Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2318384121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713627

RESUMEN

The reaction kinetics of photocatalytic CO2 reduction is highly dependent on the transfer rate of electrons and protons to the CO2 molecules adsorbed on catalytic centers. Studies on uncovering the proton effect in catalysts on photocatalytic activity of CO2 reduction are significant but rarely reported. In this paper, we, from the molecular level, revealed that the photocatalytic activity of CO2 reduction is closely related to the proton availability in catalysts. Specifically, four dinuclear Co(II) complexes based on Robson-type ligands with different number of carboxylic groups (-nCOOH; n = 0, 2, 4, 6) were designed and synthesized. All these complexes show photocatalytic activity for CO2 reduction to CO in a water-containing system upon visible-light illumination. Interestingly, the CO yields increase positively with the increase of the carboxylic-group number in dinuclear Co(II) complexes. The one containing -6COOH shows the best photocatalytic activity for CO2 reduction to CO, with the TON value reaching as high as 10,294. The value is 1.8, 3.4, and 7.8 times higher than those containing -4COOH, -2COOH, and -0COOH, respectively. The high TON value also makes the dinuclear Co(II) complex with -6COOH outstanding among reported homogeneous molecular catalysts for photocatalytic CO2 reduction. Control experiments and density functional theory calculation indicated that more carboxylic groups in the catalyst endow the catalyst with more proton relays, thus accelerating the proton transfer and boosting the photocatalytic CO2 reduction. This study, at a molecular level, elucidates that more carboxylic groups in catalysts are beneficial for boosting the reaction kinetics of photocatalytic CO2 reduction.

2.
Proc Natl Acad Sci U S A ; 119(35): e2119267119, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998222

RESUMEN

A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.

3.
Proc Natl Acad Sci U S A ; 119(11): e2118278119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263220

RESUMEN

SignificanceThe photosensitizer is one of the important components in the photocatalytic system. Molecular photosensitizers have well-defined structures, which is beneficial in revealing the catalysis mechanism and helpful for further structural design and performance optimization. However, separation and recycling of the molecular photosensitizers is a great problem. Loading them into/on two/three-dimensional supports through covalent bonds, electrostatic interactions, and supramolecular interactions is a method that enhances their separation and recycling capability. Nonetheless, the structures of the resulting composites are unclear. Thus, the development of highly crystalline heterogeneity methods for molecular photosensitizers, albeit greatly challenging, is meaningful and desirable in photocatalysis, through which heterogeneous photosensitizers with well-defined structures, definite catalysis mechanisms, and good catalytic performance would be expected.


Asunto(s)
Fármacos Fotosensibilizantes , Catálisis , Estructura Molecular , Fármacos Fotosensibilizantes/química
4.
Chemistry ; 30(7): e202303345, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964711

RESUMEN

Homonuclear dual-atomic catalysts showcase unique electronic modulation due to their dual metal centres, providing new direction in development of efficient catalysts for CO2 electroreduction. This article highlights a few cutting-edge homonuclear dual-atomic catalysts, focusing on their inherent advantages in efficient and selective CO2 electroreduction, to spotlight the potential application of dual-atomic catalysts in CO2 electroreduction.

5.
Inorg Chem ; 63(29): 13594-13601, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38973091

RESUMEN

The development of low-cost and efficient photocatalysts to achieve water splitting to hydrogen (H2) is highly desirable but remains challenging. Herein, we design and synthesize two porous polymers (Co-Salen-P and Fe-Salen-P) by covalent bonding of salen metal complexes and pyrene chromophores for photocatalytic H2 evolution. The catalytic results demonstrate that the two polymers exhibit excellent catalytic performance for H2 generation in the absence of additional noble-metal photosensitizers and cocatalysts. Particularly, the H2 generation rate of Co-Salen-P reaches as high as 542.5 µmol g-1 h-1, which is not only 6 times higher than that of Fe-Salen-P but also higher than a large amount of reported Pt-assisted photocatalytic systems. Systematic studies show that Co-Salen-P displays faster charge separation and transfer efficiencies, thereby accounting for the significantly improved photocatalytic activity. This study provides a facile and efficient way to fabricate high-performance photocatalysts for H2 production.

6.
Chem Soc Rev ; 52(9): 3170-3214, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37070676

RESUMEN

Catalysts featuring dinuclear metal sites are regarded as superior systems compared with their counterparts with mononuclear metal sites. The dinuclear metal sites in catalysts with appropriate spatial separations and geometric configurations can confer the dinuclear metal synergistic catalysis (DMSC) effect, and thus boost the catalytic performance, in particular for reactions involving multiple reactants, intermediates and products. In this review, we summarize the related reports on the design and synthesis of both homogeneous and heterogeneous dinuclear metal catalysts, and their applications in energy conversion reactions, including photo-/electro-catalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), and N2 reduction reaction (N2RR). Particularly, we focus on the analysis of the relationship between the catalyst structure and catalytic performances, where the design principles are presented. Finally, we discuss the challenges in the design and preparation of dinuclear metal catalysts with the DMSC effect and present a perspective on the future development of dinuclear metal catalysts in energy conversion. This review aims to comprehensively summarize the up-to-date research progress on the synthesis and energy-related application of dinuclear metal catalysts and provide guidance for designing energy-conversion catalysts with superior performances.

7.
Angew Chem Int Ed Engl ; 63(10): e202318735, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38108581

RESUMEN

Covalent organic frameworks (COFs) have been widely studied in photocatalytic CO2 reduction reaction (CO2 RR). However, pristine COFs usually exhibit low catalytic efficiency owing to the fast recombination of photogenerated electrons and holes. In this study, we fabricated a stable COF-based composite (GO-COF-366-Co) by covalently anchoring COF-366-Co on the surface of graphene oxide (GO) for the photocatalytic CO2 reduction. Interestingly, in absolute acetonitrile (CH3 CN), GO-COF-366-Co shows a high selectivity of 94.4 % for the photoreduction of CO2 to formate, with a formate yield of 15.8 mmol/g, which is approximately four times higher than that using the pristine COF-366-Co. By contrast, in CH3 CN/H2 O (v : v=4 : 1), the main product for the photocatalytic CO2 reduction over GO-COF-366-Co is CO (96.1 %), with a CO yield as high as 52.2 mmol/g, which is also approximately four times higher than that using the pristine COF-366-Co. Photoelectrochemical experiments demonstrate the covalent bonding of COF-366-Co and GO to form the GO-COF-366-Co composite facilitates charge separation and transfer significantly, thereby accounting for the enhanced catalytic activity. In addition, theoretical calculations and in situ Fourier transform infrared spectroscopy reveal H2 O can stabilize the *COOH intermediate to further form a *CO intermediate via O-H(aq)⋅⋅⋅O(*COOH) hydrogen bonding, thus explaining the regulated photocatalytic performance.

8.
Angew Chem Int Ed Engl ; : e202411639, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976517

RESUMEN

Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2-to-CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s-1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and DFT calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two-electron transfer process by Co2I,I intermediate to afford Co2II,II(CO22-) intermediate and fast mass transfer closely related with the planar structure.

9.
Angew Chem Int Ed Engl ; : e202405451, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031893

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12 M HCl) and strong base (5 M NaOH) for at least 10 days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8 mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.

10.
Inorg Chem ; 62(29): 11611-11617, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37428154

RESUMEN

The development of hierarchically porous metal-organic frameworks (MOFs) with high stability is desirable to expand their applications but remains challenging. Herein, an anionic sodalite-type microporous MOF (Yb-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was synthesized, which shows outstanding catalytic activities for the cycloaddition of CO2 into cyclic carbonates. Moreover, the microporous Yb-TTCA can be transformed into a hierarchical micro- and mesoporous Yb-TTCA by water treatment with the mesopore sizes of 2 to 12 nm. The hierarchically porous Yb-TTCA (HP-Yb-TTCA) not only exhibits a high thermal stability up to 500 °C but also shows a high chemical stability in aqueous solutions with pH values ranging from 2 to 12. In addition, the HP-Yb-TTCA displays enhanced performance for the removal of organic dyes in comparison with microporous Yb-TTCA. This work provides a facile way to construct hierarchically porous MOF materials.

11.
Angew Chem Int Ed Engl ; 62(20): e202300507, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36897282

RESUMEN

The mismatched fast-electron-slow-proton process in the electrocatalytic oxygen evolution reaction (OER) severely restricts the catalytic efficiency. To overcome these issues, accelerating the proton transfer and elucidating the kinetic mechanism are highly sought after. Herein, inspired by photosystem II, we develop a family of OER electrocatalysts with FeO6 /NiO6 units and carboxylate anions (TA2- ) in the first and second coordination sphere, respectively. Benefiting from the synergistic effect of the metal units and TA2- , the optimized catalyst delivers superior activity with a low overpotential of 270 mV at 200 mA cm-2 and excellent cycling stability over 300 h. A proton-transfer-promotion mechanism is proposed by in situ Raman, catalytic tests, and theoretical calculations. The TA2- (proton acceptor) can mediate proton transfer pathways by preferentially accepting protons, which optimizes the O-H adsorption/activation process and reduces the kinetic barrier for O-O bond formation.

12.
Small ; 18(20): e2200332, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35451165

RESUMEN

2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost-efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni-based metal-organic layers (Ni-MOLs) are closely grown on 2D porous CdS (P-CdS) nanosheets, affording traditional P-CdS/Ni-MOL heterojunction materials. Impressively, the optimized P-CdS/Ni-MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g-1 h-1 . This value is 7 and 2981 times higher than that of P-CdS and Ni-MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P-CdS and Ni-MOLs, which facilitates the fast charge carriers' separation and transfer. This work provides a strategy to develop 2D MOL-based photocatalysts for sustainable energy conversion.

13.
Angew Chem Int Ed Engl ; 61(51): e202215187, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36316808

RESUMEN

Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.

14.
Inorg Chem ; 60(19): 14924-14931, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34529419

RESUMEN

The exploitation of highly stable and active catalysts for the conversion of CO2 into valuable fuels is desirable but is a great challenge. Herein, we report that the incorporation of chromophores into metal-organic frameworks (MOFs) could afford robust catalysts for efficient CO2 conversion. Specifically, a porous Nd(III) MOF (Nd-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was constructed by incorporating one-dimensional Nd(CO2)n chains and TTCA3- ligands, which exhibits a very high stability, retaining its framework not only in the air at 300 °C for 2 h but also in boiling aqueous solutions at pH 1-12 for 7 days. More importantly, Nd-TTCA has achieved a 5-fold improvement in photocatalytic activity for reducing CO2 to HCOOH and a 10-fold improvement in catalytic activity for the cycloaddition of CO2 into cyclic carbonate in comparison to those of H3TTCA itself. This work gives a new strategy to design efficient artificial crystalline catalysts for CO2 conversion.

15.
Angew Chem Int Ed Engl ; 60(1): 409-414, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32897636

RESUMEN

It is common that different crystal facets in metal and metal oxide nanocrystals display different catalytic performances, whereas such phenomena have been rarely documented in metal-organic frameworks (MOFs). Herein, we demonstrate for the first time that a nickel metal-organic layer (MOL) exposing rich (100) crystal facets (Ni-MOL-100) shows a much higher photocatalytic CO2 -to-CO activity than the one exposing rich (010) crystal facets (Ni-MOL-010) and its bulky counterpart (bulky Ni-MOF), with a catalytic activity up to 2.5 and 4.6 times more active than Ni-MOL-010 and bulky Ni-MOF, respectively. Theoretical studies reveal that the two coordinatively unsaturated NiII ions with a close distance of 3.50 Šon the surface of Ni-MOL-100 enables synergistic catalysis, leading to more favorable energetics in CO2 reduction than that of Ni-MOL-010.

16.
Inorg Chem ; 58(16): 11020-11027, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31385513

RESUMEN

The production of two-dimensional (2D) ultrathin metal-organic framework (MOF) nanosheets with functionalized surfaces is significant for extending their applications. To date, no protocol has been developed yet to solve this problem. Herein, we report a facile, mild, and efficient method to produce 2D monolayer MOF nanosheets with hydrophobic surfaces from layer-pillared 3D MOFs. This approach is based on the replacement of weaker coordinating pillar ligands with stronger coordinating capping ligands with the assistance of a high concentration gradient of the latter. Utilizing this method, the replacement of the 4,4'-bipyridine (bpy) pillars in two cadmium-based layer-pillared MOFs with alkylpyridine derivatives has been achieved, producing 2D MOF nanosheets with monolayer thickness and double-sided hydrophobic surfaces. The resulting hydrophobic 2D MOF nanosheets exhibit good performance for the separation of oil and water.

17.
Angew Chem Int Ed Engl ; 58(32): 10923-10927, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31162784

RESUMEN

There is a demand to develop molecular catalysts promoting the hydrogen evolution reaction (HER) with a high catalytic rate and a high tolerance to various inhibitors, such as CO and O2 . Herein we report a cobalt catalyst with a penta-dentate macrocyclic ligand (1-Co), which exhibits a fast catalytic rate (TOF=2210 s-1 ) in aqueous pH 7.0 phosphate buffer solution, in which proton transfer from a dihydrogen phosphate anion (H2 PO4 - ) plays a key role in catalytic enhancement. The electrocatalyst exhibits a high tolerance to inhibitors, displaying over 90 % retention of its activity under either CO or air atmosphere. Its high tolerance to CO is concluded to arise from the kinetically labile character of undesirable CO-bound species due to the geometrical frustration posed by the ligand, which prevents an ideal trigonal bipyramid being established.

18.
Chemistry ; 24(18): 4503-4508, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29322569

RESUMEN

A catalyst developed from a CuII complex of (Et4 N)[Cu(pyN2Me2 )(HCO2 )]⋅0.5 CH3 OH⋅H2 O (1⋅0.5 CH3 OH⋅H2 O; pyN2Me2 =bis(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate(2-)) shows a high activity to catalyze the reduction reaction of CO2 to CO driven by visible light in 4:1 acetonitrile/water (v:v) using [Ru(phen)3 ](PF6 )2 as photosensitizer and TEOA as sacrificial reductant, with a high TON of 9900 and a high CO selectivity of 98 %. The results of isotope labeling experiment, durability tests and energy dispersive spectroscopy reveal that 1 is robust during the photocatalytic process.

19.
Inorg Chem ; 57(9): 5013-5018, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633845

RESUMEN

The development of porous metal-organic frameworks that can retain structural integrity under harsh physical and chemical conditions is essential from the perspective of their use in adsorption, catalysis, and sensors. Herein, a lanthanum carboxylate framework was found to exhibit exceptional stability, not only robust in boiling aqueous solutions at pH 2-12 and in boiling common organic solvents over 24 h but also stable upon ball milling for 1 h. Furthermore, this framework displayed highly selective separation for CO2 over N2 ( Sads = 940), as well as size-dependent selective adsorption behavior of water and alcohols.

20.
Angew Chem Int Ed Engl ; 57(50): 16480-16485, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30362217

RESUMEN

The solar-driven CO2 reduction is a challenge in the field of "artificial photosynthesis", as most catalysts display low activity and selectivity for CO2 reduction in water-containing reaction systems as a result of competitive proton reduction. Herein, we report a dinuclear heterometallic complex, [CoZn(OH)L1 ](ClO4 )3 (CoZn), which shows extremely high photocatalytic activity and selectivity for CO2 reduction in water/acetonitrile solution. It achieves a selectivity of 98 % for CO2 -to-CO conversion, with TON and TOF values of 65000 and 1.8 s-1 , respectively, 4, 19, and 45-fold higher than the values of corresponding dinuclear homometallic [CoCo(OH)L1 ](ClO4 )3 (CoCo), [ZnZn(OH)L1 ](ClO4 )3 (ZnZn), and mononuclear [CoL2 (CH3 CN)](ClO4 )2 (Co), respectively, under the same conditions. The increased photocatalytic performance of CoZn is due to the enhanced dinuclear metal synergistic catalysis (DMSC) effect between ZnII and CoII , which dramatically lowers the activation barriers of both transition states of CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA