Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408314

RESUMEN

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Asunto(s)
Neoplasias Pulmonares , Profármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Profármacos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Peróxido de Hidrógeno , Hipoxia , Autofagia , Daño del ADN , ADN , Línea Celular Tumoral , Microambiente Tumoral
2.
ChemMedChem ; 18(5): e202200614, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36578101

RESUMEN

Inhibition of histone deacetylase (HDAC) has been demonstrated to be an effective strategy for cancer treatment. In this work, we have developed a new agent Ir-VPA, which exhibits the cell death mode switching between apoptosis and autophagy due to the distinct level of HDAC6 inhibition. Ir-VPA indicates the best anticancer activity to HeLa cells, and could be hydrolyzed due to the high expression of the esterase in HeLa cells. Ir-VPA could accumulate in nuclei, induce severe DNA damages and cell cycle arrest at G2/M phase. The anticancer mechanism of Ir-VPA to HeLa cells was dependent on the HDAC6 inhibitory performance, as the caspase dependent apoptosis at low concentration (IC50 ) and autophagy with the autophagy flux blockage at high concentration (2×IC50 ). This is resulted from the distinct inhibitory levels of HDAC6, as moderate/complete inhibition at the concentration of IC50 /2×IC50 .In the presence of autophagic inhibitor chloroquine, the apoptotic population elevated from 32.7 % to 61.7 %, indicating that Ir-VPA could activate apoptotic process through the autophagolysosome fusion inhibition. Ir-VPA also exhibits excellent antiproliferative behavior to 3D HeLa multicellular tumor spheroids (MCTSs). This work not only provided a new HDAC6 inhibitor and novel anticancer mechanism for the effective treatment of cervical cancer, but also demonstrated the strategy to conjugate the metal fragment with active organic drug to enhance the anticancer performance.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácido Valproico , Humanos , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Células HeLa , Ácido Valproico/farmacología , Línea Celular Tumoral , Apoptosis , Muerte Celular , Autofagia , Histona Desacetilasa 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA