Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Appl Opt ; 63(7): B70-B75, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437257

RESUMEN

Dual-wavelength digital holography effectively expands the measurement range of digital holography, but it increases the complexity of optical system due to non-common-path of two wavelengths. Here, by using orthogonal polarization strategy, we present a dual-wavelength digital holography based on a Wollaston prism (DWDH-WP) to separate the reference beams of two wavelengths and realize the common-path of two wavelengths. A Wollaston prism is inset into the reference beam path of the off-axis digital holography system, so two orthogonal-polarized reference beams of two different wavelengths separated at different directions are generated. Then a dual-wavelength multiplexed interferogram with orthogonal interference fringes is captured by using a monochrome camera, in which both the polarization orientations and the interference fringe orientations of two wavelengths are orthogonal, so the spectral crosstalk of two wavelengths with arbitrary wavelength difference can be avoided. Compared with the existing DWDH method, the proposed DWDH-WP method can conveniently realize the common-path of the reference beams of two wavelengths, so it reveals obvious advantages in spectral separation, spectral crosstalk, system simplification, and adjustment flexibility. Both effectiveness and flexibility of the proposed DWDH-WP method are demonstrated by the phase measurement of the HeLa cell and vortex phase plate.

2.
Opt Express ; 31(10): 16192-16204, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157703

RESUMEN

The perfect optical vortex (POV) beam carrying orbital angular momentum with topological charge-independent radial intensity distribution possesses ubiquitous applications in optical communication, particle manipulation, and quantum optics. But the mode distribution of conventional POV beam is relatively single, limiting the modulation of the particles. Here, we originally introduce the high-order cross-phase (HOCP) and ellipticity γ into the POV beam and construct all-dielectric geometric metasurfaces to generate irregular polygonal perfect optical vortex (IPPOV) beams following the trend of miniaturization and integration of optical systems. By controlling the order of the HOCP, conversion rate u, and ellipticity factor γ, various shapes of IPPOV beams with different electric field intensity distributions can be realized. In addition, we analyze the propagation characteristics of IPPOV beams in free-space, and the number and rotation direction of bright spots at the focal plane give the magnitude and sign of the topological charge carried by the beam. The method does not require cumbersome devices or complex calculation process, and provides a simple and effective method for simultaneous polygon shaping and topological charge measurement. This work further improves the beam manipulation ability while maintaining the characteristics of the POV beam, enriches the mode distribution of the POV beam, and provides more possibilities for particle manipulation.

3.
Opt Lett ; 48(10): 2732-2735, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186752

RESUMEN

Learning-based phase imaging balances high fidelity and speed. However, supervised training requires unmistakable and large-scale datasets, which are often hard or impossible to obtain. Here, we propose an architecture for real-time phase imaging based on physics-enhanced network and equivariance (PEPI). The measurement consistency and equivariant consistency of physical diffraction images are used to optimize the network parameters and invert the process from a single diffraction pattern. In addition, we propose a regularization method based total variation kernel (TV-K) function constraint to output more texture details and high-frequency information. The results show that PEPI can produce the object phase quickly and accurately, and the proposed learning strategy performs closely to the fully supervised method in the evaluation function. Moreover, the PEPI solution can handle high-frequency details better than the fully supervised method. The reconstruction results validate the robustness and generalization ability of the proposed method. Specially, our results show that PEPI leads to considerable performance improvement on the imaging inverse problem, thereby paving the way for high-precision unsupervised phase imaging.

4.
Proc Natl Acad Sci U S A ; 117(38): 23336-23338, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900927

RESUMEN

Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a method for microglia depletion, with the assumption that it does not affect peripheral immune cells. Here, we show that CSF1R inhibition by PLX5622 indeed affects the myeloid and lymphoid compartments, causes long-term changes in bone marrow-derived macrophages by suppressing interleukin 1ß, CD68, and phagocytosis but not CD208, following exposure to endotoxin, and also reduces the population of resident and interstitial macrophages of peritoneum, lung, and liver but not spleen. Thus, small-molecule CSF1R inhibition is not restricted to microglia, causing strong effects on circulating and tissue macrophages that perdure long after cessation of the treatment. Given that peripheral monocytes repopulate the central nervous system after CSF1R inhibition, these changes have practical implications for relevant experimental data.


Asunto(s)
Hematopoyesis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Microglía/efectos de los fármacos , Compuestos Orgánicos/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Femenino , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Fagocitosis/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Especificidad de la Especie
5.
Opt Express ; 30(17): 30881-30893, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242184

RESUMEN

The perfect vortex (PV) beam, characterized by carrying orbital angular momentum and a radial electric intensity distribution independent of the topological charge, has important applications in optical communication, particle manipulation, and quantum optics. Conventional methods of generating PV beams require a series of bulky optical elements that are tightly collimated with each other, adding to the complexity of optical systems. Here, making the amplitude of transmitted co-polarized and cross-polarized components to be constant, all-dielectric transmission metasurfaces with superimposed phase profiles integrating spiral phase plate, axicon and Fourier lens are constructed based on the phase-only modulation method. Using mathematical derivation and numerical simulation, multi-channel PV beams with controllable annular ring radius and topological charge are realized for the first time under circularly polarized light incidence combining the propagation phase and geometric phase. Meanwhile, perfect vector vortex beams are produced by superposition of PV beams under the incidence of left-handed circularly polarized and right-handed circularly polarized lights, respectively. This work provides a new perspective on generating tailored PV beams, increasing design flexibility and facilitating the construction of compact, integrated, and versatile nanophotonics platforms.

6.
Opt Express ; 30(8): 12545-12554, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472888

RESUMEN

Based on synchronous phase shift determination, we propose a differential phase measurement method for differential interference contrast (DIC) microscopy. An on-line phase shift measurement device is used to generate carrier interferograms and determine the phase shift of DIC images. Then the differential phase can be extracted with the least-squares phase-shifting algorithm. In addition to realizing on-line, dynamic, real-time, synchronous and high precision phase shift measurement, the proposed method also can reconstruct the phase of the specimen by using the phase-integral algorithm. The differential phase measurement method reveals obvious advantages in error compensation, anti-interference, and noise suppression. Both simulation analysis and experimental result demonstrate that using the proposed method, the accuracy of phase shift measurement is higher than 0.007 rad. Very accurate phase reconstructions were obtained with both polystyrene microspheres and human vascular endothelial.


Asunto(s)
Algoritmos , Simulación por Computador , Humanos
7.
Am J Pathol ; 190(10): 2056-2066, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32693061

RESUMEN

Glaucoma is a frequent and devastating long-term complication following ocular trauma, including corneal surgery, open globe injury, chemical burn, and infection. Postevent inflammation and neuroglial remodeling play a key role in subsequent ganglion cell apoptosis and glaucoma. To this end, this study was designed to investigate the amplifying role of monocyte infiltration into the retina. By using three different ocular injury mouse models (corneal suture, penetrating keratoplasty, and globe injury) and monocyte fate mapping techniques, we show that ocular trauma or surgery can cause robust infiltration of bone marrow-derived monocytes into the retina and subsequent neuroinflammation by up-regulation of Tnf, Il1b, and Il6 mRNA within 24 hours. This is accompanied by ganglion cell apoptosis and neurodegeneration. Prompt inhibition of tumor necrosis factor-α or IL-1ß markedly suppresses monocyte infiltration and ganglion cell loss. Thus, acute ocular injury (surgical or trauma) can lead to rapid neuroretinal inflammation and subsequent ganglion cell loss, the hallmark of glaucoma. Infiltrating monocytes play a central role in this process, likely amplifying the inflammatory cascade, aiding in the activation of retinal microglia. Prompt administration of cytokine inhibitors after ocular injury prevents this infiltration and ameliorates the damage to the retina-suggesting that it may be used prophylactically for neuroprotection against post-traumatic glaucoma.


Asunto(s)
Citocinas/antagonistas & inhibidores , Glaucoma/metabolismo , Monocitos/patología , Neuroglía/patología , Retina/cirugía , Animales , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Córnea/metabolismo , Córnea/patología , Modelos Animales de Enfermedad , Glaucoma/patología , Ratones Transgénicos , Monocitos/metabolismo , Retina/metabolismo
8.
J Immunol ; 202(2): 539-549, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541880

RESUMEN

Reactive microglia and infiltrating peripheral monocytes have been implicated in many neurodegenerative diseases of the retina and CNS. However, their specific contribution in retinal degeneration remains unclear. We recently showed that peripheral monocytes that infiltrate the retina after ocular injury in mice become permanently engrafted into the tissue, establishing a proinflammatory phenotype that promotes neurodegeneration. In this study, we show that microglia regulate the process of neuroglia remodeling during ocular injury, and their depletion results in marked upregulation of inflammatory markers, such as Il17f, Tnfsf11, Ccl4, Il1a, Ccr2, Il4, Il5, and Csf2 in the retina, and abnormal engraftment of peripheral CCR2+ CX3CR1+ monocytes into the retina, which is associated with increased retinal ganglion cell loss, retinal nerve fiber layer thinning, and pigmentation onto the retinal surface. Furthermore, we show that other types of ocular injuries, such as penetrating corneal trauma and ocular hypertension also cause similar changes. However, optic nerve crush injury-mediated retinal ganglion cell loss evokes neither peripheral monocyte response in the retina nor pigmentation, although peripheral CX3CR1+ and CCR2+ monocytes infiltrate the optic nerve injury site and remain present for months. Our study suggests that microglia are key regulators of peripheral monocyte infiltration and retinal pigment epithelium migration, and their depletion results in abnormal neuroglia remodeling that exacerbates neuroretinal tissue damage. This mechanism of retinal damage through neuroglia remodeling may be clinically important for the treatment of patients with ocular injuries, including surgical traumas.


Asunto(s)
Córnea/fisiología , Lesiones Oculares/inmunología , Microglía/fisiología , Monocitos/fisiología , Enfermedades Neurodegenerativas/inmunología , Neuroglía/fisiología , Traumatismos del Nervio Óptico/inmunología , Retina/fisiología , Degeneración Retiniana/inmunología , Animales , Movimiento Celular , Córnea/patología , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Modelos Animales , Plasticidad Neuronal , Retina/patología
9.
Proc Natl Acad Sci U S A ; 115(48): E11359-E11368, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30442669

RESUMEN

Previous studies have demonstrated that ocular injury can lead to prompt infiltration of bone-marrow-derived peripheral monocytes into the retina. However, the ability of these cells to integrate into the tissue and become microglia has not been investigated. Here we show that such peripheral monocytes that infiltrate into the retina after ocular injury engraft permanently, migrate to the three distinct microglia strata, and adopt a microglia-like morphology. In the absence of ocular injury, peripheral monocytes that repopulate the retina after depletion with colony-stimulating factor 1 receptor (CSF1R) inhibitor remain sensitive to CSF1R inhibition and can be redepleted. Strikingly, consequent to ocular injury, the engrafted peripheral monocytes are resistant to depletion by CSF1R inhibitor and likely express low CSF1R. Moreover, these engrafted monocytes remain proinflammatory, expressing high levels of MHC-II, IL-1ß, and TNF-α over the long term. The observed permanent neuroglia remodeling after injury constitutes a major immunological change that may contribute to progressive retinal degeneration. These findings may also be relevant to other degenerative conditions of the retina and the central nervous system.


Asunto(s)
Lesiones Oculares/inmunología , Monocitos/inmunología , Neuroglía/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Retina/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Lesiones Oculares/genética , Lesiones Oculares/fisiopatología , Femenino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Masculino , Ratones , Monocitos/citología , Monocitos/efectos de los fármacos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Retina/efectos de los fármacos
10.
Am J Pathol ; 188(7): 1580-1596, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29630857

RESUMEN

Eyes that have experienced alkali burn to the surface are excessively susceptible to subsequent severe glaucoma and retinal ganglion cell loss, despite maximal efforts to prevent or slow down the disease. Recently, we have shown, in mice and rabbits, that such retinal damage is neither mediated by the alkali itself reaching the retina nor by intraocular pressure elevation. Rather, it is caused by the up-regulation of tumor necrosis factor-α (TNF-α), which rapidly diffuses posteriorly, causing retinal ganglion cell apoptosis and CD45+ cell activation. Herein, we investigated the involvement of peripheral blood monocytes and microglia in retinal damage. Using CX3CR1+/EGFP::CCR2+/RFP reporter mice and bone marrow chimeras, we show that peripheral CX3CR1+CD45hiCD11b+MHC-II+ monocytes infiltrate into the retina from the optic nerve at 24 hours after the burn and release further TNF-α. A secondary source of peripheral monocyte response originates from a rare population of patrolling myeloid CCR2+ cells of the retina that differentiate into CX3CR1+ macrophages within hours after the injury. As a result, CX3CR1+CD45loCD11b+ microglia become reactive at 7 days, causing further TNF-α release. Prompt TNF-α inhibition after corneal burn suppresses monocyte infiltration and microglia activation, and protects the retina. This study may prove relevant to other injuries of the central nervous system.


Asunto(s)
Quemaduras Químicas/complicaciones , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/complicaciones , Modelos Animales de Enfermedad , Microglía/patología , Monocitos/patología , Enfermedades de la Retina/patología , Animales , Ratones , Microglía/inmunología , Microglía/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Conejos , Enfermedades de la Retina/etiología , Enfermedades de la Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Am J Pathol ; 187(6): 1327-1342, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28412300

RESUMEN

Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection.


Asunto(s)
Quemaduras Químicas/metabolismo , Quemaduras Oculares/metabolismo , Retina/lesiones , Álcalis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/etiología , Quemaduras Químicas/patología , Córnea/inmunología , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/etiología , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/etiología , Quemaduras Oculares/patología , Concentración de Iones de Hidrógeno , Infliximab/farmacología , Infliximab/uso terapéutico , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxidación-Reducción , Conejos , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Retina/inmunología , Retina/metabolismo , Retina/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Hidróxido de Sodio , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Úvea/metabolismo , Uveítis Anterior/inducido químicamente , Uveítis Anterior/metabolismo , Uveítis Anterior/patología , Uveítis Anterior/prevención & control
13.
Exp Eye Res ; 121: 147-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24530619

RESUMEN

Previous studies have shown that platelet derived growth factor (PDGF) can stimulate corneal keratocyte spreading and migration within 3-D collagen matrices, without inducing transformation to a contractile, fibroblastic phenotype. The goal of this study was to investigate the role of matrix metalloproteinases (MMPs) in regulating PDGF-induced changes in keratocyte motility and mechanical differentiation. Rabbit corneal keratocytes were isolated and cultured in serum-free media (S-) to maintain their quiescent phenotype. A nested collagen matrix construct was used to assess 3-D cell migration, and a standard collagen matrix model was used to assess cell morphology and cell-mediated matrix contraction. In both cases constructs were cultured in S- supplemented with PDGF, with or without the broad spectrum MMP inhibitors GM6001 or BB-94. After 4 days, f-actin, nuclei and collagen fibrils were imaged using confocal microscopy. To assess sub-cellular mechanical activity (extension and retraction of cell processes), time-lapse DIC imaging was also performed. MT1-MMP expression and MMP-mediated collagen degradation were also examined. Results demonstrated that neither GM6001 nor BB-94 affected corneal keratocyte viability or proliferation in 3-D culture. PDGF stimulated elongation and migration of corneal keratocytes within type I collagen matrices, without causing a loss of their dendritic morphology or inducing formation of intracellular stress fibers. Treatment with GM6001 and BB-94 inhibited PDGF-induced keratocyte spreading and migration. Relatively low levels of keratocyte-induced matrix contraction were also maintained in PDGF, and the amount of PDGF-induced collagen degradation was similar to that observed in S- controls. The collagen degradation pattern was consistent with membrane-associated MMP activity, and keratocytes showed positive staining for MT1-MMP, albeit weak. Both matrix contraction and collagen degradation were reduced by MMP inhibition. For most outcome measures, the inhibitory effect of BB-94 was significantly greater than that of GM6001. Overall, the data demonstrate for the first time that even under conditions in which low levels of contractility and extracellular matrix proteolysis are maintained, MMPs still play an important role in mediating cell spreading and migration within 3-D collagen matrices. This appears to be mediated at least in part by membrane-tethered MMPs, such as MT1-MMP.


Asunto(s)
Movimiento Celular/fisiología , Colágeno Tipo I/metabolismo , Queratocitos de la Córnea/citología , Metaloproteinasas de la Matriz/fisiología , Actinas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medio de Cultivo Libre de Suero , Dipéptidos/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Microscopía Confocal , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Factor de Crecimiento Derivado de Plaquetas/farmacología , Conejos , Tiofenos/farmacología
14.
Exp Cell Res ; 319(16): 2470-80, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23819988

RESUMEN

Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals.


Asunto(s)
Matriz Extracelular/metabolismo , Animales , Comunicación Celular , Movimiento Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Fluorescente , Microscopía de Interferencia , Transducción de Señal
15.
Acta Ophthalmol ; 102(3): e381-e394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37803488

RESUMEN

BACKGROUND AND PURPOSE: Late secondary glaucoma is an often-severe complication after acute events like anterior segment surgery, trauma and infection. TNF-α is a major mediator that is rapidly upregulated, diffusing also to the retina and causes apoptosis of the ganglion cells and degeneration of their optic nerve axons (mediating steps to glaucomatous damage). Anti-TNF-α antibodies are in animals very effective in protecting the retinal cells and the optic nerve-and might therefore be useful prophylactically against secondary glaucoma in future such patients. Here we evaluate (1) toxicity and (2) efficacy of two TNF-α inhibitors (adalimumab and infliximab), in rabbits by subconjunctival administration. METHODS: For drug toxicity, animals with normal, unburned corneas were injected with adalimumab (0.4, 4, or 40 mg), or infliximab (1, 10, or 100 mg). For drug efficacy, other animals were subjected to alkali burn before such injection, or steroids (for control). The rabbits were evaluated clinically with slit lamp and photography, electroretinography, optical coherence tomography, and intraocular pressure manometry. A sub-set of eyes were stained ex vivo after 3 days for retinal cell apoptosis (TUNEL). In other experiments the optic nerves were evaluated by paraphenylenediamine staining after 50 or 90 days. Loss of retinal cells and optic nerve degeneration were quantified. RESULTS: Subconjunctival administration of 0.4 mg or 4.0 mg adalimumab were well tolerated, whereas 40.0 mg was toxic to the retina. 1, 10, or 100 mg infliximab were also well tolerated. Analysis of the optic nerve axons after 50 days confirmed the safety of 4.0 mg adalimumab and of 100 mg infliximab. For efficacy, 4.0 mg adalimumab subconjunctivally in 0.08 mL provided practically full protection against retinal cell apoptosis 3 days following alkali burn, and infliximab 100 mg only slightly less. At 90 days following burn injury, control optic nerves showed about 50% axon loss as compared to 8% in the adalimumab treatment group. CONCLUSIONS: Subconjunctival injection of 4.0 mg adalimumab in rabbits shows no eye toxicity and provides excellent neuroprotection, both short (3 days) and long-term (90 days). Our total. accumulated data from several of our studies, combined with the present paper, suggest that corneal injuries, including surgery, might benefit from routine administration of anti-TNF-α biologics to reduce inflammation and future secondary glaucoma.


Asunto(s)
Axones , Quemaduras Químicas , Córnea , Nervio Óptico , Inhibidores del Factor de Necrosis Tumoral , Animales , Conejos , Adalimumab/uso terapéutico , Apoptosis , Quemaduras Químicas/tratamiento farmacológico , Modelos Animales de Enfermedad , Glaucoma , Infliximab/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa
16.
Exp Cell Res ; 318(6): 741-52, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22233682

RESUMEN

Corneal keratocyte migration can impact both corneal clarity and refractive outcome following injury or refractive surgery. In this study, we investigated how culture conditions, ECM properties, and Rho kinase activity regulate the mechanics of keratocyte migration, using a nested collagen matrix model. Time-lapse imaging demonstrated that both serum and PDGF stimulate keratocyte migration into the outer matrix. Although the velocity of cell migration was similar, cells in serum were bipolar and induced significant matrix deformation during migration, whereas PDGF induced extension of branching dendritic processes with smaller, more localized force generation. These differences in cell-induced matrix reorganization were verified with a global matrix contraction assay and confocal reflection imaging, using both bovine and rat tail collagen. When constructs were detached from the substrate to lower the effective stiffness, migration was significantly reduced in serum; but was unchanged in PDGF. These differences in migration mechanics were mediated, in part, by Rho kinase. Overall, corneal keratocytes can effectively migrate through collagen matrices using varying degrees of cellular force generation. Low-contractility migration may facilitate keratocyte repopulation of the stroma following surgery or injury, without altering the structural and mechanical properties that are critical to maintaining corneal transparency.


Asunto(s)
Colágeno/ultraestructura , Queratocitos de la Córnea/ultraestructura , Células del Estroma/citología , Animales , Fenómenos Biomecánicos , Bovinos , Movimiento Celular , Queratocitos de la Córnea/citología , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Conejos , Ratas , Células del Estroma/ultraestructura , Imagen de Lapso de Tiempo
17.
Nat Commun ; 14(1): 3592, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328488

RESUMEN

Photocatalytic hydrogen evolution efficiency is limited due to unfavorable carrier dynamics and thermodynamic performance. Here, we propose to introduce electronegative molecules to build an electric double layer (EDL) to generate a polarization field instead of the traditional built-in electric field to improve carrier dynamics, and optimize the thermodynamics by regulating the chemical coordination of surface atoms. Based on theoretical simulation, we designed CuNi@EDL and applied it as the cocatalyst of semiconductor photocatalysts, finally achieved a hydrogen evolution rate of 249.6 mmol h-1 g-1 and remained stable after storing under environmental conditions for more than 300 days. The high H2 yield is mainly due to the perfect work function, Fermi level and Gibbs free energy of hydrogen adsorption, improved light absorption ability, enhanced electron transfer dynamics, decreased HER overpotential and effective carrier transfer channel arose by EDL. Here, our work opens up new perspectives for the design and optimization of photosystems.


Asunto(s)
Electricidad , Excipientes , Adsorción , Simulación por Computador , Hidrógeno , Termodinámica
18.
Res Sq ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37720036

RESUMEN

Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a specific method for microglia depletion. However, recent work revealed that in addition to microglia, CSF1R inhibition also affects other innate immune cells, such as peripheral monocytes and tissue-resident macrophages of the lung, liver, spleen, and peritoneum. Here, we show that this effect is not restricted to innate immune cells only but extends to the adaptive immune compartment. CSF1R inhibition alters the transcriptional profile of bone marrow cells that control T helper cell activation. In vivo or ex vivo inhibition of CSF1R profoundly changes the transcriptional profile of CD4+ cells and suppresses Th1 and Th2 differentiation in directionally stimulated and unstimulated cells and independently of microglia depletion. Given that T cells also contribute in CNS pathology, these effects may have practical implications in the interpretation of relevant experimental data.

19.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631272

RESUMEN

PURPOSE: This study aimed to develop a clinically feasible and practical therapy for multi-ocular protection following ocular injury by using a thermosensitive drug delivery system (DDS) for sustained delivery of TNF-α and VEGF inhibitors to the eye. METHODS: A thermosensitive, biodegradable hydrogel DDS (PLGA-PEG-PLGA triblock polymer) loaded with 0.7 mg of adalimumab and 1.4 mg of aflibercept was injected subconjunctivally into Dutch-belted pigmented rabbits after corneal alkali injury. Control rabbits received 2 mg of IgG-loaded DDS or 1.4 mg of aflibercept-loaded DDS. Animals were followed for 3 months and assessed for tolerability and prevention of corneal neovascularization (NV), improvement of corneal re-epithelialization, inhibition of retinal ganglion cell (RGC) and optic nerve axon loss, and inhibition of immune cell infiltration into the cornea. Drug-release kinetics was assessed in vivo using an aqueous humor protein analysis. RESULTS: A single subconjunctival administration of dual anti-TNF-α/anti-VEGF DDS achieved a sustained 3-month delivery of antibodies to the anterior chamber, iris, ciliary body, and retina. Administration after corneal alkali burn suppressed CD45+ immune cell infiltration into the cornea, completely inhibited cornea NV for 3 months, accelerated corneal re-epithelialization and wound healing, and prevented RGC and optic nerve axon loss at 3 months. In contrast, anti-VEGF alone or IgG DDS treatment led to persistent corneal epithelial defect (combined: <1%; anti-VEGF: 15%; IgG: 10%, of cornea area), increased infiltration of CD45+ immune cells into the cornea (combined: 28 ± 20; anti-VEGF: 730 ± 178; anti-IgG: 360 ± 186, cells/section), and significant loss of RGCs (combined: 2.7%; anti-VEGF: 63%; IgG: 45%) and optic nerve axons at 3 months. The aqueous humor protein analysis showed first-order release kinetics without adverse effects at the injection site. CONCLUSIONS: Concomitant inhibition of TNF-α and VEGF prevents corneal neovascularization and ameliorates subsequent irreversible damage to the retina and optic nerve after severe ocular injury. A single subconjunctival administration of this therapy, using a biodegradable, slow-release thermosensitive DDS, achieved the sustained elution of therapeutic levels of antibodies to all ocular tissues for 3 months. This therapeutic approach has the potential to dramatically improve the outcomes of severe ocular injuries in patients and improve the therapeutic outcomes in patients with retinal vascular diseases.

20.
Cells ; 12(16)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37626899

RESUMEN

Limbal stem cell (LSC) deficiency is a frequent and severe complication after chemical injury to the eye. Previous studies have assumed this is mediated directly by the caustic agent. Here we show that LSC damage occurs through immune cell mediators, even without direct injury to LSCs. In particular, pH elevation in the anterior chamber (AC) causes acute uveal stress, the release of inflammatory cytokines at the basal limbal tissue, and subsequent LSC damage and death. Peripheral C-C chemokine receptor type 2 positive/CX3C motif chemokine receptor 1 negative (CCR2+ CX3CR1-) monocytes are the key mediators of LSC damage through the upregulation of tumor necrosis factor-alpha (TNF-α) at the limbus. In contrast to peripherally derived monocytes, CX3CR1+ CCR2- tissue-resident macrophages have a protective role, and their depletion prior to injury exacerbates LSC loss and increases LSC vulnerability to TNF-α-mediated apoptosis independently of CCR2+ cell infiltration into the tissue. Consistently, repopulation of the tissue by new resident macrophages not only restores the protective M2-like phenotype of macrophages but also suppresses LSC loss after exposure to inflammatory signals. These findings may have clinical implications in patients with LSC loss after chemical burns or due to other inflammatory conditions.


Asunto(s)
Lesiones Oculares , Deficiencia de Células Madre Limbares , Humanos , Monocitos , Células Madre Limbares , Factor de Necrosis Tumoral alfa , Macrófagos , Receptores de Quimiocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA