Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39387120

RESUMEN

BACKGROUND: Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial. Here, we comprehensively investigated the effects and the underlying molecular mechanisms of ASGR1 deficiency and overexpression on atherosclerosis and liver injury in mice. METHODS: We engineered Asgr1 knockout mice (Asgr1-/-), Asgr1 and ApoE double-knockout mice (Asgr1-/-ApoE-/-), and ASGR1-overexpressing mice on an ApoE-/- background and then fed them different diets to assess the role of ASGR1 in atherosclerosis and liver injury. RESULTS: After being fed a Western diet for 12 weeks, Asgr1-/-ApoE-/- mice exhibited significantly decreased atherosclerotic lesion areas in the aorta and aortic root sections, reduced plasma VLDL (very-low-density lipoprotein) cholesterol and LDL (low-density lipoprotein) cholesterol levels, decreased VLDL production, and increased fecal cholesterol contents. Conversely, ASGR1 overexpression in ApoE-/- mice increased atherosclerotic lesions in the aorta and aortic root sections, augmented plasma VLDL cholesterol and LDL cholesterol levels and VLDL production, and decreased fecal cholesterol contents. Mechanistically, ASGR1 deficiency reduced VLDL production by inhibiting the expression of MTTP (microsomal triglyceride transfer protein) and ANGPTL3 (angiopoietin-like protein 3)/ANGPTL8 (angiopoietin-like protein 8) but increasing LPL (lipoprotein lipase) activity, increased LDL uptake by increasing LDLR (LDL receptor) expression, and promoted cholesterol efflux through increasing expression of LXRα (liver X receptor-α), ABCA1 (ATP-binding cassette subfamily A member 1), ABCG5 (ATP-binding cassette subfamily G member 5), and CYP7A1 (cytochrome P450 family 7 subfamily A member 1). These underlying alterations were confirmed in ASGR1-overexpressing ApoE-/- mice. In addition, ASGR1 deficiency exacerbated liver injury in Western diet-induced Asgr1-/-ApoE-/- mice and high-fat diet-induced but not normal laboratory diet-induced and high-fat and high-cholesterol diet-induced Asgr1-/- mice, while its overexpression mitigated liver injury in Western diet-induced ASGR1-overexpressing ApoE-/- mice. CONCLUSIONS: Inhibition of ASGR1 inhibits atherosclerosis in Western diet-fed ApoE-/- mice, suggesting that inhibiting ASGR1 may serve as a novel therapeutic strategy to treat atherosclerosis and cardiovascular diseases.

2.
Circ Res ; 131(11): 926-943, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36278398

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.


Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Cardíaca , Sirtuinas , Humanos , Ratones , Animales , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/metabolismo , PPAR gamma , Modelos Animales de Enfermedad , Sirtuinas/genética , Lípidos
3.
Eur Heart J ; 44(20): 1818-1833, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36469488

RESUMEN

AIMS: Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS: JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS: JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.


Asunto(s)
Infarto del Miocardio con Elevación del ST , Trombosis , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Infarto del Miocardio con Elevación del ST/metabolismo , Trombosis/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Trends Biochem Sci ; 44(7): 561-564, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036409

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.


Asunto(s)
Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Piperidinas/uso terapéutico , Progeria/complicaciones , Progeria/tratamiento farmacológico , Piridinas/uso terapéutico , Enfermedades Cardiovasculares/patología , Humanos , Progeria/patología
5.
Proc Natl Acad Sci U S A ; 117(9): 4792-4801, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075915

RESUMEN

Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Morfogénesis/fisiología , Neovascularización Patológica/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Proteínas Nucleares , Unión Proteica , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal , Factores de Transcripción , Factor de Transcripción YY1/genética
6.
Proc Natl Acad Sci U S A ; 116(2): 546-555, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584103

RESUMEN

SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.


Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Membrana/metabolismo , ARN Largo no Codificante/metabolismo , Uniones Adherentes/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos , ARN Largo no Codificante/genética , Resistencia al Corte/fisiología , Catenina delta
7.
Korean J Physiol Pharmacol ; 26(3): 145-155, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35477542

RESUMEN

Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the anti-tumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

8.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3788-3797, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850836

RESUMEN

The present study established specific chromatograms and a method for determining multiple primary components in Yinqiao Powder decoctions and compared the change rules of chemical composition in powder and piece decocting processes of Yinqiao Powder to provide a scientific basis for the modern research of preparations of Yinqiao Powder. Powder and piece decoctions of Yinqiao Powder were prepared. The specific chromatograms were determined and the content of 17 primary components was measured by high-performance liquid chromatography(HPLC), including adoxosidic acid, neochlorogenic acid, forsythoside E, loganic acid, chlorogenic acid, cryptochlorogenic acid, sweroside, forsythoside Ⅰ, forsythoside H, forsythoside A, isochlorogenic acid B, E-aldosecologanin, hesperidin, phillyrin, arctiin, liquiritigenin, and dipotassium glycyrrhizinate. The effect of decocting time on the chemical composition in powder and piece decoctions of Yinqiao Powder was investigated. As a result, the specific chromatogram similarities of powder decoctions of Yinqiao Powder with different decocting time were high, which indicated that their chemical compositions were similar, while the similarities of piece decoctions were low, suggesting similar chemical compositions with big differences. In powder decoctions, the concentrations of neochlorogenic acid, cryptochlorogenic acid, forsytherin H, and isochlorogenic acid B increased with the prolongation of decocting time, and those of adoxosidic acid, forsythoside E, forsythoside Ⅰ, E-aldosecologanin, phillyrin, dipotassium glycyrrhizinate, loganic acid, arctiin, sweroside, and liquiritigenin increased firstly and tended to be stable, while those of forsythoside A, chlorogenic acid, and hesperidin increased firstly and then decreased. In piece decoctions, the concentration of chlorogenic acid increased firstly and then decreased with the prolongation of decocting time, while those of the remaining 16 components showed an upward trend. The concentrations of adoxosidic acid, forsythoside E, forsythoside Ⅰ, E-aldosecologanin, phillyrin, dipotassium glycyrrhizinate, forsythoside A, forsythoside H, and chlorogenic acid in powder decoctions were higher than those in piece decoctions. The concentrations of hesperidin, loganic acid, phillyrin, sweroside, liquiritigenin, neochlorogenic acid, and cryptochlorogenic acid in powder decoctions were higher than those in piece decoctions within 40 min of decocting. The concentration of isochlorogenic acid B in powder decoctions was lower than that in piece decoction 10 min after decocting. The results showed that the decocting time and particle size of raw medicinal materials had certain effects on the content of chemical components in decoctions of Yinqiao Powder. Compared with the piece decocting, the powder decocting could achieve faster resolution of chemical components and higher concentrations, which confirmed the scientific evidence of the traditional powder decocting method of Yinqiao Powder. For the piece decocting of prescriptions of Yinqiao Powder, extraction time should be prolonged and extraction times should be increased to achieve the same effect as the powder decocting.


Asunto(s)
Medicamentos Herbarios Chinos , Hesperidina , Neoplasias Primarias Múltiples , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Ácido Glicirrínico/análisis , Humanos , Polvos
9.
Zhongguo Zhong Yao Za Zhi ; 47(1): 103-110, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178916

RESUMEN

The present study explored the effect of co-amorphous technology in improving the dissolution rate and stability of silybin based on the puerarin-silybin co-amorphous system prepared by the spray-drying method. Solid-state characterization was carried out by powder X-ray diffraction(PXRD), polarizing microscopy(PLM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), etc. Saturated powder dissolution, intrinsic dissolution rate, moisture absorption, and stability were further investigated. The results showed that puerarin and silybin formed a co-amorphous system at a single glass transition temperature which was higher than that of any crude drug. The intrinsic dissolution rate and supersaturated powder dissolution of silybin in the co-amorphous system were higher than those of the crude drug and amorphous system. The co-amorphous system kept stable for as long as three months under the condition of 40 ℃, 75% relative humidity, which was longer than that of the single amorphous silybin. Therefore, the co-amorphous technology could significantly improve the dissolution and stability of silybin.


Asunto(s)
Desecación , Tecnología , Rastreo Diferencial de Calorimetría , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Silibina , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1237-1242, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35343150

RESUMEN

The present study explored the drying effect of new spiral vibration drying technology on Chinese medicinal pills with Liuwei Dihuang Pills, Zhuanggu Guanjie Pills, and Muxiang Shunqi Pills as model drugs. With the drying uniformity, drying time, energy consumption, pill split, dissolution time, and change of index components as evaluation indicators, the drying effect of spiral vibration drying technology on model drugs was evaluated and compared with traditional drying methods, such as hot air drying and vacuum drying in the oven. The dynamic changes of moisture in Liuwei Dihuang Pills with different drying time were investigated. Compared with the traditional drying methods in the oven(hot air drying and vacuum drying) at 80 ℃, the spiral vibration drying only took 80 min, shortened by 80%, with 10%-13% energy consumed. The results showed that the moisture of Liuwei Dihuang Pills was negatively related to the drying time. By virtue of multi-layer countercurrent drying and super resonant fluidization techniques, the new spiral vibration drying technology can significantly improve the drying quality of Chinese medicinal pills, improve the drying efficiency, and enhance the manufacturing capacity of Chinese medicinal pills. This study is expected to provide references for the innovation and development of new drying technology of Chinese medicinal pills.


Asunto(s)
Desecación , Vibración , China , Modalidades de Fisioterapia , Tecnología
11.
Hepatology ; 72(5): 1717-1734, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048304

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis (LF) is a central pathological process that occurs in most types of chronic liver diseases. Advanced LF causes cirrhosis, hepatocellular carcinoma, and liver failure. However, the exact molecular mechanisms underlying the initiation and progression of LF remain largely unknown. APPROACH AND RESULTS: This study was designed to investigate the role of protein kinase D3 (PKD3; gene name Prkd3) in the regulation of liver homeostasis. We generated global Prkd3 knockout (Prkd3-/- ) mice and myeloid-cell-specific Prkd3 knockout (Prkd3∆LysM ) mice, and we found that both Prkd3-/- mice and Prkd3∆LysM mice displayed spontaneous LF. PKD3 deficiency also aggravated CCl4 -induced LF. PKD3 is highly expressed in hepatic macrophages (HMs), and PKD3 deficiency skewed macrophage polarization toward a profibrotic phenotype. Activated profibrotic macrophages produced transforming growth factor beta that, in turn, activates hepatic stellate cells to become matrix-producing myofibroblasts. Moreover, PKD3 deficiency decreased the phosphatase activity of SH2-containing protein tyrosine phosphatase-1 (a bona-fide PKD3 substrate), resulting in sustained signal transducer and activator of transcription 6 activation in macrophages. In addition, we observed that PKD3 expression in HMs was down-regulated in cirrhotic human liver tissues. CONCLUSIONS: PKD3 deletion in mice drives LF through the profibrotic macrophage activation.


Asunto(s)
Cirrosis Hepática Experimental/patología , Cirrosis Hepática/patología , Proteína Quinasa C/deficiencia , Animales , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/diagnóstico , Cirrosis Hepática Experimental/genética , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Índice de Severidad de la Enfermedad , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1120-1127, 2021 Mar.
Artículo en Zh | MEDLINE | ID: mdl-33787105

RESUMEN

To evaluate the effects of Hydroxypropyl methylcellulose acetate succinate(HPMCAS MF) on absorption of silybin(SLB) from supersaturable self-nanoemulsifying drug delivery system which was pre-prepared at the early stage experiment. The cell toxicity of self-emulsifying preparation was evaluated by the MTT method, and the in vitro membrane permeability and absorption promoting effect of the self-emulsifying preparation were evaluated by establishing a Caco-2 cell monolayer model. The in vivo and in vitro supersaturation correlation was evaluated via the blood concentration of SLB. The results of MTT showed that the concentration of the preparation below 2 mg·mL~(-1)(C_(SLB) 100 µg·mL~(-1)) was not toxic to Caco-2 cells, and the addition of polymer had no significant effect on Caco-2 cells viability. As compared with the solution group, the transport results showed that the P_(app)(AP→BL) of the self-emulsifying preparation had a very significant increase; the transport rate of silybin can be reduced by polymer in 0-30 min; however, there was no difference in supersaturated transport between supersaturated SLB self-nanoemulsion drug delivery system(SLB-SSNEDDS) and SLB self-nanoemulsion drug delivery system(SLB-SNEDDS) within 2 hours. As compared with SLB suspension, pharmacokinetic parameters showed that the blood concentration of both SLB-SNEDDS and SLB-SSNEDDS groups were significantly increased, and C_(max) was 5.25 times and 9.69 times respectively of that in SLB suspension group, with a relative bioavailability of 578.45% and 1 139.44% respectively. C_(max) and relative bioavailability of SLB-SSNEDDS were 1.85 times and 197% of those of SLB-SNEDDS, respectively. Therefore, on the one hand, SSNEDDS can increase the solubility of SLB in gastrointestinal tract by maintaining stability of SLB supersaturation state; on the other hand, the osmotic transport process of SLB was regulated through the composition of its preparations, and both of them could jointly promote the transport and absorption of SLB to improve the oral bioavailability of SLB.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Administración Oral , Disponibilidad Biológica , Células CACO-2 , Emulsiones , Humanos , Metilcelulosa/análogos & derivados , Tamaño de la Partícula , Silibina , Solubilidad
13.
Zhongguo Zhong Yao Za Zhi ; 46(4): 830-836, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645087

RESUMEN

To verify the appropriate preparation process of extracts for the solid substance benchmark of Linggui Zhugan Decoction. The extracts were prepared by different preparation processes, namely the traditional process(process 1), the extract combined with volatile oil separated from traditional process extract liquid(process 2), the modern secondary reflux extraction process(process 3) and the process that volatile oil was extracted first, then prepared according to the traditional process, and combined with extract(process 4); based on the characteristic spectrum, index components of cinnamaldehyde, glycyrrhizin, ammonium glycyrrhizinate, cinnamic acid, and the dry extract rate of process 1, the differences and similarities of four extracts were compared. The results showed that the similarity of the characteristic spectrum of process 2, process 4 and process 1 were all greater than 0.97, while there was no significant difference for the content of 4 quality control components and dry extract rate; the similarity of the characteristic spectrum of process 3 and process 1 was 0.91, the absolute peak area of 13 out of 21 peaks and the relative peak area of 7 peaks increased significantly, and the content of 3 out of 4 quality control components and dry extract rate also significantly increased. In conclusion, the material standards of extracts by the process 2 and 4 are consistent with that of the traditional process, so the two processes are suitable.


Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Cromatografía Líquida de Alta Presión , Ácido Glicirrínico , Control de Calidad , Estándares de Referencia
14.
Biochem Biophys Res Commun ; 521(2): 279-284, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668369

RESUMEN

Serum response factor (SRF), a key transcription factor, plays an important role in regulating cell functions such as proliferation and differentiation. Most proteins are unstable, and protein stability is regulated through the ubiquitin-proteasome system (UPS) or the autophagy lysosome pathway (ALP). Whether SRF is degraded and what mechanisms control SRF protein stability remain unexplored. Western blot analyses of cells treated with cycloheximide (CHX), a protein synthesis inhibitor, showed that SRF was degraded in a time-dependent manner. Moreover, we observed that SRF undergoes autophagy-dependent destruction, which is accelerated by serum deprivation. Through bioinformatics screening, we found that SRF contains the GSK3ß phosphorylation motif (T/SPPXS): SPDSPPRSDPT, which is conserved from zebrafish to humans. Serum deprivation stimulated GSK3ß activation that then potentiates SRF degradation through the autophagy lysosome pathway. Since SRF is important for numerous cellular activities, our results suggest that the autophagy-dependent SRF degradation pathway may provide a new avenue to modulate SRF-mediated cell functions.


Asunto(s)
Autofagia , Factor de Respuesta Sérica/química , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/farmacología , Cicloheximida/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Lisosomas/metabolismo , Estabilidad Proteica , Ratas , Factor de Respuesta Sérica/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(13): E2739-E2747, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292896

RESUMEN

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.


Asunto(s)
Anomalías Múltiples/genética , Autoantígenos/fisiología , Colon/anomalías , Proteínas del Citoesqueleto/fisiología , Seudoobstrucción Intestinal/genética , Proteínas Musculares/fisiología , Vejiga Urinaria/anomalías , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Codón sin Sentido , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Recién Nacido , Ratones , Contracción Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/fisiología
16.
Eur Heart J ; 40(29): 2398-2408, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539914

RESUMEN

AIMS: Recent genome-wide association studies (GWAS) have identified that the JCAD locus is associated with risk of coronary artery disease (CAD) and myocardial infarction (MI). However, the mechanisms whereby candidate gene JCAD confers disease risk remain unclear. We addressed whether and how JCAD affects the development of atherosclerosis, the common cause of CAD. METHODS AND RESULTS: By mining data in the Genotype-Tissue Expression (GTEx) database, we found that CAD-associated risk variants at the JCAD locus are linked to increased JCAD gene expression in human arteries, implicating JCAD as a candidate causal CAD gene. We therefore generated global and endothelial cell (EC) specific-JCAD knockout mice, and observed that JCAD deficiency attenuated high fat diet-induced atherosclerosis in ApoE-deficient mice. JCAD-deficiency in mice also improved endothelium-dependent relaxation. Genome-wide transcriptional profiling of JCAD-depleted human coronary artery ECs showed that JCAD depletion inhibited the activation of YAP/TAZ pathway, and the expression of downstream pro-atherogenic genes, including CTGF and Cyr61. As a result, JCAD-deficient ECs attracted fewer monocytes in response to lipopolysaccharide (LPS) stimulation. Moreover, JCAD expression in ECs was decreased under unidirectional laminar flow in vitro and in vivo. Proteomics studies suggest that JCAD regulates YAP/TAZ activation by interacting with actin-binding protein TRIOBP, thereby stabilizing stress fiber formation. Finally, we observed that endothelial JCAD expression was increased in mouse and human atherosclerotic plaques. CONCLUSION: The present study demonstrates that the GWAS-identified CAD risk gene JCAD promotes endothelial dysfunction and atherosclerosis, thus highlighting the possibility of new therapeutic strategies for CAD by targeting JCAD.


Asunto(s)
Aterosclerosis/genética , Moléculas de Adhesión Celular/genética , Enfermedad de la Arteria Coronaria/genética , Endotelio Vascular/fisiopatología , Predisposición Genética a la Enfermedad/genética , Animales , Apolipoproteínas E/genética , Dieta Occidental/efectos adversos , Endotelio Vascular/metabolismo , Femenino , Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
17.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3672-3680, 2020 Aug.
Artículo en Zh | MEDLINE | ID: mdl-32893557

RESUMEN

In order to improve the supersaturation and maintenance time of drug dispersion in curcumin self-nanoemulsion(CUR-SNEDDS), precipitation inhibitors(PPIs) were introduced to prepare curcumin supersaturated self-emulsion(CUR-SSNEDDS). The composition of CUR-SNEDDS prescriptions was selected through the solubility test, the compatibility of oil phase and surfactant, the investigation of the emulsifying ability of the surfactant and the drawing of the pseudo-ternary phase diagram. Analytic hierarchy process was used in combination with central composite design-response surface method to optimize the prescription. The type and dosage of precipitation inhibitors(PPIs) were selected to maintain the supersaturated concentration and duration of CUR in artificial gastrointestinal fluids. At the same time, polarizing microscope was used to evaluate the crystallization inhibition effect and the quality and in vitro release behavior of CUR-SSNEDDS. The prepared CUR-SSNEDDS prescription was capryol 90-kolliphor RH40-transcutol HP-Soluplus(7.93∶66.71∶25.36∶5), with the drug loading of(65.12±1.25) mg·g~(-1). CUR-SSNEDDS was transparent yellow, and the nanoemulsion droplets were spherical with uniform distribution. The emulsification time was(21.02±0.13) s, the average particle size was(57.03±0.35) nm, the polydispersity index(PDI) was(0.23 ± 0.01), and the Zeta potential was(-18.10±1.30) mV. CUR-SSNEDDS significantly inhibited the generation and growth of crystals after in vitro dilution. The supersaturation could be maintained above 10 within 2 h, and the dissolution rate and degree of CUR in artificial gastrointestinal fluid were significantly increased. Soluplus could effectively maintain the supersaturated state of CUR and enhance CUR dissolution in vitro.


Asunto(s)
Curcumina , Nanopartículas , Disponibilidad Biológica , Emulsiones , Tamaño de la Partícula , Solubilidad , Tensoactivos
18.
Biochem Biophys Res Commun ; 514(3): 913-918, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31084931

RESUMEN

Liver fibrosis is a common consequence of various chronic hepatitis and liver injuries. The myofibroblasts, through the accumulation of extracellular matrix (ECM) proteins, are closely associated with the progression of liver fibrosis. However, the molecular mechanisms underlying transcriptional regulation of fibrogenic genes and ECM proteins in myofibroblasts remain largely unknown. Using tamoxifen inducible myofibroblast-specific Cre-expressing mouse lines with selective deletion of the transcription factor Yin Yang 1 (YY1), here we show that YY1 deletion in myofibroblasts mitigates carbon tetrachloride-induced liver fibrosis. This protective effect of YY1 ablation on liver fibrosis was accompanied with reduced expression of profibrogenic genes and ECM proteins, including TNF-α, TGF-ß, PDGF, IL-6, α-SMA and Col1α1 in liver tissues from YY1 mutant mice. Moreover, using the human hepatic stellate cell (HSC) line LX-2, we found that knockdown of YY1 in myofibroblasts by siRNA treatment diminished myofibroblast proliferation, α-SMA expression, and collagen deposition. Collectively, our findings reveal a specific role of YY1 in hepatic myofibroblasts and suggest a new therapeutic strategy for hepatic fibrosis-associated liver diseases.


Asunto(s)
Cirrosis Hepática/patología , Miofibroblastos/patología , Factor de Transcripción YY1/genética , Animales , Línea Celular , Eliminación de Gen , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Interferencia de ARN
19.
J Cell Mol Med ; 22(12): 6380-6385, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30255651

RESUMEN

Colon crypts are recognized as a mechanical and biochemical Turing patterning model. Colon epithelial Caco-2 cell monolayer demonstrated 2D Turing patterns via force analysis of apical tight junction live cell imaging which illuminated actomyosin meshwork linking the actomyosin network of individual cells. Actomyosin forces act in a mechanobiological manner that alters cell/nucleus/tissue morphology. We observed the rotational motion of the nucleus in Caco-2 cells that appears to be driven by actomyosin during the formation of a differentiated confluent epithelium. Single- to multi-cell ring/torus-shaped genomes were observed prior to complex fractal Turing patterns extending from a rotating torus centre in a spiral pattern consistent with a gene morphogen motif. These features may contribute to the well-described differentiation from stem cells at the crypt base to the luminal colon epithelium along the crypt axis. This observation may be useful to study the role of mechanogenomic processes and the underlying molecular mechanisms as determinants of cellular and tissue architecture in space and time, which is the focal point of the 4D nucleome initiative. Mathematical and bioengineer modelling of gene circuits and cell shapes may provide a powerful algorithm that will contribute to future precision medicine relevant to a number of common medical disorders.


Asunto(s)
Diferenciación Celular/genética , Colon/metabolismo , Células Epiteliales/metabolismo , Células Madre/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Células CACO-2 , Colon/citología , Células Epiteliales/citología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Madre/citología , Uniones Estrechas/metabolismo
20.
Biochem Biophys Res Commun ; 498(3): 633-639, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29524414

RESUMEN

Sirtuin 1 (SIRT1) is an NAD+-dependent protein deacetylase that plays a critical role in controlling energy metabolism, stress response and aging. Hence, enhancing SIRT1 activity could be a potential therapeutic strategy to treat metabolic diseases such as diabetes. However, pharmacological activators for SIRT1 are scarce to date. In this study, using the optimized high throughput screening, we identified E6155, a piperazine 1, 4- diamide compound, as a new small molecular activator of SIRT1. We further found that E6155 significantly upregulated glucose uptake in cultured normal liver cells and skeletal muscle cells through increasing SIRT1 deacetylase activity. In type 2 diabetic KKAy mice, E6155 treatment markedly decreased the level of fasting glucose. Moreover, E6155 improved oral glucose tolerance and insulin tolerance. Euglycemic clamp and the homeostasis model assessment of insulin resistance index showed that E6155 ameliorated the insulin resistance and increased insulin sensitivity in diabetic mice. Mechanistically, we observed that the antidiabetic effects of E6155 were involved in SIRT1 dependent activation of LKB1/AMPK and IRS1/AKT pathways. In conclusion, our findings identified E6155 as a novel SIRT1 activator and suggested that E6155 could be a promising drug candidate for treating insulin resistance and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Piperazinas/uso terapéutico , Sirtuina 1/metabolismo , Animales , Glucemia/análisis , Glucemia/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Células Hep G2 , Humanos , Hipoglucemiantes/química , Insulina/metabolismo , Ratones , Piperazinas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA