Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(4): 382-396, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267508

RESUMEN

Sickle cell disease (SCD) is a chronic hemolytic and systemic hypoxia condition with constant oxidative stress and significant metabolic alterations. However, little is known about the correlation between metabolic alterations and the pathophysiological symptoms. Here, we report that Nrf2, a master regulator of cellular antioxidant responses, regulates the production of the metabolite l-2-hydroxyglutarate (L2HG) to mediate epigenetic histone hypermethylation for gene expression involved in metabolic, oxidative, and ferroptotic stress responses in SCD. Mechanistically, Nrf2 was found to regulate the expression of L2HG dehydrogenase (L2hgdh) to mediate L2HG production under hypoxia. Gene expression profile analysis indicated that reactive oxygen species (ROS) and ferroptosis responses were the most significantly affected signaling pathways after Nrf2 ablation in SCD. Nrf2 silencing and L2HG supplementation sensitize human sickle erythroid cells to ROS and ferroptosis stress. The absence of Nrf2 and accumulation of L2HG significantly affect histone methylation for chromatin structure modification and reduce the assembly of transcription complexes on downstream target genes to regulate ROS and ferroptosis responses. Furthermore, pharmacological activation of Nrf2 was found to have protective effects against ROS and ferroptosis stress in SCD mice. Our data suggest a novel mechanism by which Nrf2 regulates L2HG levels to mediate SCD severity through ROS and ferroptosis stress responses, suggesting that targeting Nrf2 is a viable therapeutic strategy for ameliorating SCD symptoms.


Asunto(s)
Anemia de Células Falciformes , Cromatina , Epigénesis Genética , Ferroptosis , Glutaratos , Factor 2 Relacionado con NF-E2 , Ferroptosis/genética , Glutaratos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Cromatina/metabolismo , Metilación , Oxidorreductasas de Alcohol/metabolismo , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Perfilación de la Expresión Génica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38934117

RESUMEN

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in a numerical increase in perfusion recovery and significantly higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-inhibited ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.

3.
Exp Eye Res ; 236: 109642, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37714423

RESUMEN

Keratoconus (KC) is a corneal thinning disorder and a leading cause of corneal transplantation worldwide. Exosomes are small, secreted extracellular vesicles (30-150 nm) that mediate cellular communication via their protein, lipid, and nucleic acid content. We aimed to characterize the exosomes secreted by primary corneal fibroblasts from subjects with or without KC. Using human keratoconus stromal fibroblast cells (HKC, n = 4) and healthy stromal fibroblasts (HCF, n = 4), we collected and isolated exosomes using serial ultracentrifugation. Using nanoparticle tracking analysis (NTA) with ZetaView®, we compared the size and concentration of isolated exosomes. Different exosomal markers were identified and quantified using a transmission electron microscope (TEM) (CD81) and Western blot (CD9 and CD63). Exosomal miRNA profiles were determined by qRT-PCR using Exiqon Human panel I miRNA assays of 368 pre-selected miRNAs. Proteomic profiles were determined using a label-free spectral counting method with mass spectrometry. Differential expression analysis for miRNAs and proteins was done using student's t-test with a significance cutoff of p-value ≤0.05. We successfully characterized exosomes isolated from HCFs using several complementary techniques. We found no significant differences in the size, quantity, or morphology between exosomes secreted by HCFs with or without KC. Expression of CD81 was confirmed by immuno-EM, and expression of CD63 and CD9 with western blots in all exosome samples. We detected the expression of 72-144 miRNAs (threshold cycle Ct < 36) in all exosome samples. In HKC-derived exosome samples, miR-328-3p, miR-532-5p, miR-345-5p, and miR-424-5p showed unique expression, while let-7c-5p and miR-665 have increased expression. Protein profiling identified 157 proteins in at least half of the exosome samples, with 38 known exosomal proteins. We identified 12 up- and 2 down-regulated proteins in HKC-derived exosomes. The proteins are involved in membrane-bounded vesicles, cytoskeletal, calcium binding, and nucleotide binding. These proteins are predicted to be regulated by NRF2, miR-205, and TGF-ß1, which are involved in KC pathogenesis. We successfully characterized the HKC-derived exosomes and profiled their miRNA and protein contents, suggesting their potential role in KC development. Further studies are necessary to determine if and how these exosomes with differential protein/miRNA profiles contribute to the pathogenesis of KC.


Asunto(s)
Exosomas , Queratocono , MicroARNs , Humanos , Queratocono/genética , Queratocono/metabolismo , Exosomas/genética , Exosomas/metabolismo , Proteómica , MicroARNs/genética , MicroARNs/metabolismo , Células del Estroma/metabolismo
4.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298349

RESUMEN

Phosphodiesterase-5 inhibitors (PDE5i) are under investigation for repurposing for colon cancer prevention. A drawback to conventional PDE5i are their side-effects and drug-drug interactions. We designed an analog of the prototypical PDE5i sildenafil by replacing the methyl group on the piperazine ring with malonic acid to reduce lipophilicity, and measured its entry into the circulation and effects on colon epithelium. This modification did not affect pharmacology as malonyl-sildenafil had a similar IC50 to sildenafil but exhibited an almost 20-fold reduced EC50 for increasing cellular cGMP. Using an LC-MS/MS approach, malonyl-sildenafil was negligible in mouse plasma after oral administration but was detected at high levels in the feces. No bioactive metabolites of malonyl-sildenafil were detected in the circulation by measuring interactions with isosorbide mononitrate. The treatment of mice with malonyl-sildenafil in the drinking water resulted in a suppression of proliferation in the colon epithelium that is consistent with results previously published for mice treated with PDE5i. A carboxylic-acid-containing analog of sildenafil prohibits the systemic delivery of the compound but maintains sufficient penetration into the colon epithelium to suppress proliferation. This highlights a novel approach to generating a first-in-class drug for colon cancer chemoprevention.


Asunto(s)
Neoplasias del Colon , Inhibidores de Fosfodiesterasa 5 , Ratones , Animales , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/prevención & control , Proliferación Celular , GMP Cíclico/metabolismo
5.
Physiol Genomics ; 54(8): 296-304, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759450

RESUMEN

Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1ß is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1ß secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1ß KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1ß deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1ß KO. These data suggest that disuse-related activation of IL-1ß can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.


Asunto(s)
Vesículas Extracelulares , Interleucina-1beta/metabolismo , MicroARNs , Trastornos Musculares Atróficos , Animales , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/metabolismo
6.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216421

RESUMEN

The tear film is a multi-layer fluid that covers the corneal and conjunctival epithelia of the eye and provides lubrication, nutrients, and protection from the outside environment. Tear fluid contains a high concentration of proteins and has thus been recognized as a potential source of biomarkers for ocular disorders due to its proximity to disease sites on the ocular surface and the non-invasive nature of its collection. This is particularly true in the case of dry eye disease, which directly impacts the tear film and its components. Proteomic analysis of tear fluid is challenging mainly due to the wide dynamic range of proteins and the small sample volumes. However, recent advancements in mass spectrometry have revolutionized the field of proteomics enabling unprecedented depth, speed, and accuracy, even with small sample volumes. In this study using the Orbitrap Fusion Tribrid mass spectrometer, we compared four different mass spectrometry workflows for the proteomic analysis of tear fluid collected via Schirmer strips. We were able to establish a method of in-strip protein digestion that identified >3000 proteins in human tear samples from 11 healthy subjects. Our method offers a significant improvement in the number of proteins identified compared to previously reported methods without pooling samples.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Lágrimas/química , Adulto , Biomarcadores/metabolismo , Síndromes de Ojo Seco/metabolismo , Proteínas del Ojo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Flujo de Trabajo , Adulto Joven
7.
Lipids Health Dis ; 20(1): 128, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34602085

RESUMEN

BACKGROUND: Evidence suggests that proteins related to lipid metabolism, such as apolipoproteins, play an important role in the maintenance of normal vision. While several members of the apolipoprotein family are abundant in human aqueous humor (AH), their study remains difficult due to the AH's small volume, low protein concentration, and the invasive nature of sample collection. In this study, we report the use of Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) to discover associations between AH apolipoproteins and race, gender, and ocular structure in patients with and without primary open angle glaucoma (POAG). METHODS: AH samples were collected from 231 patients undergoing phacoemulsification or glaucoma incisional surgery at the Medical College of Georgia, Augusta University and subsequently analyzed via LC-MS/MS. The number of peptide spectrum matches (PSMs) for each protein was used as a semi-quantitative measure of relative protein levels. Parameters related to ocular structure were determined using Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT). These data sets were probed for relationships between apolipoprotein levels and POAG, demographics (gender and race), and ocular structure. RESULTS: A total of ten apolipoproteins were detected in the 231 collected AH samples, with six detected in 100% of the samples, one detected in almost 57% of the samples and three detected in less than 10% of the samples. The levels of APOA1, APOC3, and APOD were higher among POAG subjects. Stratification by gender and race revealed demographic-specific variations. The levels of five apolipoproteins (APOA1, APOA2, APOA4, APOC3, and APOD) were higher in female POAG patients, whereas no apolipoprotein levels were altered in male POAG patients. The levels of APOA1, APOA2, APOA4, and APOD were increased in glaucomatous African American patients, whereas APOE and APOH levels were decreased in glaucomatous Caucasian patients. We also found distinct associations between apolipoprotein levels and OCT and HRT parameters in patients with and without POAG. CONCLUSIONS: The intra-population variation in apolipoprotein levels highlights the heterogeneity of glaucoma as a disease, suggesting the importance of personalized treatments. Gender and race-specific alterations may be associated with higher risks of POAG in females and members of the African American population.


Asunto(s)
Apolipoproteínas/análisis , Humor Acuoso/metabolismo , Variación Biológica Poblacional , Glaucoma de Ángulo Abierto/metabolismo , Anciano , Anciano de 80 o más Años , Humor Acuoso/química , Cromatografía Liquida , Femenino , Glaucoma de Ángulo Abierto/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Factores Raciales , Factores Sexuales , Espectrometría de Masas en Tándem , Tomografía Óptica , Tomografía de Coherencia Óptica
8.
Gynecol Oncol ; 157(1): 181-187, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31955861

RESUMEN

OBJECTIVE: To measure anti-glycan antibodies (AGA) in cervical cancer (CC) patient sera and assess their effect on therapeutic outcome. PATIENTS AND METHODS: Serum AGA was measured in 276 stage II and 292 stage III Peruvian CC patients using a high content and throughput Luminex multiplex glycan array (LMGA) containing 177 glycans. Association with disease-specific survival (DSS) and progression free survival (PFS) were analyzed using Cox regression. RESULTS: AGAs were detected against 50 (28.3%) of the 177 glycans assayed. Of the 568 patients, 84.5% received external beam radiation therapy (EBRT) plus brachytherapy (BT), while 15.5% only received EBRT. For stage-matched patients (Stage III), receiving EBRT alone was significantly associated with worse survival (HR 6.4, p < 0.001). Stage III patients have significantly worse survival than Stage II patients after matching for treatment (HR = 2.8 in EBRT+BT treatment group). Furthermore, better PFS and DSS were observed in patients positive for AGA against multiple glycans belonging to the blood group H, Lewis, Ganglio, Isoglobo, lacto and sialylated tetrarose antigens (best HR = 0.49, best p = 0.0008). CONCLUSIONS: Better PFS and DSS are observed in cervical cancer patients that are positive for specific antiglycan antibodies and received brachytherapy.


Asunto(s)
Anticuerpos/sangre , Glucanos/inmunología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/radioterapia , Adulto , Factores de Edad , Anciano , Anticuerpos/inmunología , Braquiterapia , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Supervivencia sin Progresión , Tasa de Supervivencia , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/mortalidad
9.
Gynecol Oncol ; 152(3): 574-580, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578005

RESUMEN

OBJECTIVE: To investigate the utility of a combined panel of protein biomarkers and clinical factors to predict recurrence in serous ovarian cancer patients. METHODS: Women at Augusta University diagnosed with ovarian cancer were enrolled between 2005 and 2015 (n = 71). Blood was drawn at enrollment and follow-up visits. Patient serum collected at remission was analyzed using the SOMAscan array (n = 35) to measure levels of 1129 proteins. The best 26 proteins were confirmed using Luminex assays in the same 35 patients and in an additional 36 patients (ntotal = 71) as orthogonal validation. The data from these 26 proteins was combined with clinical factors using an elastic net multivariate model to find an optimized combination predictive of progression-free survival (PFS). RESULTS: Of the 26 proteins, Brain Derived Neurotrophic Factor and Platelet Derived Growth Factor molecules were significant for predicting PFS on both univariate and multivariate analyses. All 26 proteins were combined with clinical factors using the elastic net algorithm. Ten components were determined to predict PFS (HR of 6.55, p-value 1.12 × 10-6, CI 2.57-16.71). This model was named the serous high grade ovarian cancer (SHOC) score. CONCLUSION: The SHOC score can predict patient prognosis in remission. This tool will hopefully lead to early intervention and consolidation therapy strategies in remission patients destined to recur.


Asunto(s)
Cistadenocarcinoma Seroso/sangre , Proteínas de Neoplasias/sangre , Recurrencia Local de Neoplasia/sangre , Neoplasias Ováricas/sangre , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/cirugía , Procedimientos Quirúrgicos de Citorreducción , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Estudios Prospectivos
10.
J Lipid Res ; 59(3): 488-506, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29321137

RESUMEN

We reported that amyloid ß peptide (Aß42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aß42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aß42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Ceramidas/metabolismo , Mitocondrias/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Membranas Mitocondriales/metabolismo , Tubulina (Proteína)/metabolismo
11.
Kidney Int ; 94(2): 280-291, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29731111

RESUMEN

To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease.


Asunto(s)
Glomerulonefritis/tratamiento farmacológico , Proteína Quinasa C-alfa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Autoantígenos/inmunología , Colágeno Tipo IV/inmunología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Femenino , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Humanos , Hibridomas , Sueros Inmunes/administración & dosificación , Sueros Inmunes/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/inmunología , Glomérulos Renales/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteína Quinasa C-alfa/inmunología , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/inmunología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento
12.
Stroke ; 48(10): 2885-2887, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28887388

RESUMEN

BACKGROUND AND PURPOSE: Minocycline is under investigation as a neurovascular protective agent for stroke. This study evaluated the pharmacokinetic, anti-inflammatory, and safety profile of minocycline after intracerebral hemorrhage. METHODS: This study was a single-site, randomized controlled trial of minocycline conducted from 2013 to 2016. Adults ≥18 years with primary intracerebral hemorrhage who could have study drug administered within 24 hours of onset were included. Patients received 400 mg of intravenous minocycline, followed by 400 mg minocycline oral daily for 4 days. Serum concentrations of minocycline after the last oral dose and biomarkers were sampled to determine the peak concentration, half-life, and anti-inflammatory profile. RESULTS: A total of 16 consecutive eligible patients were enrolled, with 8 randomized to minocycline. Although the literature supports a time to peak concentration (Tmax) of 1 hour for oral minocycline, the Tmax was estimated to be at least 6 hours in this cohort. The elimination half-life (available on 7 patients) was 17.5 hours (SD±3.5). No differences were observed in inflammatory biomarkers, hematoma volume, or perihematomal edema. Concentrations remained at neuroprotective levels (>3 mg/L) throughout the dosing interval in 5 of 7 patients. CONCLUSIONS: In intracerebral hemorrhage, a 400 mg dose of minocycline was safe and achieved neuroprotective serum concentrations. However, oral administration led to delayed absorption in these critically ill patients and should not be used when rapid, high concentrations are desired. Given the safety and pharmacokinetic profile of minocycline in intracerebral hemorrhage and promising data in the treatment of ischemic stroke, intravenous minocycline is an excellent candidate for a prehospital treatment trial. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01805895.


Asunto(s)
Hemorragia Cerebral/sangre , Hemorragia Cerebral/tratamiento farmacológico , Minociclina/administración & dosificación , Minociclina/sangre , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/sangre , Enfermedad Aguda , Administración Intravenosa , Hemorragia Cerebral/diagnóstico , Femenino , Humanos , Masculino , Resultado del Tratamiento
13.
Int J Gynecol Cancer ; 24(6): 1085-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24905620

RESUMEN

OBJECTIVE: This study aimed to reliably identify serum protein profile alterations that may be useful for elucidation of the disease mechanism and/or finding new targets for treatment and intervention. MATERIALS AND METHODS: A total of 1057 women at 4 different squamous cell cervical cancer stages (noninvasive, invasive International Federation of Gynecology and Obstetrics stages I, II, and III) were included in this cross-sectional study. Forty-seven serum proteins were profiled using multiplex Luminex immunoassays. RESULTS: Serum concentration of serum amyloid A (SAA), C-reactive protein (CRP), soluble tumor necrosis factor receptor I and II (sTNFRI and sTNFRII), soluble interleukin 2 receptor α (sIL2Rα), CXCL1, CXCL9, hepatocyte growth factor, squamous cell carcinoma antigen (SCCA), insulin-like growth factor binding protein 2, CA125, and carcinoembryonic antigen (CEA) were elevated significantly as disease progressed in cervical cancer patients. Serum levels are significantly different at early stage (I) for SAA, CRP, sIL2Rα, sTNFRII, SCCA, and CEA (P values ranged from 0.02 for CEA to 0.0001 for CRP and SCCA) and at late stages (II and III) for all 12 proteins (P values ranged from 8.78E-5 for CA125 to 3.49E-47 for SAA), as compared to the noninvasive stage. The areas under the curves of these proteins for disease state separation also improved with the advancement of the disease. The correlations between serum concentrations of these proteins also show different patterns at different clinical stages. These proteins are involved in multiple mechanisms including inflammation and immunity, angiogenesis, growth promotion, and metastasis. CONCLUSIONS: A number of serum proteins are significantly different between patients at different stages of cervical cancer.


Asunto(s)
Biomarcadores de Tumor/sangre , Proteínas Sanguíneas/metabolismo , Carcinoma de Células Escamosas/patología , Displasia del Cuello del Útero/patología , Neoplasias del Cuello Uterino/patología , Proteínas Sanguíneas/análisis , Carcinoma de Células Escamosas/sangre , Estudios de Cohortes , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , Neoplasias del Cuello Uterino/sangre , Adulto Joven , Displasia del Cuello del Útero/sangre
14.
Invest Ophthalmol Vis Sci ; 65(3): 2, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441890

RESUMEN

Purpose: Tear fluid is a complex and dynamic biological fluid that plays essential roles in maintaining ocular homeostasis and protecting against the external environment. Owing to the small sample volume, studying the tear proteome is challenging. However, advances in high-resolution mass spectrometry have expanded tear proteome profiling, revealing >500 unique proteins. Tears are emerging as a noninvasive source of biomarkers for both ocular and systemic diseases; nevertheless, intraday variability of proteins in tear fluid remains questionable. This study investigates intraday variations in the tear fluid proteome to identify stable proteins that could act as candidate biomarkers. Methods: Tear samples from 15 individuals at four time points (10 am, 12 pm, 2 pm, and 4 pm) were analyzed using mass spectrometry to evaluate protein variation during these intervals. Technical variation was assessed by analyzing pooled samples and was subtracted from the total variation to isolate biological variability. Results: Owing to high technical variation, low-abundant proteins were filtered, and only 115 proteins met the criteria for further analysis. These criteria include being detected at all four time points in at least eight subjects, having a mean peptide-spectrum match count greater than 5, and having a technical variation less than 0.10. Lactotransferrin, lipocalin-1, and several immunoglobulins were among the 51 stable proteins (mean biological coefficient of variation < 0.10). Additionally, 43 proteins displayed significant slopes across the 4 time points, with 17 increasing and 26 decreasing over time. Conclusions: These findings contribute to the understanding of tear fluid dynamics and further expand our knowledge of the tear proteome.


Asunto(s)
Dieta con Restricción de Proteínas , Proteoma , Humanos , Correlación de Datos , Ojo , Biomarcadores
15.
J Proteomics ; 300: 105167, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38574989

RESUMEN

Diabetic kidney disease (DKD) poses a significant health challenge for individuals with diabetes. At its initial stages, DKD often presents asymptomatically, and the standard for non-invasive diagnosis, the albumin-creatinine ratio (ACR), employs discrete categorizations (normal, microalbuminuria, macroalbuminuria) with limitations in sensitivity and specificity across diverse population cohorts. Single biomarker reliance further restricts the predictive value in clinical settings. Given the escalating prevalence of diabetes, our study uses proteomic technologies to identify novel urinary proteins as supplementary DKD biomarkers. A total of 158 T1D subjects provided urine samples, with 28 (15 DKD; 13 non-DKD) used in the discovery stage and 131 (45 DKD; 40 pDKD; 46 non-DKD) used in the confirmation. We identified eight proteins (A1BG, AMBP, AZGP1, BTD, RBP4, ORM2, GM2A, and PGCP), all of which demonstrated excellent area-under-the-curve (AUC) values (0.959 to 0.995) in distinguishing DKD from non-DKD. Furthermore, this multi-marker panel successfully segregated the most ambiguous group (microalbuminuria) into three distinct clusters, with 80% of subjects aligning either as DKD or non-DKD. The remaining 20% exhibited continued uncertainty. Overall, the use of these candidate urinary proteins allowed for the better classification of DKD and offered potential for significant improvements in the early identification of DKD in T1D populations.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Diagnóstico Precoz , Humanos , Nefropatías Diabéticas/orina , Nefropatías Diabéticas/diagnóstico , Diabetes Mellitus Tipo 1/orina , Diabetes Mellitus Tipo 1/complicaciones , Masculino , Femenino , Biomarcadores/orina , Adulto , Medición de Riesgo , Proteómica/métodos , Persona de Mediana Edad , Albuminuria/orina , Albuminuria/diagnóstico , Proteínas Plasmáticas de Unión al Retinol/orina , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Zn-alfa-2-Glicoproteína
16.
Mol Cancer Ther ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814440

RESUMEN

Advanced urinary bladder cancer (BC) is characterized by rapid progression and development of therapy resistance. About 30% of the patients are diagnosed with high-grade tumors (Grade >T2a). A typical non-surgical treatment is systemic chemotherapy using Cisplatin (C) and Gemcitabine (G). However, treatment failure and subsequent disease progression are common in treated patients, and adjuvant therapies are not significantly effective. The therapeutic potential of a molecular hybrid of Ursolic Acid (UA), a pentacyclic-triterpene conjugated to N-methyl piperazine (UA4), was tested on both naïve (WT) and Gemcitabine-resistant (GemR) variants of two human invasive BC cell lines, 5637 and T24. UA4 killed 5637 (4µM), T24 (4µM) WT, and GemR cells invitro at equal potency. Pretreatment with UA4 followed by G synergistically killed WT and GemR cells by >50% compared to G followed by UA4. Oral gavage of UA4 (100 mg/kg) inhibited WT and GemR tumor growth in athymic mice. UA4 + G was more effective against GemR tumors than either drug alone. Studies revealed cytotoxic autophagy as a mechanism of UA4 cytotoxicity. UA4 induced moderate apoptosis in T24 but not in 5637 cells. Mitochondrial integrity and function were most affected by UA4 due to high levels of reactive oxygen species (ROS), disruption of mitochondrial membrane, and cell cycle arrest. These effects were enhanced in the UA4+G combination. UA4 was well-tolerated in mice, and oral gavage led to a serum level >1µM with no systemic toxicity. These results show the potential of UA4 as a non-toxic alternative treatment for high-grade BC.

17.
Mol Cancer Ther ; : OF1-OF15, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904221

RESUMEN

Advanced urinary bladder cancer is characterized by rapid progression and development of therapy resistance. About 30% of the patients are diagnosed with high-grade tumors (grade > T2a). A typical nonsurgical treatment is systemic chemotherapy using cisplatin (C) and gemcitabine (G). However, treatment failure and subsequent disease progression are common in treated patients, and adjuvant therapies are not significantly effective. The therapeutic potential of a molecular hybrid of ursolic acid (UA), a pentacyclic-triterpene conjugated to N-methyl piperazine (UA4), was tested on both naïve (WT) and gemcitabine-resistant (GemR) variants of two human invasive bladder cancer cell lines, 5637 and T24. UA4 killed 5637 (4 µmol/L), T24 (4 µmol/L) WT, and GemR cells in vitro at equal potency. Pretreatment with UA4 followed by G synergistically killed WT and GemR cells by >50% compared with G followed by UA4. Oral gavage of UA4 (100 mg/kg) inhibited WT and GemR tumor growth in athymic mice. UA4 + G was more effective against GemR tumors than either drug alone. Studies revealed cytotoxic autophagy as a mechanism of UA4 cytotoxicity. UA4 induced moderate apoptosis in T24 but not in 5637 cells. Mitochondrial integrity and function were most affected by UA4 because of high levels of reactive oxygen species, disruption of mitochondrial membrane, and cell cycle arrest. These effects were enhanced in the UA4 + G combination. UA4 was well-tolerated in mice, and oral gavage led to a serum level >1 µmol/L with no systemic toxicity. These results show the potential of UA4 as a nontoxic alternative treatment for high-grade bladder cancer.

18.
Database (Oxford) ; 20242024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38284936

RESUMEN

The aqueous humor (AH) is a low-viscosity biofluid that continuously circulates from the posterior chamber to the anterior chamber of the eye. Recent advances in high-resolution mass-spectrometry workflows have facilitated the study of proteomic content in small-volume biofluids like AH, highlighting the potential clinical implications of the AH proteome. Nevertheless, in-depth investigations into the role of AH proteins in ocular diseases have encountered challenges due to limited accessibility to these workflows, difficulties in large-scale AH sample collection and the absence of a reference AH proteomic database. In response to these obstacles, and to promote further research on the involvement of AH proteins in ocular physiology and pathology, we have developed the web-based Aqueous Humor Proteomics Database (AHP DB). The current version of AHP DB contains proteomic data from 307 human AH samples, which were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The database offers comprehensive information on 1683 proteins identified in the AH samples. Furthermore, relevant clinical data are provided for each analyzed sample. Researchers also have the option to download these datasets individually for offline use, rendering it a valuable resource for the scientific community. Database URL: https://ahp.augusta.edu/.


Asunto(s)
Humor Acuoso , Proteómica , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Proteoma
19.
iScience ; 27(3): 109191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433928

RESUMEN

The paucity of preclinical models that recapitulate COVID-19 pathology without requiring SARS-COV-2 adaptation and humanized/transgenic mice limits research into new therapeutics against the frequently emerging variants-of-concern. We developed virus-free models by C57BL/6 mice receiving oropharyngeal instillations of a SARS-COV-2 ribo-oligonucleotide common in all variants or specific to Delta/Omicron variants, concurrently with low-dose bleomycin. Mice developed COVID-19-like lung pathologies including ground-glass opacities, interstitial fibrosis, congested alveoli, and became moribund. Lung tissues from these mice and bronchoalveolar lavage and lung tissues from patients with COVID-19 showed elevated levels of hyaluronic acid (HA), HA-family members, an inflammatory signature, and immune cell infiltration. 4-methylumbelliferone (4-MU), an oral drug for biliary-spasm treatment, inhibits HA-synthesis. At the human equivalent dose, 4-MU prevented/inhibited COVID-19-like pathologies and long-term morbidity; 4-MU and metabolites accumulated in mice lungs. Therefore, these versatile SARS-COV-2 ribo-oligonucleotide oropharyngeal models recapitulate COVID-19 pathology, with HA as its critical mediator and 4-MU as a potential therapeutic for COVID-19.

20.
Mol Cell Proteomics ; 10(11): M111.012203, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900154

RESUMEN

Type 1 diabetes (T1D) is expected to cause significant changes in the serum proteome; however, few studies have systematically assessed the proteomic profile change associated with the disease. In this study, a semiquantitative spectral counting-based two dimensional liquid chromatography mass spectrometry platform was used to analyze serum samples from T1D patients and controls. In this discovery phase, significant differences were found for 21 serum proteins implicated in inflammation, oxidation, metabolic regulation, and autoimmunity. To assess the validity of these findings, six candidate proteins including adiponectin, insulin-like growth factor binding protein 2, serum amyloid protein A, C-reactive protein, myeloperoxidase, and transforming growth factor beta induced were selected for subsequent immune assays for 1139 T1D patients and 848 controls. A series of statistical analyses using cases and controls matched for age, sex, and genetic risk confirmed that T1D patients have significantly higher serum levels for four of the six proteins: adiponectin (odds ratio (OR) = 1.95, p = 10(-27)), insulin-like growth factor binding protein 2 (OR = 2.02, p < 10(-20)), C-reactive protein (OR = 1.13, p = 0.007), serum amyloid protein A (OR = 1.51, p < 10(-16)); whereas the serum levels were significantly lower in patients than controls for the two other proteins: transforming growth factor beta induced (OR = 0.74, p < 10(-5)) and myeloperoxidase (OR = 0.51, p < 10(-41)). Compared with subjects in the bottom quartile, subjects in the top quartile for adiponectin (OR = 6.29, p < 10(-37)), insulin-like growth factor binding protein 2 (OR = 7.95, p < 10(-46)), C-reactive protein (OR = 1.38, p = 0.025), serum amyloid protein A (OR = 3.36, p < 10(-16)) had the highest risk of T1D, whereas subjects in the top quartile of transforming growth factor beta induced (OR = 0.41, p < 10(-11)) and myeloperoxidase (OR = 0.10, p < 10(-43)) had the lowest risk of T1D. These findings provided valuable information on the proteomic changes in the sera of T1D patients.


Asunto(s)
Adiponectina/sangre , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 1/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína Amiloide A Sérica/metabolismo , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/sangre , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Análisis Multivariante , Peroxidasa/sangre , Factores Sexuales , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA