Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(17): 7457-7468, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642050

RESUMEN

Usually, CymA is irreplaceable as the electron transport hub in Shewanella oneidensis MR-1 bidirectional electron transfer. In this work, biologically self-assembled FeS nanoparticles construct an artificial electron transfer route and implement electron transfer from extracellular into periplasmic space without CymA involvement, which present similar properties to type IV pili. Bacteria are wired up into a network, and more electron transfer conduits are activated by self-assembled transmembrane FeS nanoparticles (electron conduits), thereby substantially enhancing the ammonia production. In this study, we achieved an average NH4+-N production rate of 391.8 µg·h-1·L reactor-1 with the selectivity of 98.0% and cathode efficiency of 65.4%. Additionally, the amide group in the protein-like substances located in the outer membrane was first found to be able to transfer electrons from extracellular into intracellular with c-type cytochromes. Our work provides a new viewpoint that contributes to a better understanding of the interconnections between semiconductor materials and bacteria and inspires the exploration of new electron transfer chain components.


Asunto(s)
Amoníaco , Shewanella , Amoníaco/metabolismo , Transporte de Electrón , Shewanella/metabolismo , Electrones , Electrodos , Fuentes de Energía Bioeléctrica
2.
Environ Sci Technol ; 58(5): 2393-2403, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38268063

RESUMEN

Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.


Asunto(s)
Desnitrificación , Nitritos , Nitritos/metabolismo , Nitritos/farmacología , Carbono , Anaerobiosis , Proteómica , Nitrógeno/metabolismo , Nitrógeno/farmacología
3.
Environ Res ; 244: 117837, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065381

RESUMEN

This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Ofloxacino , Porosidad , Antibacterianos , Oxidantes , Peróxido de Hidrógeno , Oxidación-Reducción
4.
Environ Res ; 243: 117745, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008205

RESUMEN

Anaerobic digestion is an environmentally friendly method for reclaiming waste activated sludge. However, it cannot be overlooked that the solid residue generated from this process can still pose environmental risks and impose economic pressure on society. To mitigate and recycle the solid residue, this study utilized it as a primary raw material for manufacturing ceramsite with potential applications in wastewater treatment. The optimal ratio of solid residue to fly ash was demonstrated to be 6:4 with an additional 15% of clay supplementing the raw ceramsite materials. Furthermore, the optimal sintering process was established as preheating at 300 °C for 25 min followed by sintering at 1085 °C for 10 min, as determined through an L16 (44) Orthogonal test. The prepared ceramsite demonstrated advantageous performance parameters that exceeded the standards outlined in the Chinese industry standard CJ/T 299-2008 for water treatment artificial ceramsite. When utilized in an ozonation system, the ceramsite exhibited remarkable catalytic activity for phenol degradation by promoting the decomposition of molecular O3 into hydroxyl radicals. Additionally, it displayed minimal leaching of heavy metals and lower application costs. These findings emphasize its attractiveness in water and wastewater treatment processes and present a practical strategy for reclaiming this solid residue.


Asunto(s)
Mezclas Complejas , Metales Pesados , Ozono , Aguas del Alcantarillado , Anaerobiosis , Metales Pesados/análisis , Ceniza del Carbón , Residuos Sólidos
5.
Environ Res ; 251(Pt 2): 118655, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479717

RESUMEN

Some nano-biochars (nano-BCs) as electron mediators could enter into cells to directly promote intracellular electron transfer and cell activities. However, little information was available on the effect of nano-BCs on SMX degradation. In this study, nano-BCs were prepared using sludge-derived humic acid (SHA) and their effects on SMX degradation by Shewanella oneidensis MR-1 were investigated. Results showed that nano-BCs (Carbon dots, CDs, <10 nm) synthesized using SHA performed a better accelerating effect than that of the nano-BCs with a larger size (10-100 nm), which could be attributed to the better electron transfer abilities of CDs. The degradation rate of 10 mg/L SMX in the presence of 100 mg/L CDs was significantly increased by 84.6% compared to that without CDs. Further analysis showed that CDs could not only be combined with extracellular Fe(III) to accelerate its reduction, but also participate in the reduction of 4-aminobenzenesulphonic acid as an intermediate metabolite of SMX via coupling with extracellular Fe(III) reduction. Meanwhile, CDs could enter cells to directly participate in intracellular electron transfer, resulting in 32.2% and 25.2% increases of electron transfer system activity and ATP level, respectively. Moreover, the activities of SMX-degrading enzymes located in periplasm and cytoplasm were increased by around 2.2-fold in the presence of CDs. These results provide an insight into the accelerating effect of nano-BCs with the size of <10 nm on SMX degradation and an approach for SHA utilization.


Asunto(s)
Sustancias Húmicas , Aguas del Alcantarillado , Shewanella , Sulfametoxazol , Shewanella/metabolismo , Aguas del Alcantarillado/microbiología , Sulfametoxazol/metabolismo , Anaerobiosis , Biodegradación Ambiental
6.
Arch Microbiol ; 205(5): 193, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060452

RESUMEN

In this study, three cold-tolerant phenol-degrading strains, Pseudomonas veronii Ju-A1 (Ju-A1), Leifsonia naganoensis Ju-A4 (Ju-A4), and Rhodococcus qingshengii Ju-A6 (Ju-A6), were isolated. All three strains can produce cis, cis-muconic acid by ortho-cleavage of catechol at 12 â„ƒ. Response surface methodology (RSM) was used to optimize the proportional composition of low-temperature phenol-degrading microbiota. Degradation of phenol below 160 mg L-1 by low-temperature phenol-degrading microbiota followed first-order degradation kinetics. When the phenol concentration was greater than 200 mg L-1, the overall degradation trend was in accordance with the modified Gompertz model. The experiments showed that the microbial agent (three strains of low-temperature phenol-degrading bacteria were fermented separately and constructed in the optimal ratio) could completely degrade 200 mg L-1 phenol within 36 h. The above construction method is more advantageous in bio-enhanced treatment of actual wastewater. Through the construction of microbial agents to enhance the degradation effect of phenol, it provides a feasible scheme for the biodegradation of phenol wastewater at low temperature and shows good application potential.


Asunto(s)
Fenol , Aguas Residuales , Fenol/metabolismo , Temperatura , Fenoles/metabolismo , Frío , Biodegradación Ambiental
7.
Environ Res ; 224: 115531, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822537

RESUMEN

Additional various carbon and free riboflavin could improve anaerobic digestion of waste activated sludge (WAS). However, these substances were not reused. In this study, a reusable riboflavin and carbon black (RCB) co-modified filler was developed and combined with alkaline pretreatment for enhancing the production of volatile fatty acids (VFAs) and methane during anaerobic digestion of WAS. The results showed that RCB-modified fillers exhibited a promoting effect on the reduction of alkali-pretreated WAS. The amounts of the accumulated VFAs mainly containing acetate and the produced methane rose with the increased concentration of immobilized riboflavin (0-0.75 g/L) in the presence of 4 g/L carbon black. When the alkaline pretreatment time of WAS increased from 3 d to 8 d, the amount of methane production increased from 22.8% to 63.9% in the presence of 0.75 g/L riboflavin and 4 g/L carbon black compared with that without RCB-modified fillers. Moreover, 0.75 g/L riboflavin and 4 g/L carbon black had a synergetic effect on promoting methane production via broadening extracellular electron transfer pathways. During this process, microbial dehydrogenase activity, electron transport system activity and coenzyme F420 were enhanced. Microbial community analysis showed that RCB-modified filler addition promoted the enrichment of Syntrophomonas and Pseudomonas involved in direct interspecies electron transfer (DIET). These results indicated that DIET establishment was accelerated. Meanwhile, the populations of acetic acid-producing bacteria including Rikenellaceae_RC9_gut_group and Proteiniphilum, aceticlastic and acid-tolerant methanogenic archaea including Methanosarcina and Methanosaeta, RumEn_M2 were increased. These results indicate that RCB-modified fillers coupled with alkaline pretreatment is an effective method to promote the production of methane during anaerobic digestion of WAS.


Asunto(s)
Aguas del Alcantarillado , Hollín , Aguas del Alcantarillado/microbiología , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Metano , Bacteroidetes , Eliminación de Residuos Líquidos/métodos
8.
J Environ Sci (China) ; 125: 443-452, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375927

RESUMEN

We propose a novel sulfide-driven process to recover N2O during the traditional denitrification process. The optimum initial sulfide concentration was 120 mg/L, and the N2O percentage in the gaseous products (N2O+N2) was up to 82.9%. Moreover, sulfide involved in denitrification processes could substitute for organic carbon as an electron donor, e.g., 1 g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate. The accumulation of N2O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N2OR), which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N2OR. When the initial sulfide concentration was 120 mg/L, the N2OR activity was only 36.8% of its original level. According to the results of cyclic voltammetry, circular dichroism spectra and fluorescence spectra, significant changes in the conformations and protein structures of cyt c were caused by sulfide, and cyt c completely lost its electron transport capacity. This study provides a new concept for N2O recovery driven by sulfide in the denitrification process. In addition, the findings regarding the mechanism of the inhibition of N2OR activity have important implications both for reducing emissions of N2O and recovering N2O in the sulfide-driven denitrification process.


Asunto(s)
Desnitrificación , Óxido Nitroso , Óxido Nitroso/química , Sulfuros , Azufre , Oxidación-Reducción
9.
Ecotoxicol Environ Saf ; 237: 113545, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453018

RESUMEN

Anthraquinone compounds (ACs) could be efficiently degraded and detoxified by bacteria. However, the molecular mechanism of bacterial degradation and detoxification of ACs remains unclear. In this study, 1-aminoanthraquinone-2-sulfonate (ASA-2) was used as a model anthraquinone compound, the response mechanism of Rhodococcus pyridinivorans GF3 to ASA-2 using genomics and transcriptomics techniques was investigated. Comparative genome analysis showed that strain GF3 owned an especial gene region (Genes 1337-1399) containing the genes encoding cytochrome P450, monooxygenase, dehydrogenase and oxidoreductase, which did not commonly exist in Rhodococcus genus. The amino acid sequences of these genes were similar to those of the cleavage enzymes of anthraquinone ring in Aspergillus genus. Moreover, the transcriptions of Genes 1392-1394 (cytochrome 450 gene cluster) displayed 1.8-3.1-fold up-regulation under ASA-2 exposure. Meanwhile, as an intermediate product of ASA-2, catechol was degraded to acetyl-CoA, succinyl-CoA and pyruvate, resulting in the enhanced tricarboxylic acid cycle and ATP generation. This process also promoted the up-regulation of the genes encoding resistance, efflux, transporter and anti-oxidation pressure proteins, which were involved in resisting ASA-2 and maintaining the homeostasis of cells. These results provided us with a further understanding of the molecular mechanism of degradation and detoxification of ACs.


Asunto(s)
Rhodococcus , Transcriptoma , Antraquinonas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Genómica , Rhodococcus/genética , Rhodococcus/metabolismo
10.
Environ Sci Technol ; 55(8): 5559-5568, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33728915

RESUMEN

The fate and transport of bacteria in porous media are essential for bioremediation and water quality control. However, the influence of biological activities like extracellular electron transfer (EET) and swimming motility toward granular media on cell transport remains unknown. Here, electroactive bacteria with higher Fe(III) reduction abilities were found to demonstrate greater retention in ferrihydrite-coated sand. Increasing the concentrations of the electron donor (1-10 mM lactate), shuttle (0-50 µM anthraquinone-2,6-disulfonate), and acceptor (ferrihydrite, MnO2, or biochar) under flow conditions significantly reduced Shewanella oneidensis MR-1's mobility through redox-active porous media. The deficiency of EET ability or flagellar motion and inhibition of intracellular proton motive force, all of which are essential for energy taxis, enhanced MR-1's transport. It was proposed that EET could facilitate MR-1 to sense, tactically move toward, and attach on redox-active media surface, eventually improving its retention. Positive linear correlations were established among parameters describing MR-1's energy taxis ability (relative taxis index), cell transport behavior (dispersion coefficient and relative change of effluent percentage), and redox activity of media surface (reduction potential or electron-accepting rate), providing novel insights into the critical impacts of bacterial microscale motility on macroscale cell transport through porous media.


Asunto(s)
Compuestos Férricos , Shewanella , Transporte de Electrón , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Porosidad
11.
Environ Res ; 200: 111390, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052243

RESUMEN

In this work, a novel nitrate (NO3-) reduction pathway by anaerobic ammonium oxidation (anammox) biomass was firstly discovered with the intracellular carbon sources as the only electron donors. And the possible reaction mechanism was deduced to be intracellular dissimilatory nitrate reduction to ammonium (DNRA) pathway according to the experimental results. In batch experiments, without any external electron donors, NO3--N (about 50 mg/L) was reduced to N2 within 48 h, and a small amount of NO2--N was detected (the maximum of 2 mg/L) with the anammox biomass concentration of 4400 mg/L. Acetylene (4.46 mmol/L) addition resulted in obvious NH4+ accumulation during NO3- degradation by anammox biomass, since acetylene mainly interfered in hydrazine (N2H4) generation from NH4+ and NO. Without HCO3- addition, the NO3--N degradation rate was slower than that with HCO3- addition. Simultaneously, glycogen contents inside anammox biomass decreased to 133.22 ± 1.21 mg/g VSS and 129.79 ± 1.21 mg/g VSS with and without HCO3-, respectively, from 142.20 ± 0.61 mg/g VSS. In the long-term experiment, anammox biomass stably degraded NO3--N without external electron donors addition, and the maximum removal efficiency of NO3--N reached 55.4%. The above results indicated the anammox bacteria utilized the DNRA pathway to reduce NO3- to NO2- and further NH4+, then normal anammox metabolism would continue to convert the produced NO2- and NH4+ to N2. The intracellular stored carbon sources (e.g., glycogen) were supposed to be electron donors for NO3- degradation. This capability would enhance the viability and living space of anammox bacteria in different natural ecosystems, and make it plausible that complete nitrogen removal could be implemented only by the anammox process.


Asunto(s)
Compuestos de Amonio , Biomasa , Reactores Biológicos , Carbono , Ecosistema , Electrones , Nitratos , Nitrógeno , Oxidación-Reducción
12.
J Environ Manage ; 282: 111967, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454531

RESUMEN

Quinone compounds could significantly accelerate anaerobic biotransformation of refractory pollutants. However, the effect of quinone compounds application on the propagation of antibiotic resistance genes (ARGs) in the bio-treatment of these pollutants-containing wastewater is not available. In this study, the catalytic performance of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF), changes of ARGs, mobile gene elements (MGEs) and microbial community structure attached on AQS-PUF and PUF in the up-flow anaerobic bioreactors were investigated. The results showed that AQS-PUF could significantly accelerate the decolorization of azo dye RR X-3B. Meanwhile, metagenomics analysis showed that the total absolute abundance of ARGs increased in the presence of the immobilized AQS. Among ARGs, the number of the efflux pump-encoding ARGs in the biofilm of AQS-PUF accounted for 35.7% of the total ARGs, which was slightly higher than that of PUF (32.1%) due to the presence of the immobilized AQS. The relative abundances of ARGs conferring resistance to MLS (macrolide, lincosamide and streptogramin), tetracycline and sulfonamide, which were deeply concerned, reduced 10%, 21.7% and 7.3% in the presence of the immobilized AQS, respectively. Moreover, the immobilized AQS resulted in the decreased relative abundance of plasmids, transposons and class I integrons. Among the detected 31 ARG subtypes located in MGEs, the relative abundances of only lnuF, msrE and mphD in the biofilm of AQS-PUF were over 2-fold higher compared with those in the biofilm of PUF. However, the three ARGs and their host Gammaproteobacteria was not dominant in microbial community. The relative abundances of more ARGs including MLS (lnuB and EreA), tetracycline (tetH) resistance genes located in MGEs decreased, which was attributed to the decreased relative abundance of their hosts. These studies showed that the addition of the immobilized AQS (around 0.25 mM) had a beneficial effect on reducing the spread of ARGs during dyeing wastewater bio-treatment.


Asunto(s)
Antibacterianos , Microbiota , Anaerobiosis , Antraquinonas , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Microbiana/genética , Genes Bacterianos
13.
Environ Sci Technol ; 54(12): 7669-7676, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32437134

RESUMEN

A novel electro-Fenton membrane bioreactor was constructed to investigate the effect of electro-Fenton on mitigating membrane fouling. Herein, porous carbon (PC), carbon nanotubes (CNTs) and Fe2+ were spun into hollow fiber membranes (Fe-PC-CHFM), then served as cathode and filtration core simultaneously. The H2O2 can be in situ produced by O2 reduction with electro-assistance, and further induce hydroxyl radicals (•OH) generation with loaded Fe2+ on the surface of Fe-PC-CHFM. In addition, Fe3+/Fe2+ cycle can be realized effectively by the electro-assistance, avoiding ferrous iron addition. During over 100-day operation, the electro-Fenton membrane bioreactor achieved 93% of COD and 88% of NH4+-N removal at a HRT of 8 h. At the end of operation, the membranes in electro-Fenton membrane bioreactor still exhibited obviously mesh-like structure similarly to initial level. Importantly, merely 15 min with an operation voltage of -0.8 V was sufficient to completely recover permeate flux of the fouled Fe-PC-CHFM. The energy consumption used for membrane fouling control was barely 8.64 × 10-5 kW·h/m3. Therefore, this novel energy-saved electro-Fenton membrane bioreactor process could provide an envisaging prospective and promising method for practice wastewater membrane treatment.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Reactores Biológicos , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción , Estudios Prospectivos , Aguas Residuales
14.
Water Sci Technol ; 81(12): 2501-2510, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32857738

RESUMEN

The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons. However, the total abundance and diversity of ARGs in marine sediments were not significantly affected by offshore petroleum exploitation. This study is the first attempt to analyze the impact of offshore petroleum exploitation on the spread of antibiotic resistance.


Asunto(s)
Microbiota , Petróleo , Antibacterianos , Bacterias/genética , Genes Bacterianos , Sedimentos Geológicos , Humanos
15.
Environ Sci Technol ; 53(2): 1014-1021, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30540452

RESUMEN

A novel anaerobic treatment system that combines the impact of applied voltage with membrane filtration over carbon nanotubes hollow fiber membranes (CNTs-HFMs) was developed at low temperature (15-20 °C) to mitigate membrane fouling, treat wastewater, and recover energy (CH4). Herein, electro-assisted CNTs-HFMs served a dual function as the cathode and membrane filtration. In contrast with other two anaerobic membrane bioreactors (AnMBRs; polyvinylidene fluoride hollow fiber membranes and CNTs-HFMs without electro-assistance), the CNTs-HFMs with electro-assistance (-1.2 V applied voltage) had slower transmembrane pressure (TMP) increasing rates and better TMP recovery with a more than 95% effluent chemical oxygen demand (COD) removal rate during an almost 100-day operation period. This result can be attributed to the presence of an electrostatic repulsion force pushing pollutants (mainly extracellular polymeric substances, EPS) away from the membrane surface, thereby hindering the formation of a gel layer and mitigating membrane pore blocking in the anaerobic electro-assisted membrane bioreactor (AnEMBR). Due to the almost two-times higher Methanomicrobia content and more H2-utilizing methanogens than the other two AnMBRs, approximately more than 111.12 mL/gVSS d of CH4 was obtained in the AnEMBR with electro-assistance. This work provides an efficient strategy for mitigating membrane fouling, improving water quality, and enhancing CH4 yield.


Asunto(s)
Nanotubos de Carbono , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Electrodos , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales
16.
Ecotoxicol Environ Saf ; 175: 102-109, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30889399

RESUMEN

As an important fraction of humic substances, humin has been found capable of stimulating bioreduction reactions. However, whether humin could promote abiotic reduction and the effects of coexisting soluble humic substance and insoluble mineral remained unsolved. In this study, a humin sample was isolated from a paddy soil. Cyclic voltammetry, electron paramagnetic resonance, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses of the humin indicated the existence of redox-active quinone moieties and other oxygen-containing groups. The humin could be reduced by sulfide and its presence stimulated the abiotic reduction of acid red 27 (AR27) and four other azo dyes by sulfide. In the presence of 100-1000 mg/L intact humin, the sulfide-mediated AR27 reduction efficiency in 7 d was enhanced from 56.3% to 92.5%. The stimulating behavior of intact humin was observed for 100-300 mg/L AR27 and increased with the increase of sulfide concentration (1.2-3.0 mM). Much higher stimulating effects were found with the presence of humin pre-reduced by sulfide. Moreover, for sulfide-mediated AR27 reduction, the coexistence of humin (500 mg/L) and humic acid (10-30 mg/L) or Wyoming sodium-montmorillonite (SWy-2, 1-4 g/L) led to better promotion activities than the presence of single component. And synergistic promotion of sulfide-mediated AR27 reduction was observed with coexisting humin and SWy-2 due to enhanced Fe(II) production. These findings extended our understanding of the influence of humin on reductive transformation of pollutants in the environment.


Asunto(s)
Colorante de Amaranto/química , Sustancias Húmicas , Contaminantes del Suelo/química , Suelo/química , Sulfuros/química , Compuestos Azo/química , Sustancias Húmicas/análisis , Hierro/química , Minerales , Oxidación-Reducción , Oxígeno , Quinonas/química
17.
Mol Microbiol ; 106(6): 905-918, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28963777

RESUMEN

Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies.


Asunto(s)
Cupriavidus/metabolismo , Dioxigenasas/genética , Indoles/metabolismo , Familia de Multigenes , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Biodegradación Ambiental , Biotransformación/genética , Cupriavidus/genética , Dioxigenasas/metabolismo , Regulación hacia Abajo , Eliminación de Gen , Genómica , Gentisatos/metabolismo , Indoles/química , Proteómica , Salicilatos/metabolismo , Regulación hacia Arriba , ortoaminobenzoatos/metabolismo
18.
J Environ Sci (China) ; 65: 133-143, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29548384

RESUMEN

Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-ß-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O2 content synthesized more PHB, which had a wider optimal CH4:O2 range and produced a high PHB content (48.7%) even though in the presence of N2. In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities.


Asunto(s)
Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Metano/metabolismo , Aguas del Alcantarillado
19.
J Environ Sci (China) ; 52: 49-57, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28254057

RESUMEN

The coupled effects of nitrogen source and methane monooxygenase (MMO) on the growth and poly-ß-hydroxybutyrate (PHB) accumulation capacity of methanotrophs were explored. The ammonia-supplied methanotrophs expressing soluble MMO (sMMO) grew at the highest rate, while N2-fixing bacteria expressing particulate MMO (pMMO) grew at the lowest rate. Further study showed that more hydroxylamine and nitrite was formed by ammonia-supplied bacteria containing pMMO, which might cause their slightly lower growth rate. The highest PHB content (51.0%) was obtained under nitrogen-limiting conditions with the inoculation of nitrate-supplied bacteria containing pMMO. Ammonia-supplied bacteria also accumulated a higher content of PHB (45.2%) with the expression of pMMO, while N2-fixing bacteria containing pMMO only showed low PHB production capacity (32.1%). The maximal PHB contents of bacteria expressing sMMO were low, with no significant change under different nitrogen source conditions. The low MMO activity, low cell growth rate and low PHB production capacity of methanotrophs continuously cultivated with N2 with the expression of pMMO were greatly improved in the cyclic NO3-N2 cultivation regime, indicating that long-term deficiency of nitrogen sources was detrimental to the activity of methanotrophs expressing pMMO.


Asunto(s)
Hidroxibutiratos/metabolismo , Methylosinus trichosporium/fisiología , Oxigenasas/metabolismo , Poliésteres/metabolismo , Amoníaco/metabolismo , Reactores Biológicos , Nitratos/metabolismo , Nitrógeno/metabolismo
20.
J Environ Sci (China) ; 56: 79-86, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28571873

RESUMEN

Developing an eco-friendly approach for metallic nanoparticles synthesis is important in current nanotechnology research. In this study, green synthesis of gold nanoparticles (AuNPs) was carried out by a newly isolated strain Trichoderma sp. WL-Go. UV-vis spectra of AuNPs showed a surface plasmon resonance peak at 550nm, and transmission electron microscopy images revealed that the AuNPs were of varied shape with well dispersibility. The optimal conditions for AuNPs synthesis were HAuCl4 1.0mmol/L, biomass 0.5g and pH7-11. Moreover, the bio-AuNPs could efficiently catalyze the decolorization of various azo dyes. This research provided a new microbial resource candidate for green synthesis of AuNPs and demonstrated the potential application of bio-AuNPs for azo dye decolorization.


Asunto(s)
Biodegradación Ambiental , Nanopartículas del Metal , Trichoderma/fisiología , Compuestos Azo/metabolismo , Colorantes/metabolismo , Tecnología Química Verde/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA