Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 269, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854634

RESUMEN

BACKGROUND: Methylxanthines, including caffeine, theobromine and theophylline, are natural and synthetic compounds in tea, which could be metabolized by certain kinds of bacteria and fungi. Previous studies confirmed that several microbial isolates from Pu-erh tea could degrade and convert caffeine and theophylline. We speculated that these candidate isolates also could degrade and convert theobromine through N-demethylation and oxidation. In this study, seven tea-derived fungal strains were inoculated into various theobromine agar medias and theobromine liquid mediums to assess their capacity in theobromine utilization. Related metabolites with theobromine degradation were detected by using HPLC in the liquid culture to investigate their potential application in the production of 3-methylxanthine. RESULTS: Based on theobromine utilization capacity, Aspergillus niger PT-1, Aspergillus sydowii PT-2, Aspergillus ustus PT-6 and Aspergillus tamarii PT-7 have demonstrated the potential for theobromine biodegradation. Particularly, A. sydowii PT-2 and A. tamarii PT-7 could degrade theobromine significantly (p < 0.05) in all given liquid mediums. 3,7-Dimethyluric acid, 3-methylxanthine, 7-methylxanthine, 3-methyluric acid, xanthine, and uric acid were detected in A. sydowii PT-2 and A. tamarii PT-7 culture, respectively, which confirmed the existence of N-demethylation and oxidation in theobromine catabolism. 3-Methylxanthine was common and main demethylated metabolite of theobromine in the liquid culture. 3-Methylxanthine in A. sydowii PT-2 culture showed a linear relation with initial theobromine concentrations that 177.12 ± 14.06 mg/L 3-methylxanthine was accumulated in TLM-S with 300 mg/L theobromine. Additionally, pH at 5 and metal ion of Fe2+ promoted 3-methylxanthine production significantly (p < 0.05). CONCLUSIONS: This study is the first to confirm that A. sydowii PT-2 and A. tamarii PT-7 degrade theobromine through N-demethylation and oxidation, respectively. A. sydowii PT-2 showed the potential application in 3-methylxanthine production with theobromine as feedstock through the N-demethylation at N-7 position.


Asunto(s)
Aspergillus/metabolismo , Teobromina/metabolismo , Xantinas/metabolismo , Aspergillus/efectos de los fármacos , Biotransformación , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno , Metales/farmacología , Metilación , Micología/métodos , Oxidación-Reducción , Tés de Hierbas/microbiología
2.
Microb Cell Fact ; 19(1): 72, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192512

RESUMEN

BACKGROUND: Caffeine, theobromine and theophylline are main purine alkaloid in tea. Theophylline is the downstream metabolite and it remains at a very low level in Camellia sinensis. In our previous study, Aspergillus sydowii could convert caffeine into theophylline in solid-state fermentation of pu-erh tea through N-demethylation. In this study, tea-derived fungi caused theophylline degradation in the solid-state fermentation. The purpose of this study is identify and isolate theophylline-degrading fungi and investigate their application in production of methylxanthines with theophylline as feedstock through microbial conversion. RESULTS: Seven tea-derived fungi were collected and identified by ITS, ß-tubulin and calmodulin gene sequences, Aspergillus ustus, Aspergillus tamarii, Aspergillus niger and A. sydowii associated with solid-state fermentation of pu-erh tea have shown ability to degrade theophylline in liquid culture. Particularly, A. ustus and A. tamarii could degrade theophylline highly significantly (p < 0.01). 1,3-dimethyluric acid, 3-methylxanthine, 3-methyluric acid, xanthine and uric acid were detected consecutively by HPLC in A. ustus and A. tamarii, respectively. The data from absolute quantification analysis suggested that 3-methylxanthine and xanthine were the main degraded metabolites in A. ustus and A. tamarii, respectively. 129.48 ± 5.81 mg/L of 3-methylxanthine and 159.11 ± 10.8 mg/L of xanthine were produced by A. ustus and A. tamarii in 300 mg/L of theophylline liquid medium, respectively. CONCLUSIONS: For the first time, we confirmed that isolated A. ustus, A. tamarii degrade theophylline through N-demethylation and oxidation. We were able to biologically produce 3-methylxanthine and xanthine efficiently from theophylline through a new microbial synthesis platform with A. ustus and A. tamarii as appropriate starter strains.


Asunto(s)
Aspergillus/metabolismo , Teofilina/metabolismo , Xantina/metabolismo , Xantinas/metabolismo , Aspergillus/aislamiento & purificación , Biotransformación , Fermentación
3.
BMC Microbiol ; 19(1): 261, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771506

RESUMEN

BACKGROUND: Caffeine is one of the most abundant methylxanthines in tea, and it remains stable in processing of general teas. In the secondary metabolism of microorganism, theophylline is the main conversion product in caffeine catabolism through demethylation. Microorganisms, involved in the solid-state fermentation of pu-erh tea, have a certain impact on caffeine level. Inoculating an appropriate starter strain that is able to convert caffeine to theophylline would be an alternative way to obtain theophylline in tea. The purpose of this study was to isolate and identify the effective strain converting caffeine to theophylline in pu-erh tea, and discuss the optimal conditions for theophylline production. RESULTS: Caffeine content was decreased significantly (p < 0.05) and theophylline content was increased significantly (p < 0.05) during the aerobic fermentation of pu-erh tea. Five dominant fungi were isolated from the aerobic fermentation and identified as Aspergillus niger, Aspergillus sydowii, Aspergillus pallidofulvus, Aspergillus sesamicola and Penicillium mangini, respectively. Especially, A. pallidofulvus, A. sesamicola and P. mangini were detected in pu-erh tea for the first time. All isolates except A. sydowii TET-2, enhanced caffeine content and had no significant influence on theophylline content. In the aerobic fermentation of A. sydowii TET-2, 28.8 mg/g of caffeine was degraded, 93.18% of degraded caffeine was converted to theophylline, and 24.60 mg/g of theophylline was produced. A. sydowii PET-2 could convert caffeine to theophylline significantly, and had application potential in the production of theophylline. The optimum conditions of theophylline production in the aerobic fermentation were 1) initial moisture content of 35% (w/w), 2) inoculation quantity of 8%, and 3) incubation temperature at 35 °C. CONCLUSIONS: For the first time, we find that A. sydowii PET-2 could convert caffeine to theophylline, and has the potential value in theophylline production through aerobic fermentation.


Asunto(s)
Hongos/clasificación , Té/microbiología , Teofilina/metabolismo , Aerobiosis , Cafeína/análisis , Fermentación , Hongos/química , Hojas de la Planta/microbiología , Metabolismo Secundario , Temperatura
4.
BMC Microbiol ; 18(1): 53, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29866035

RESUMEN

BACKGROUND: Pu-erh tea is a traditional Chinese tea and produced by natural solid-state fermentation. Several studies show that the natural microbiota influence caffeine level in pu-erh tea. Our previous research also found that the caffeine declined significantly (p < 0.05) in the fermentation, which suggested that the caffeine level could be influenced by specific strains. The purpose of this study was to isolate and identify microorganisms for caffeine degradation, and this research explored the degradation products from caffeine and optimal condition for caffeine degradation. RESULTS: 11 Fungi were isolated from pu-erh tea fermentation and 7 strains could survive in caffeine solid medium. Two superior strains were identified as Aspergillus niger NCBT110A and Aspergillus sydowii NRRL250 by molecular identification. In the substrate tests with caffeine, A. niger NCBT110A could use caffeine as a potential carbon source while glucose is absent, A. sydowii NRRL250 could degrade 600 mg/L caffeine completely in a liquid medium. During the degradation product analysis of A. sydowii NRRL250, theophylline and 3-methlxanthine were detected, and the level of theophylline and 3-methlxanthine increased significantly (p < 0.05) with the degradation of caffeine. The single factor analysis showed that the optimum conditions of caffeine degradation were 1) substrate concentration of 1200 mg/L, 2) reaction temperature at 30 °C, and 3) pH of 6. In the submerged fermentation of tea infusion by A. sydowii NRRL250, 985.1 mg/L of caffeine was degraded, and 501.2 mg/L of theophylline was produced. CONCLUSIONS: Results from this research indicate that Aspergillus sydowii NRRL250 was an effective strain to degrade caffeine. And theophylline and 3-methlxanthine were the main caffeine degradation products.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Cafeína/química , Té/microbiología , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , Aspergillus niger/crecimiento & desarrollo , Aspergillus niger/aislamiento & purificación , Biodegradación Ambiental , Fermentación , Especificidad por Sustrato , Té/química , Teofilina/metabolismo , Xantinas/metabolismo
5.
Food Chem X ; 16: 100504, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36519090

RESUMEN

The producing area of Chinese white tea has been expanded to Xinyang and Yunnan from Fuding region. In this study, six sensory tastes and fifty-one chemical components including seventeen phenolic compounds, three purine alkaloids and twenty amino acids were determined in eighteen Bai mudan sub-type of white tea by electronic tongue, high performance liquid chromatography and amino acid analyzer for geographical identification, respectively. Additionally, in vitro antioxidant activities were evaluated by five various assays. Multivariate statistical analyses such as PCA, HCA and PLS-DA, completely divided these white teas into Xinyang, Yunnan and Fuding groups, indicating the feasibility of white tea classification by the production region. Twelve characteristic compounds (VIP > 1.0, P < 0.05) like gallic acid, theaflavin and L-glutamic acid contributed to the geographical identification. In conclusion, this study explored the chemical, taste and antioxidant capacity differences among three main production regions, and revealed their potential relations in white tea.

6.
Food Chem ; 368: 130855, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496334

RESUMEN

Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.


Asunto(s)
Antioxidantes , , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Metabolómica , Espectrometría de Masas en Tándem
7.
J Food Sci ; 86(5): 1681-1691, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33798265

RESUMEN

Xinyang Maojian tea is a kind of famous roasted green tea produced in the middle of China. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-Q-TOF/MS)-based metabolomics coupled with multivariate statistical analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were carried out in XMMJTs collected from Luoshan, Shangcheng, and Shihe Counties, respectively. Additionally, seven catechins, four flavonoids, two purine alkaloids, and gallic acid contents were determined by HPLC. Differential metabolites were selected by p-value <0.05, and fold change >1.50 or < 0.66 among 745 detected metabolites in metabolomics analysis. The results showed significant (p < 0.05) differences of three catechins including (-)-epicatechin, (-)-epicatechin gallate, and (-)-gallocatechin gallate, four flavonoids (i.e. quercetin, kaempferol, myricetin, and rutin), and theobromine among three various regions, and significant (p < 0.05) differences of (-)-epicatechin gallate, (-)-epigallocatechin, (+)-catechin, gallic acid, and kaempferol between Shuchazao and Group cultivar. The HCA showed that, except for two samples (i.e. LS 2 and SH 2) of Shuchazao cultivar clustered together, others could be clustered completely according to production place. The 63 relevant differential metabolites could achieve the purpose of region identification through PCA. Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway analysis elaborated the impact of geographical origin and tea cultivar on physiological metabolism in tea tree. PRACTICAL APPLICATION: Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-Q-TOF/MS)-based liquid chromatography-tendem mass spectrometry (LC-MS/MS) metabolomics coupled with multivariate statistical analyses, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed 63 differential metabolites related to production place, which contributed to the region identification of Xinyang Maojian teas.


Asunto(s)
Camellia sinensis/clasificación , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Té/clasificación , Camellia sinensis/química , Camellia sinensis/genética , Catequina/análogos & derivados , Catequina/análisis , China , Cromatografía Liquida , Flavonoides/análisis , Ácido Gálico/análisis , Análisis Multivariante , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Té/química
8.
Food Chem ; 350: 129228, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33618088

RESUMEN

Microbiota influenced quality formation of ripened Pu-erh tea. To understand the effect of each tea-derived fungal strain, tea-leaves were fermented by Aspergillus pallidofulvus PT-3 (ApaPT), Aspergillus sesamicola PT-4 (AsePT) and Penicillium manginii PT-5 (PmaPT), respectively. 14 Phenolic compounds, 3 purine alkaloids, 19 free amino acids and γ-aminobutyric acid contents were determined by HPLC and amino acid analyzer analysis. Additionally, UHPLC-Q-TOF/MS method was developed for LC-MS metabolomics analysis. Multivariate statistical analyses, such as PCA and HCA, exhibited that the chemical profile of PmaPT fermentation was similar to biocidal treatment, but had significant differences with ApaPT and AsePT fermentation. The differentiated metabolites (VIP > 1, p < 0.05 and FC > 1.50 or < 0.66) and one-way ANOVA revealed the impact of three fungal strains in tea-leaves fermentation. APaPT and AsePT contributed to biosynthesis of gallic acid and several flavonoids, such as kaempferol, quercetin and myricetin in the metabolism of phenolic compounds.


Asunto(s)
Aspergillus/metabolismo , Fermentación , Metabolómica , Penicillium/metabolismo , Hojas de la Planta/metabolismo , Té/metabolismo , Cromatografía Líquida de Alta Presión , Ácido Gálico/análisis , Quercetina/análisis , Espectrometría de Masas en Tándem , Té/microbiología
9.
J Food Sci ; 85(2): 477-485, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31905425

RESUMEN

Natural microorganisms involved in solid-state fermentation (SSF) of Pu-erh tea have a significant impact on its chemical components. Aspergillus sydowii is a fungus with a high caffeine-degrading capacity. In this work, A. sydowii was inoculated into sun-dried green tea leaves for SSF. Metabolomic analysis was carried out by using UPLC-QTOF-MS method, and caffeine and related demethylated products were determined by HPLC. The results showed that A. sydowii had a significant (P < 0.05) impact on amino acids, carbohydrates, flavonoids, and caffeine metabolism. Moreover, A. sydowii could promote the production of ketoprofen, baclofen, and tolbutamide. Along with caffeine degradation, theophylline, 3-methylxanthine, 1,7-dimethylxanthine, 1-methylxanthine, and 7-methylxanthine were increased significantly (P < 0.05) during inoculated fermentation, which showed that demethylation was the main pathway of caffeine degradation in A. sydowii secondary metabolism. The absolute quantification analysis showed that caffeine could be demethylated and converted to theophylline and 3-methylxanthine. Particularly, about 93.24% of degraded caffeine was converted to theophylline, 27.92 mg/g of theophylline was produced after fermentation. PRACTICAL APPLICATION: Aspergillus sydowii could cause caffeine degradation in Pu-erh tea solid-state fermentation and produce theophylline through the demethylation route. Using a starter strain to ferment tea leaves offers a more controllable, reproducible, and highly productive alternative for the biosynthesis of theophylline.


Asunto(s)
Aspergillus/metabolismo , Cafeína/análisis , Té/microbiología , Cafeína/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Fermentación , Flavonoides/análisis , Flavonoides/metabolismo , Metabolómica , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Espectrometría de Masas en Tándem/métodos , Té/química , Té/metabolismo , Xantinas/análisis
10.
Food Sci Nutr ; 8(5): 2501-2511, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32405406

RESUMEN

Storage environment caused the difference between Jinhua Pu-erh tea (JPT) and General Pu-erh tea. In this study, fungal flora and chemical compositions were analyzed. The results showed that storage environment caused significant (p < .05) differences of theaflavins (TF), theabrownins (TB), tea polyphenols (TP), and water-soluble sugars (WSS), and a highly significant (p < .01) difference of thearubigins (TR). Aspergillus niger, Aspergillus pallidofulvus, Aspergillus sesamicola, Penicillium manginii, and Aspergillus tamarii were isolated from Pu-erh teas and identified based on colony characteristics and ITS, ß-tubulin, and calmodulin gene sequences, respectively. A. pallidofulvus, A. sesamicola, and P. manginii were dominant fungi in JPT and generated macroscopic yellow cleistothecia after a long-term storage. Correlation analysis showed that dominant fungi exhibited significantly (p < .05 or p < .01) positive or negative corrections with TF, TB, TP, WSS, TR, and gallic acid. This study revealed dominant fungi including A. pallidofulvus, A. sesamicola, and P. manginii and their effects on given chemical compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA