmental gradients, with significant contributions from processes associated to ammonium and organic matter deposition, as well as chemical precipitation in response to a warming climate. This study enhances our understanding of the microbial communities and assembly processes in the near-surface sediments of glacier-fed lakes and sheds light on geo-microbiological processes in climate-sensitive lacustrine sediments.
Asunto(s)
Lagos , Microbiota , Lagos/microbiología , Cubierta de Hielo/microbiología , Cambio ClimáticoRESUMEN
Plastic debris in the global biosphere is an increasing concern, and nanoplastic (NPs) toxicity in humans is far from being understood. Studies have indicated that NPs can affect mitochondria, but the underlying mechanisms remain unclear. The liver and lungs have important metabolic functions and are vulnerable to NP exposure. In this study, we investigated the effects of 80 nm NPs on mitochondrial functions and metabolic pathways in normal human hepatic (L02) cells and lung (BEAS-2B) cells. NP exposure did not induce mass cell death; however, transmission electron microscopy analysis showed that the NPs could enter the cells and cause mitochondrial damage, as evidenced by overproduction of mitochondrial reactive oxygen species, alterations in the mitochondrial membrane potential, and suppression of mitochondrial respiration. These alterations were observed at NP concentrations as low as 0.0125 mg/mL, which might be comparable to the environmental levels. Nontarget metabolomics confirmed that the most significantly impacted processes were mitochondrial-related. The metabolic function of L02 cells was more vulnerable to NP exposure than that of BEAS-2B cells, especially at low NP concentrations. This study identifies NP-induced mitochondrial dysfunction and metabolic toxicity pathways in target human cells, providing insight into the possibility of adverse outcomes in human health.
Asunto(s)
Metabolómica , Microplásticos , Humanos , Hígado/metabolismo , Pulmón , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 µg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 µg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.
Asunto(s)
Receptores de Hidrocarburo de Aril , Pez Cebra , Animales , Cardiotoxicidad/metabolismo , Embrión no Mamífero , Fluorocarburos , Receptores de Hidrocarburo de Aril/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/toxicidad , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
The immunosuppressive effects of antibiotics and the potential associations with the intestinal microbiota of the host have been increasingly recognized in recent years. However, the detailed underlying mechanisms of immune interference of antibiotics in environmental organisms remain unclear, particularly at the early life stage of high sensitivity. To better understand the gut microbiome and immune function interactions, the vertebrate model, zebrafish, was treated with environmentally relevant concentrations of a frequently detected antibiotic, enrofloxacin (ENR), ranging from 0.01 to 100 µg/L. 16S ribosomal RNA sequencing indicated diminished diversity, richness, and evenness of intestinal flora following ENR treatment. Twenty-two taxa of gut bacteria including Rickettsiales, Pseudomonadales, and Flavobacteriales were significantly correlated with immunosuppressive biomarkers, including a significant decrease in the abundance of macrophages and neutrophils. To validate the immunomodulatory effects due to altered intestinal microbial populations, zebrafish reared under sterile and non-sterile husbandry conditions were compared after ENR treatment. A significant inhibitory effect was induced by ENR treatment under non-sterile conditions, while the number of macrophages and neutrophils, as well as biomarkers of immunosuppressive effects, were significantly salved in zebrafish under sterile conditions, confirming for the first time that immunosuppression by ENR was closely mediated through alterations of the intestinal microbiome in fish.
Asunto(s)
Microbioma Gastrointestinal , Animales , Antibacterianos/farmacología , Enrofloxacina/farmacología , Terapia de Inmunosupresión , ARN Ribosómico 16S/genética , Pez Cebra/genéticaRESUMEN
The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them "pseudo persistent organic contaminants." Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.
Asunto(s)
Clortetraciclina , Animales , Antibacterianos/metabolismo , Clortetraciclina/metabolismo , Clortetraciclina/farmacología , Terapia de Inmunosupresión , FN-kappa B/metabolismo , Pez Cebra/metabolismoRESUMEN
Antibiotic use in crops is an emerging concern, however, human exposure to antibiotics residues through consumption of plant-derived food has generally been neglected. This study is a comprehensive evaluation based on full consideration of exposure sources and analysis for nearly 100 antibiotics. A total of 58 antibiotic compounds were detected in drinking water (n = 66) and 49 in food samples (n = 150) from Shenzhen, China. The probable daily intake from drinking water and food consumption based on the total concentration of all the detected antibiotic compounds was 310, 200, and 130 ng/kg-body weight/day for preschool children, adolescents, and adults, with a maximum of up to 1400, 970 and 530 ng/kg-bw/day, respectively. Consumption of plant-derived food products, rather than animal-derived food, was the main source of the daily intake, and drinking water was a minor source. Risk assessment suggested a potentially unacceptable health risk from daily intake of norfloxacin, lincomycin and ciprofloxacin. Further research is warranted to alleviate food safety concerns related to antibiotic residues in plant-derived and animal-derived food products.
Asunto(s)
Agua Potable , Adolescente , Alimentación Animal/análisis , Animales , Antibacterianos/análisis , China , Agua Potable/análisis , Ingestión de Alimentos , Contaminación de Alimentos/análisis , HumanosRESUMEN
The design of groundwater exploitation schedules with constraints on pumping-induced land subsidence is a computationally intensive task. Physical process-based groundwater flow and land subsidence simulations are high-dimensional, nonlinear, dynamic and computationally demanding, as they require solving large systems of partial differential equations (PDEs). This work is the first application of a parallelized surrogate-based global optimization algorithm to mitigate land subsidence issues by controlling the pumping schedule of multiple groundwater wellfields over space and time. The application was demonstrated in a 6500 km2 region in China, involving a large-scale coupled groundwater flow-land subsidence model that is computationally expensive in terms of computational resources, including runtime and CPU memory for one single evaluation. In addition, the optimization problem contains 50 decision variables and up to 13 constraints, which adds to the computational effort, thus an efficient optimization is required. The results show that parallel DYSOC (dynamic search with surrogate-based constrained optimization) can achieve an approximately 100% parallel efficiency when upscaling computing resources. Compared with two other widely used optimization algorithms, DYSOC is 2-6 times faster, achieving computational cost savings of at least 50%. The findings demonstrate that the integration of surrogate constraints and dynamic search process can aid in the exploration and exploitation of the search space and accelerate the search for optimal solutions to complicated problems.