Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.282
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37562401

RESUMEN

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Asunto(s)
Células Endoteliales , Hígado , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/citología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis/metabolismo
2.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35216672

RESUMEN

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Asunto(s)
COVID-19/complicaciones , COVID-19/diagnóstico , Convalecencia , Inmunidad Adaptativa/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Autoanticuerpos/sangre , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad Innata/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Transcriptoma , Adulto Joven , Síndrome Post Agudo de COVID-19
3.
Cell ; 184(16): 4299-4314.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297923

RESUMEN

Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Citoprotección , Células Ganglionares de la Retina/patología , Visión Ocular , Animales , Axones/efectos de los fármacos , Axones/patología , Encéfalo/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Glaucoma/genética , Glaucoma/patología , Ratones Endogámicos C57BL , Neurotoxinas/toxicidad , Traumatismos del Nervio Óptico/patología , Transducción de Señal
4.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33171100

RESUMEN

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Asunto(s)
COVID-19 , Genómica , RNA-Seq , SARS-CoV-2 , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad
5.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138184

RESUMEN

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Asunto(s)
Colitis , ARN de Transferencia , Traslado Adoptivo , Animales , Proliferación Celular/genética , Colitis/genética , Ratones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Linfocitos T/metabolismo
6.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33765436

RESUMEN

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Asunto(s)
COVID-19/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/mortalidad , COVID-19/patología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inflamación , Estudios Longitudinales , Pulmón/patología , Macrófagos/inmunología , Macrófagos/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Células Mieloides/patología , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Transcriptoma , Adulto Joven
7.
Nature ; 627(8004): 522-527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509277

RESUMEN

Topological whirls or 'textures' of spins such as magnetic skyrmions represent the smallest realizable emergent magnetic entities1-5. They hold considerable promise as robust, nanometre-scale, mobile bits for sustainable computing6-8. A longstanding roadblock to unleashing their potential is the absence of a device enabling deterministic electrical readout of individual spin textures9,10. Here we present the wafer-scale realization of a nanoscale chiral magnetic tunnel junction (MTJ) hosting a single, ambient skyrmion. Using a suite of electrical and multimodal imaging techniques, we show that the MTJ nucleates skyrmions of fixed polarity, whose large readout signal-20-70% relative to uniformly magnetized states-corresponds directly to skyrmion size. The MTJ exploits complementary nucleation mechanisms to stabilize distinctly sized skyrmions at zero field, thereby realizing three non-volatile electrical states. Crucially, it can electrically write and delete skyrmions to both uniform states with switching energies 1,000 times lower than the state of the art. Here, the applied voltage emulates a magnetic field and, in contrast to conventional MTJs, it reshapes both the energetics and kinetics of the switching transition, enabling deterministic bidirectional switching. Our stack platform enables large readout and efficient switching, and is compatible with lateral manipulation of skyrmionic bits, providing the much-anticipated backbone for all-electrical skyrmionic device architectures9,10. Its wafer-scale realizability provides a springboard to harness chiral spin textures for multibit memory and unconventional computing8,11.

8.
Immunity ; 50(2): 403-417.e4, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709740

RESUMEN

The tolerogenic microenvironment of the liver is associated with impaired hepatic T cell function. Here, we examined the contribution of liver-resident natural killer (LrNK) cells, a prominent hepatic NK cell compartment, to T cell antiviral responses in the liver. The number of virus-specific T cells increased in LrNK-cell-deficient mice during both acute and chronic lymphocytic choriomeningitis virus infection. Upon infection with adenovirus, hepatic T cells from these mice produced more cytokines, which was accompanied by reduced viral loads. Transfer of LrNK cells into LrNK-cell-deficient or wild-type mice inhibited hepatic T cell function, resulting in impaired viral clearance, whereas transfer of conventional NK cells promoted T cell antiviral responses. LrNK-cell-mediated inhibition of T cell function was dependent on the PD-1-PD-L1 axis. Our findings reveal a role for LrNK cells in the regulation of T cell immunity and provide insight into the mechanisms of immune tolerance in the liver.


Asunto(s)
Antígeno B7-H1/inmunología , Células Asesinas Naturales/inmunología , Hígado/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Células Asesinas Naturales/metabolismo , Hígado/metabolismo , Hígado/virología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Transcriptoma/genética , Transcriptoma/inmunología
9.
Immunity ; 51(4): 724-734.e4, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586542

RESUMEN

HIV- and SIV-envelope (Env) trimers are both extensively glycosylated, and antibodies identified to date have been unable to fully neutralize SIVmac239. Here, we report the isolation, structure, and glycan interactions of antibody ITS90.03, a monoclonal antibody that completely neutralized the highly neutralization-resistant isolate, SIVmac239. The co-crystal structure of a fully glycosylated SIVmac239-gp120 core in complex with rhesus CD4 and the antigen-binding fragment of ITS90.03 at 2.5-Å resolution revealed that ITS90 recognized an epitope comprised of 45% glycan. SIV-gp120 core, rhesus CD4, and their complex could each be aligned structurally to their human counterparts. The structure revealed that glycans masked most of the SIV Env protein surface, with ITS90 targeting a glycan hole, which is occupied in ∼83% of SIV strains by glycan N238. Overall, the SIV glycan shield appears to functionally resemble its HIV counterpart in coverage of spike, shielding from antibody, and modulation of receptor accessibility.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Infecciones por VIH/inmunología , VIH/fisiología , Polisacáridos/química , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Células Cultivadas , Cristalización , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Glicosilación , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Macaca mulatta , Glicoproteínas de Membrana/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/metabolismo
10.
Immunity ; 50(3): 677-691.e13, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30876875

RESUMEN

Lineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope. Antibodies RV217-VRC42.01, -VRC43.01, and -VRC46.01 used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation and normal antibody-loop lengths and were initiated by the founder virus MPER. The broadest lineage, VRC42, was similar to the known bNAb 4E10. A multimeric immunogen based on the founder MPER activated B cells bearing the unmutated common ancestor of VRC42, with modest maturation of early VRC42 intermediates imparting neutralization breadth. These features suggest that VRC42 may be a promising template for lineage-based vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Linfocitos B/inmunología , Línea Celular , Células HEK293 , Infecciones por VIH/inmunología , Humanos , Leucocitos Mononucleares , Estudios Longitudinales
11.
Proc Natl Acad Sci U S A ; 121(26): e2402783121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889145

RESUMEN

Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Potenciación a Largo Plazo , Memoria , Receptores de N-Metil-D-Aspartato , Sinapsis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fosforilación , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Sinapsis/metabolismo , Ratas , Ratones
12.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620039

RESUMEN

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Procesamiento Proteico-Postraduccional , Streptococcus mutans , Animales , Acetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caries Dental/microbiología , Caries Dental/metabolismo , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Virulencia , Femenino , Ratas
13.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470932

RESUMEN

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Asunto(s)
Ferroptosis , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Sirtuina 3 , Ratas , Animales , Herpesvirus Humano 8/genética , Sirtuina 3/genética , Sirtuina 3/metabolismo , Transformación Celular Neoplásica , Proteínas Virales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nucleic Acids Res ; 52(6): 3213-3233, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227555

RESUMEN

N 6-Threonylcarbamoyladenosine at A37 (t6A37) of ANN-decoding transfer RNAs (tRNAs) is a universal modification whose functions have been well documented in bacteria and lower eukaryotes; however, its role in organellar translation is not completely understood. In this study, we deleted the mitochondrial t6A37-modifying enzyme OSGEPL1 in HEK293T cells. OSGEPL1 is dispensable for cell viability. t6A37 hypomodification selectively stimulated N1-methyladenosine at A9 (m1A9) and N2-methylguanosine at G10 (m2G10) modifications and caused a substantial reduction in the aminoacylation of mitochondrial tRNAThr and tRNALys, resulting in impaired translation efficiency. Multiple types of amino acid misincorporation due to the misreading of near-cognate codons by t6A37-unmodified tRNAs were detected, indicating a triggered translational infidelity. Accordingly, the alterations in mitochondrial structure, function, and the activated mitochondrial unfolded protein response were observed. Mitochondrial function was efficiently restored by wild-type, but not by tRNA-binding-defective OSGEPL1. Lastly, in Osgepl1 deletion mice, disruption to mitochondrial translation was evident but resulted in no observable deficiency under physiological conditions in heart, which displays the highest Osgepl1 expression. Taken together, our data delineate the multifaceted roles of mitochondrial t6A37 modification in translation efficiency and quality control in mitochondria.


Asunto(s)
Genes Mitocondriales , Mitocondrias , ARN de Transferencia , Animales , Humanos , Ratones , Células HEK293 , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252989

RESUMEN

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

16.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38388425

RESUMEN

Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Hierro , Imagen por Resonancia Magnética , Memoria Episódica , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Anciano , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hierro/metabolismo , Persona de Mediana Edad
17.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160798

RESUMEN

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Asunto(s)
Desmetilación del ADN , Hipotálamo , Receptor de Angiotensina Tipo 1 , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Ratas , Presión Sanguínea , ADN/metabolismo , Hipertensión/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , ARN Mensajero/genética , Sistema Nervioso Simpático/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
18.
Hum Mol Genet ; 32(3): 506-519, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067019

RESUMEN

Epilepsy is a chronic neurological disorder featuring recurrent, unprovoked seizures, which affect more than 65 million people worldwide. Here, we discover that the PKHD1L1, which is encoded by polycystic kidney and hepatic disease1-like 1 (Pkhd1l1), wildly distributes in neurons in the central nervous system (CNS) of mice. Disruption of PKHD1L1 in the dentate gyrus region of the hippocampus leads to increased susceptibility to pentylenetetrazol-induced seizures in mice. The disturbance of PKHD1L1 leads to the overactivation of the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK)-Calpain pathway, which is accompanied by remarkable degradation of cytoplasmic potassium chloride co-transporter 2 (KCC2) level together with the impaired expression and function of membrane KCC2. However, the reduction of membrane KCC2 is associated with the damaged inhibitory ability of the vital GABA receptors, which ultimately leads to the significantly increased susceptibility to epileptic seizures. Our data, thus, indicate for the first time that Pkhd1l1, a newly discovered polycystic kidney disease (PKD) association gene, is required in neurons to maintain neuronal excitability by regulation of KCC2 expression in CNS. A new mechanism of the clinical association between genetic PKD and seizures has been built, which could be a potential therapeutic target for treating PKD-related seizures.


Asunto(s)
Epilepsia , Simportadores , Ratones , Animales , Convulsiones/genética , Convulsiones/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Simportadores/genética , Giro Dentado/metabolismo
19.
Biostatistics ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637995

RESUMEN

Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.

20.
PLoS Pathog ; 19(12): e1011818, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048362

RESUMEN

During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.


Asunto(s)
Antimaláricos , Malaria Falciparum , Animales , Humanos , Plasmodium falciparum/metabolismo , Bombas de Protones/metabolismo , Trofozoítos/metabolismo , Difosfatos/metabolismo , Protones , Eritrocitos/parasitología , Pirofosfatasas/metabolismo , Malaria Falciparum/parasitología , Antimaláricos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA