RESUMEN
Checkpoint blockade enhances effector T cell function and has elicited long-term remission in a subset of patients with a broad spectrum of cancers. TIGIT is a checkpoint receptor thought to be involved in mediating T cell exhaustion in tumors; however, the relevance of TIGIT to the dysfunction of natural killer (NK) cells remains poorly understood. Here we found that TIGIT, but not the other checkpoint molecules CTLA-4 and PD-1, was associated with NK cell exhaustion in tumor-bearing mice and patients with colon cancer. Blockade of TIGIT prevented NK cell exhaustion and promoted NK cell-dependent tumor immunity in several tumor-bearing mouse models. Furthermore, blockade of TIGIT resulted in potent tumor-specific T cell immunity in an NK cell-dependent manner, enhanced therapy with antibody to the PD-1 ligand PD-L1 and sustained memory immunity in tumor re-challenge models. This work demonstrates that TIGIT constitutes a previously unappreciated checkpoint in NK cells and that targeting TIGIT alone or in combination with other checkpoint receptors is a promising anti-cancer therapeutic strategy.
Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias Experimentales/inmunología , Receptores Inmunológicos/metabolismo , Inmunidad Adaptativa , Animales , Línea Celular , Neoplasias del Colon/inmunología , Humanos , Memoria Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/genéticaRESUMEN
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 µm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Asunto(s)
Cloruro de Aluminio , Pared Celular , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Vacuolas , Malus/genética , Malus/metabolismo , Malus/efectos de los fármacos , Vacuolas/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/metabolismo , Lactonas/farmacología , Plantas Modificadas Genéticamente , Estrés Fisiológico , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras GenéticasRESUMEN
The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.
RESUMEN
Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.
Asunto(s)
Hipertensión Pulmonar , Presenilina-1 , Remodelación Vascular , Animales , Humanos , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Indoles , Ratones Endogámicos C57BL , Ratones Noqueados , Monocrotalina , Presenilina-1/efectos de los fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Pirroles/farmacología , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacosRESUMEN
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Asunto(s)
Exosomas , Neoplasias de la Vejiga Urinaria , Exosomas/metabolismo , Exosomas/genética , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , AnimalesRESUMEN
Soil acidification in apple (Malus domestica) orchards results in the release of rhizotoxic aluminum ions (Al3+) into soil. Melatonin (MT) participates in plant responses to abiotic stress; however, its role in AlCl3 stress in apple remains unknown. In this study, root application of MT (1 µM) substantially alleviated AlCl3 stress (300 µM) in Pingyi Tiancha (Malus hupehensis), which was reflected by higher fresh and dry weight, increased photosynthetic capacity, and longer and more roots compared with plants that did not receive MT treatment. MT functioned mainly by regulating vacuolar H+/Al3+ exchange and maintaining H+ homeostasis in the cytoplasm under AlCl3 stress. Transcriptome deep sequencing analysis identified the transcription factor gene SENSITIVE TO PROTON RHIZOTOXICITY 1 (MdSTOP1) was induced by both AlCl3 and MT treatments. Overexpressing MdSTOP1 in apple increased AlCl3 tolerance by enhancing vacuolar H+/Al3+ exchange and H+ efflux to the apoplast. We identified 2 transporter genes, ALUMINUM SENSITIVE 3 (MdALS3) and SODIUM HYDROGEN EXCHANGER 2 (MdNHX2), as downstream targets of MdSTOP1. MdSTOP1 interacted with the transcription factor NAM ATAF and CUC 2 (MdNAC2) to induce MdALS3 expression, which reduced Al toxicity by transferring Al3+ from the cytoplasm to the vacuole. Furthermore, MdSTOP1 and MdNAC2 coregulated MdNHX2 expression to increase H+ efflux from the vacuole to the cytoplasm to promote Al3+ compartmentalization and maintain cation balance in the vacuole. Taken together, our findings reveal an MT-STOP1 + NAC2-NHX2/ALS3-vacuolar H+/Al3+ exchange model for the alleviation of AlCl3 stress in apple, laying a foundation for practical applications of MT in agriculture.
Asunto(s)
Malus , Melatonina , Malus/metabolismo , Melatonina/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Cloruro de Aluminio/metabolismo , Protones , Iones/metabolismo , Factores de Transcripción/metabolismo , SueloRESUMEN
Pemphigus vulgaris (PV) stands as a rare autoimmune bullous disease, while the precise underlying mechanism remains incompletely elucidated. High-throughput proteomic methodologies, such as LC-MS/MS, have facilitated the quantification and characterisation of proteomes from clinical skin samples, enhancing our comprehension of PV pathogenesis. The objective of this study is to elucidate the signalling mechanisms underlying PV through proteomic analysis. Proteins and cell suspension were extracted from skin biopsies obtained from both PV patients and healthy volunteers and subsequently analysed using LC-MS/MS and scRNA-seq. Cultured keratinocytes were treated with PV serum, followed by an assessment of protein expression levels using immunofluorescence and western blotting. A total of 880, 605, and 586 differentially expressed proteins (DEPs) were identified between the lesion vs. control, non-lesion vs. control, and lesion vs. non-lesion groups, respectively. The oxidative phosphorylation (OXPHOS) pathway showed activation in PV. Keratinocytes are the major cell population in the epidermis and highly expressed ATP5PF, ATP6V1G1, COX6B1, COX6A1, and NDUFA9. In the cellular model, there was a notable increase in the expression levels of OXPHOS-related proteins (V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8), along with STAT1, p-STAT1, and p-JAK1. Furthermore, both the OXPHOS inhibitor metformin and the JAK1 inhibitor tofacitinib demonstrated therapeutic effects on PV serum-induced cell separation, attenuating cell detachment. Metformin notably reduced the expression of V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8, p-STAT1, p-JAK1, whereas tofacitinib decreased the expression of p-STAT1 and p-JAK1, with minimal impact on the expression of V-ATP5A, III-UQCRC2, II-SDHB, and I-NDUFB8. Our results indicate a potential involvement of the OXPHOS and JAK-STAT1 pathways in the pathogenesis of PV.
Asunto(s)
Queratinocitos , Fosforilación Oxidativa , Pénfigo , Piperidinas , Proteómica , Transducción de Señal , Humanos , Pénfigo/metabolismo , Queratinocitos/metabolismo , Piperidinas/farmacología , Quinasas Janus/metabolismo , Factor de Transcripción STAT1/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Factores de Transcripción STAT/metabolismo , Células Cultivadas , Femenino , Espectrometría de Masas en Tándem , MasculinoRESUMEN
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
RESUMEN
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Dressing probiotics with versatile outfits would impart them with extended functions, including elevated targeted efficiency to the nidi, controlled in situ release, enhance intestinal colonization, comprehensive microecology regulation, and so on. In this article, we systematically analyzed and categorized PHS for intelligent IBD therapy published in recent decade, and discussed their pros and cons to further raise the future orientation for PHS development.
RESUMEN
BACKGROUND: Circular RNAs (circRNAs) have been implicated in pulmonary hypertension progression through largely unknown mechanisms. Pulmonary artery endothelial cell (PAEC) dysfunction is a hallmark in the pathogenesis of pulmonary hypertension. However, the specific role of circular RNAs in PAEC injury caused by hypoxia remains unclear. METHODS: In this study, using the Western blotting, RNA pull down, Dual-luciferase reporter assay, immunohistochemistry, and immunofluorescence, we identified a novel circular RNA derived from alternative splicing of the keratin 4 gene (circKrt4). RESULTS: CircKrt4 was upregulated in lung tissues and plasma and specifically in PAECs under hypoxic conditions. In the nucleus, circKrt4 induces endothelial-to-mesenchymal transition by interacting with the Pura (transcriptional activator protein Pur-alpha) to promote N-cadherin gene activation. In the cytoplasm, increased circKrt4 leads to mitochondrial dysfunction by inhibiting cytoplasmic-mitochondrial shuttling of mitochondrial-bound Glpk (glycerol kinase). Intriguingly, circKrt4 was identified as a super enhancer-associated circular RNA that is transcriptionally activated by a transcription factor, CEBPA (CCAAT enhancer binding protein alpha). Furthermore, RBM25 (RNA-binding-motif protein 25) was found to regulate circKrt4 cyclization by increase the back-splicing of Krt4 gene. CONCLUSIONS: These findings demonstrate that a super enhancer-associated circular RNA-circKrt4 modulates PAEC injury to promote pulmonary hypertension by targeting Pura and Glpk.
Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Ratones , Animales , Arteria Pulmonar/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proliferación Celular , Hipoxia/metabolismo , ARN/genética , Células Endoteliales/metabolismoRESUMEN
INTRODUCTION: According to the common disease/rare variant hypothesis, it is important to study the role of rare variants in complex diseases. The association of rare variants with psoriasis has been demonstrated, but the association between rare variants and specific clinical subtypes of psoriasis has not been investigated. METHODS: Gene-based and gene-level meta-analyses were performed on data extracted from our previous study data sets (2,483 patients with guttate psoriasis and 8,292 patients with non-guttate psoriasis) for genotyping. Then, haplotype analysis was performed for rare loss-of-function variants located in MED12L, and protein function prediction was performed for MED12L. Gene-based analysis at each stage had a moderate significance threshold (p < 0.05). A χ2 test was then conducted on the three potential genes, and the merged gene-based analysis was used to confirm the results. We also conducted association analysis and meta-analysis for functional variants located on the identified gene. RESULTS: Through these gene-level analyses, we determined that MED12L is a guttate psoriasis susceptibility gene (p = 9.99 × 10-5), and the single-nucleotide polymorphism with the strongest association was rs199780529 (p_combine = 1 × 10-3, p_meta = 2 × 10-3). CONCLUSIONS: In our study, a guttate psoriasis-specific subtype-associated susceptibility gene was confirmed in a Chinese Han population. These findings contribute to a better genetic understanding of different subtypes of psoriasis.
Asunto(s)
Predisposición Genética a la Enfermedad , Complejo Mediador , Polimorfismo de Nucleótido Simple , Psoriasis , Humanos , China , Pueblos del Este de Asia/genética , Haplotipos , Complejo Mediador/genética , Psoriasis/genéticaRESUMEN
The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core-shell structure and high surface area was synthesized by using Schiff base COF nanospheres as the core and ketoenamine COF nanosheets growth on the surfaces. Surface defects were created using sodium cyanoborohydride etching treatment to increase specific surface area. The dye degradation experiments by peroxymonosulfate (PMS) catalyzed by the FeSAC proved that methylene blue can be degraded with a degradation rate constant of 0.125 min-1 under the conditions of 0.1 g L-1 catalyst dosage and 0.05 g L-1 peroxymonosulfate. The FeSAC/PMS system effectively degrades various pollutants in the pH range of 4-10 with over 80% efficiency for four cycles and can be recovered by soaking in iron salt solution. Free radical quenching experiments confirmed that singlet oxygen and superoxide radicals are the main active species for catalysis.
RESUMEN
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Asunto(s)
Contaminación de Alimentos , Patulina , Levaduras , Patulina/química , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Levaduras/metabolismo , Biodegradación Ambiental , Saccharomyces cerevisiae , Microbiología de Alimentos/métodosRESUMEN
Pulmonary hypertension (PH) is a serious and fatal disease characterized by pulmonary vasoconstriction and pulmonary vascular remodeling. The excessive autophagy of pulmonary artery smooth muscle cells (PASMCs) is one of the important factors of pulmonary vascular remodeling. A number of studies have shown that circular RNA (circRNA) can participate in the onset of PH. Our previous studies have shown that circRNA calmodulin 4 (circ-calm4) is involved in the progression of hypoxic PH. However, the role of circ-calm4 on regulation of hypoxic PH autophagy has not been reported. In this study, we demonstrated for the first time that hypoxia-mediated upregulated circ-calm4 expression has a key regulatory effect on autophagy in hypoxia-induced PASMCs and hypoxic PH mouse models. Knockdown of circ-calm4 both in vivo and in vitro can inhibit the autophagy in PASMCs induced by hypoxia. We also performed bioinformatics predictions and conducted experiments to verify that circ-calm4 bound to the purine-rich binding protein (Purb) to promote its expression in the nucleus, thereby initiating the transcription of autophagy-related protein Beclin1. Interestingly, we found that Beclin1 transcription initiated by Purb was accompanied by a modification of Beclin1 super-enhancer to improve transcription activity and efficiency. Overall, our results confirm that the circ-calm4/Purb/Beclin1 signal axis is involved in the occurrence of hypoxia-induced PASMCs autophagy, and the novel regulatory mechanisms and signals transduction pathways in PASMC autophagy induced by hypoxia.
Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Animales , Ratones , Autofagia , Beclina-1/genética , Beclina-1/metabolismo , Proliferación Celular , Células Cultivadas , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Remodelación VascularRESUMEN
Dwarfing rootstocks and dwarf cultivars are urgently needed for modern pear cultivation. However, germplasm resources for dwarfing pear are limited, and the underlying mechanisms remain unclear. We previously showed that dwarfism in pear is controlled by the single dominant gene PcDw (Dwarf). We report here that the expression of PcAGP7-1 (ARABINOGALACTAN PROTEIN 7-1), a key candidate gene for PcDw, is significantly higher in dwarf-type pear plants because of a mutation in an E-box in the promoter. Electrophoretic mobility shift assays and transient infiltration showed that the transcription factors PcBZR1 and PcBZR2 could directly bind to the E-box of the PcAGP7-1 promoter and repress transcription. Moreover, transgenic pear lines overexpressing PcAGP7-1 exhibited obvious dwarf phenotypes, whereas RNA interference pear lines for PcAGP7-1 were taller than controls. PcAGP7-1 overexpression also enhanced cell wall thickness, affected cell morphogenesis, and reduced brassinolide (BL) content, which inhibited BR signaling via a negative feedback loop, resulting in further dwarfing. Overall, we identified a dwarfing mechanism in perennial woody plants involving the BL-BZR/BES-AGP-BL regulatory module. Our findings provide insight into the molecular mechanism of plant dwarfism and suggest strategies for the molecular breeding of dwarf pear cultivars.
Asunto(s)
Brasinoesteroides/metabolismo , Galactanos/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/genética , Esteroides Heterocíclicos/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Mutación , Fenotipo , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Pyrus/química , Pyrus/crecimiento & desarrollo , Pyrus/ultraestructura , Nicotiana/química , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/ultraestructuraRESUMEN
Large amounts of potash fertilizer are often applied to apple (Malus domestica) orchards to enhance fruit quality and yields, but this treatment aggravates KCl-based salinity stress. Melatonin (MT) is involved in a variety of abiotic stress responses in plants. However, its role in KCl stress tolerance is still unknown. In the present study, we determined that an appropriate concentration (100 µm) of MT significantly alleviated KCl stress in Malus hupehensis by enhancing K+ efflux out of cells and compartmentalizing K+ in vacuoles. Transcriptome deep-sequencing analysis identified the core transcription factor gene MdWRKY53, whose expression responded to both KCl and MT treatment. Overexpressing MdWRKY53 enhanced KCl tolerance in transgenic apple plants by increasing K+ efflux and K+ compartmentalization. Subsequently, we characterized the transporter genes MdGORK1 and MdNHX2 as downstream targets of MdWRKY53 by ChIP-seq. MdGORK1 localized to the plasma membrane and enhanced K+ efflux to increase KCl tolerance in transgenic apple plants. Moreover, overexpressing MdNHX2 enhanced the KCl tolerance of transgenic apple plants/callus by compartmentalizing K+ into the vacuole. RT-qPCR and LUC activity analyses indicated that MdWRKY53 binds to the promoters of MdGORK1 and MdNHX2 and induces their transcription. Taken together, our findings reveal that the MT-WRKY53-GORK1/NHX2-K+ module regulates K+ homeostasis to enhance KCl stress tolerance in apple. These findings shed light on the molecular mechanism of apple response to KCl-based salinity stress and lay the foundation for the practical application of MT in salt stress.
Asunto(s)
Malus , Melatonina , Melatonina/metabolismo , Malus/metabolismo , Tolerancia a la Sal/genética , Homeostasis , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genéticaRESUMEN
INTRODUCTION: Current guidelines suggest that regular aerobic training might lower blood pressure in hypertensive individuals. However, evidence linking resistant hypertension (RH) with total daily physical activity (PA), including work-, transport-, and recreation-related PA, is limited. Therefore, this study assessed the association between daily PA and RH. METHOD: A cross-sectional study was conducted using data acquired from a nationwide survey in the US (the National Health and Nutrition Examination Survey, NHANES). The weighted prevalence of RH was calculated, and moderate and vigorous daily PA was assessed using the Global Physical Activity Questionnaire (GPAQ). A multivariate logistic regression model determined the association between daily PA and RH. RESULTS: A total of 8,496 treated hypertension patients were identified, including 959 RH cases. The unweighted prevalence of RH among treated hypertension cases was 11.28%, while the weighted prevalence was 9.81%. Participants with RH had a low rate of recommended PA levels (39.83%), and daily PA and RH were significantly associated. PA exhibited significant dose-dependent trends with a low probability of RH (p-trends < 0.05). Additionally, participants with sufficient daily PA had a 14% lower probability of RH than those with insufficient PA [fully adjusted odds ratio (OR) = 0.86; 95% confidence interval (CI) = 0.74-0.99). CONCLUSION: The present study revealed that RH has an incidence of up to 9.81% in treated hypertension patients. Hypertensive patients tended to be physically inactive, and insufficient PA and RH were significantly associated. Sufficient daily PA should be recommended to reduce the RH probability among treated hypertension patients.
Asunto(s)
Hipertensión , Humanos , Encuestas Nutricionales , Estudios Transversales , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/terapia , Ejercicio Físico/fisiología , Presión SanguíneaRESUMEN
BACKGROUND: Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS: We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS: The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.
Asunto(s)
Octopodiformes , Animales , Octopodiformes/genética , Transcriptoma , Filogenia , Protocadherinas , Evolución Molecular , CariotipoRESUMEN
BACKGROUND: Hyperlipidemia, hepatic steatosis, and hyperglycemia are common metabolic complications of obesity. The objective of the present study is to investigate the in vivo protective effect of Averrhoa carambola L. fruit polyphenols (ACFP) on hyperlipidemia, hepatic steatosis, and hyperglycemia in mice with high-fat diet (HFD)-induced obesity and elucidate the mechanisms of action underlying the beneficial effects of ACFP. Thirty-six specific pathogen-free male C57BL/6J mice (4 weeks old, weighing 17.1-19.9 g) were randomly divided into three groups and fed with a low-fat diet (LFD, 10% fat energy), HFD (45% fat energy), or HFD supplemented with ACFP by intragastric administration for 14 weeks. Obesity-related biochemical indexes and hepatic gene expression levels were determined. The statistical analyses were conducted using one-way analysis of variance (ANOVA) followed by Duncan's multiple range test. RESULTS: The results showed that the body weight gain, serum triglycerides, total cholesterol, glucose, insulin resistance index, and steatosis grade in the ACFP group decreased by 29.57%, 26.25%, 27.4%, 19.6%, 40.32%, and 40%, respectively, compared to the HFD group. Gene expression analysis indicated that ACFP treatment improved the gene expression profiles involved in lipid and glucose metabolism compared to the HFD group. CONCLUSION: ACFP protected from HFD-induced obesity and obesity-associated hyperlipidemia, hepatic steatosis, and hyperglycemia by improving lipid and glucose metabolism in mice. © 2023 Society of Chemical Industry.
Asunto(s)
Averrhoa , Hígado Graso , Hiperglucemia , Hiperlipidemias , Masculino , Ratones , Animales , Averrhoa/genética , Averrhoa/metabolismo , Polifenoles/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Frutas/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/prevención & control , Hígado Graso/metabolismo , Hígado/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/prevención & control , Hiperglucemia/metabolismo , Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos/farmacología , Metabolismo de los LípidosRESUMEN
Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.