Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32359424

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Teorema de Bayes , COVID-19 , China/epidemiología , Infecciones por Coronavirus/virología , Monitoreo Epidemiológico , Humanos , Funciones de Verosimilitud , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Viaje
2.
Immunology ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011567

RESUMEN

The commitment to specific T lymphocytes (T cell) lineages is governed by distinct transcription factors, whose expression is modulated through epigenetic mechanisms. Unravelling these epigenetic mechanisms that regulate T cell differentiation and function holds significant importance for understanding T cells. Menin, a multifunctional scaffolding protein, is implicated in various cellular processes, such as cell proliferation, cell cycle control, DNA repair and transcriptional regulation, primarily through epigenetic mechanisms. Existing research indicates Menin's impact on T cell differentiation and function, while a comprehensive and systematic review is currently lacking to consolidate these findings. In the current review, we have highlighted recent studies on the role of Menin in T cell differentiation and function, focusing mainly on its impact on the memory Th2 maintenance, Th17 differentiation and maintenance, CD4+ T cell senescence, and effector CD8+ T cell survival. Considering Menin's crucial function in maintaining effector T cell function, the potential of inhibiting Menin activity in mitigating inflammatory diseases associated with excessive T cell activation has also been emphasised.

3.
J Virol ; 97(10): e0082423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37724880

RESUMEN

IMPORTANCE: African swine fever (ASF) is an acute, hemorrhagic, and severe porcine infectious disease caused by African swine fever virus (ASFV). ASF outbreaks severely threaten the global pig industries and result in serious economic losses. No safe and efficacious commercial vaccine is currently available except in Vietnam. To date, large gaps in the knowledge concerning viral biological characteristics and immunoevasion strategies have hindered the ASF vaccine design. In this study, we demonstrate that pD129L negatively regulates the type I interferon (IFN) signaling pathway by interfering with the interaction of the transcriptional coactivator p300 and IRF3, thereby inhibiting the induction of type I IFNs. This study reveals a novel immunoevasion strategy employed by ASFV, shedding new light on the intricate mechanisms for ASFV to evade the host immune responses.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteína p300 Asociada a E1A , Factor 3 Regulador del Interferón , Interferón Tipo I , Animales , Fiebre Porcina Africana/virología , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Porcinos , Factores de Transcripción/metabolismo , Vacunas/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Evasión Inmune
4.
BMC Infect Dis ; 24(1): 270, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429664

RESUMEN

BACKGROUND: The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS: A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS: IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION: Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.


Asunto(s)
COVID-19 , Factores de Transcripción Forkhead , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/metabolismo , Factores de Transcripción Forkhead/genética , Genotipo , Haplotipos , Interferones/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649989

RESUMEN

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Brassicaceae/genética , Ecosistema , Especiación Genética , Genoma de Planta , Brassicaceae/clasificación , Brassicaceae/fisiología , Filogenia , Poliploidía
6.
Int J Biometeorol ; 68(2): 333-349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052751

RESUMEN

Over the past three decades, there has been a significant global climate change characterized by an increase in the intensity and frequency of extreme climate events. The vegetation status in Qinghai Province has undergone substantial changes, which are more pronounced than other regions in the Qinghai-Tibet Plateau. However, a clear understanding of the response characteristics of plateau vegetation to extreme climate events is currently lacking. In this study, we investigated the response of net primary productivity (NPP) to different forms of extreme climate events across regions characterized by varying levels of aridity and elevation gradients. Specifically, we observed a significant increase in NPP in relatively arid regions. Our findings indicate that, in relatively arid regions, single episodes of high-intensity precipitation have a pronounced positive effect (higher correlation) on NPP. Furthermore, in high-elevation regions (4000-6000 m), both the intensity and frequency of precipitation events are crucial factors for the increase in regional NPP. However, continuous precipitation can have significant negative impacts on certain areas within relatively wet regions. Regarding temperature, a reduction in the number of frost days within a year has been shown to lead to a significant increase in NPP in arid regions. This reduction allows vegetation growth rate to increase in regions where it was limited by low temperatures. Vegetation conditions in drought-poor regions are expected to continue to improve as extreme precipitation intensifies and extreme low-temperature events decrease.


Asunto(s)
Ecosistema , Modelos Teóricos , China , Tibet , Temperatura , Cambio Climático
7.
J Environ Manage ; 360: 121023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733837

RESUMEN

Solar-induced chlorophyll fluorescence (SIF) has been used since its discovery to characterize vegetation photosynthesis and is an effective tool for monitoring vegetation dynamics. Its response to meteorological drought enhances our comprehension of the ecological consequences and adaptive mechanisms of plants facing water scarcity, informing more efficient resource management and efforts in mitigating climate change. This study investigates the spatial and temporal patterns of SIF and examines how vegetation SIF in the Yellow River Basin (YRB) responds to meteorological drought. The findings reveal a gradual southeast-to-northwest decline in SIF across the Yellow River Basin, with an overall increase-from 0.1083 W m-2µm-1sr-1 in 2001 to 0.1468 W m-2µm-1sr-1 in 2019. Approximately 96% of the YRB manifests an upward SIF trend, with 75% of these areas reaching statistical significance. The Standardized Precipitation Evapotranspiration Index (SPEI) at a time scale of 4 months (The SPEI-4), based on the Liang-Kleeman information flow method, is identified as the most suitable drought index, adeptly characterizing the causal relationship influencing SIF variations. As drought intensified, the SPEI-4 index markedly deviated from the baseline, resulting in a decrease in SIF values to their lowest value; subsequently, as drought lessened, it gravitated towards the baseline, and SIF values began to gradually increase, eventually recovering to near their annual maximum. The key finding is that the variability of SIF with SPEI is relatively pronounced in the early growing season, with forests demonstrating superior resilience compared to grasslands and croplands. The responsiveness of vegetation SIF to SPEI can facilitate the establishment of effective drought early warning systems and promote the rational planning of water resources, thereby mitigating the impacts of climate change.


Asunto(s)
Clorofila , Cambio Climático , Sequías , Ríos , Fluorescencia , Luz Solar , Fotosíntesis
8.
Hell J Nucl Med ; 27(1): 55-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629817

RESUMEN

The hepatopulmonary syndrome (HPS) is characterized by arterial oxygenation defect induced by intrapulmonary vascular dilatations in the setting of liver disease. We report a 57-year-old woman with a history of liver cirrhosis presented with progressive cyanosis, exertional dyspnea and a dry cough. Oxyhemoglobin saturation was 88.5% on room air. Contrast transthoracic echocardiography (cTTE) and technetium-99m-macroaggregated albumin (99mTc-MAA) scintigraphy showed an intrapulmonary shunting and confirmed HPS.


Asunto(s)
Ecocardiografía , Síndrome Hepatopulmonar , Agregado de Albúmina Marcado con Tecnecio Tc 99m , Humanos , Síndrome Hepatopulmonar/diagnóstico por imagen , Síndrome Hepatopulmonar/complicaciones , Femenino , Persona de Mediana Edad , Ecocardiografía/métodos , Cintigrafía/métodos , Radiofármacos
9.
Cancer Sci ; 114(7): 2860-2870, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094904

RESUMEN

High-risk neuroblastoma (HR-NB) is an aggressive childhood cancer that responds poorly to currently available therapies and is associated with only about a 50% 5-year survival rate. MYCN amplification is a critical driver of these aggressive tumors, but so far there have not been any approved treatments to effectively treat HR-NB by targeting MYCN or its downstream effectors. Thus, the identification of novel molecular targets and therapeutic strategies to treat children diagnosed with HR-NB represents an urgent unmet medical need. Here, we conducted a targeted siRNA screening and identified TATA box-binding protein-associated factor RNA polymerase I subunit D, TAF1D, as a critical regulator of the cell cycle and proliferation in HR-NB cells. Analysis of three independent primary NB cohorts determined that high TAF1D expression correlated with MYCN-amplified, high-risk disease and poor clinical outcomes. TAF1D knockdown more robustly inhibited cell proliferation in MYCN-amplified NB cells compared with MYCN-non-amplified NB cells, as well as suppressed colony formation and inhibited tumor growth in a xenograft mouse model of MYCN-amplified NB. RNA-seq analysis revealed that TAF1D knockdown downregulates the expression of genes associated with the G2/M transition, including the master cell-cycle regulator, cell-cycle-dependent kinase 1 (CDK1), resulting in cell-cycle arrest at G2/M. Our findings demonstrate that TAF1D is a key oncogenic regulator of MYCN-amplified HR-NB and suggest that therapeutic targeting of TAF1D may be a viable strategy to treat HR-NB patients by blocking cell-cycle progression and the proliferation of tumor cells.


Asunto(s)
Neuroblastoma , Humanos , Animales , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/patología , Proliferación Celular/genética , División Celular , Fase G2 , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
10.
J Virol ; 96(22): e0095422, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326277

RESUMEN

The H240R protein (pH240R), encoded by the H240R gene of African swine fever virus (ASFV), is a 241-amino-acid capsid protein. We previously showed that the deletion of H240R from the ASFV genome, creating ASFV-ΔH240R, resulted in an approximately 2-log decrease in infectious virus production compared with the wild-type ASFV strain (ASFV-WT), and ASFV-ΔH240R induced higher interleukin 1ß (IL-1ß) production in porcine alveolar macrophages (PAMs) than did ASFV-WT, but the underlying mechanism remains to be elucidated. Here, we demonstrate that the activation of the NF-κB signaling and NLRP3 inflammasome was markedly induced in PAMs upon ASFV-ΔH240R infection compared with ASFV-WT. Moreover, pH240R inhibited NF-κB activation by interacting with NEMO and promoting the autophagy-mediated lysosomal degradation of NEMO, resulting in reduced pro-IL-1ß transcription. Strikingly, NLRP3 deficiency in PAMs inhibited the ASFV-ΔH240R-induced IL-1ß secretion and caspase 1 activation, indicating an essential role of NLRP3 inflammasome activation during ASFV-ΔH240R replication. Mechanistically, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Furthermore, the inhibition of the NF-κB signaling and NLRP3 inflammasome activation promoted ASFV-ΔH240R replication in PAMs. Taken together, the results of this study reveal an antagonistic mechanism by which pH240R suppresses the host immune response by manipulating activation of the NF-κB signaling and NLRP3 inflammasome, which might guide the rational design of live attenuated vaccines or therapeutic strategies against ASF in the future. IMPORTANCE African swine fever (ASF), a lethal hemorrhagic disease, is caused by African swine fever virus (ASFV). There are no commercially available vaccines or antivirals for the disease. Here, we showed that ASFV with a deletion of the H240R gene exhibits high-level expression of interleukin 1ß (IL-1ß), a proinflammatory cytokine, in porcine alveolar macrophages and that the H240R protein (pH240R) exhibits robust inhibitory effects on IL-1ß transcription and production. More specifically, pH240R inhibited NF-κB activation via the autophagy-mediated lysosomal degradation of NEMO, leading to the decrease of pro-IL-1ß transcription. In addition, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Our results indicate that pH240R is involved in the evasion of host innate immunity and provide a novel target for the development of a live attenuated vaccine against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
11.
J Virol ; 96(3): e0166721, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787458

RESUMEN

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/metabolismo , Proteínas de la Cápside/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Eliminación de Secuencia , Fiebre Porcina Africana/patología , Virus de la Fiebre Porcina Africana/ultraestructura , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Citocinas/genética , Susceptibilidad a Enfermedades/inmunología , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Genoma Viral , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Porcinos , Virión/ultraestructura , Internalización del Virus , Replicación Viral
12.
J Virol ; 96(9): e0195721, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35412346

RESUMEN

African swine fever is a lethal hemorrhagic disease of pigs caused by African swine fever virus (ASFV), which greatly threatens the pig industry in many countries. Deletion of virulence-associated genes to develop live attenuated ASF vaccines is considered to be a promising strategy. A recent study has revealed that the A137R gene deletion results in ASFV attenuation, but the underlying mechanism remains unknown. To elucidate the mechanism of the A137R gene regulating ASFV virulence, an ASFV mutant with the A137R gene deleted (ASFV-ΔA137R) was generated based on the wild-type ASFV HLJ/2018 strain (ASFV-WT). Using transcriptome sequencing analysis, we found that ASFV-ΔA137R induced higher type I interferon (IFN) production in primary porcine alveolar macrophages (PAMs) than did ASFV-WT. Overexpression of the A137R protein (pA137R) inhibited the activation of IFN-ß or IFN-stimulated response element. Mechanistically, pA137R interacts with TANK-binding kinase 1 (TBK1) and promotes the autophagy-mediated lysosomal degradation of TBK1, which blocks the nuclear translocation of interferon regulator factor 3, leading to decreased type I IFN production. Taken together, our findings clarify that pA137R negatively regulates the cGAS-STING-mediated IFN-ß signaling pathway via the autophagy-mediated lysosomal degradation of TBK1, which highlights the involvement of pA137R regulating ASFV virulence. IMPORTANCE African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. Several virulence-associated genes of ASFV have been identified, but the underlying attenuation mechanisms are not clear. Compared with the virulent parental ASFV, the A137R gene-deleted ASFV mutant promoted the expression of type I interferon (IFN) in primary porcine alveolar macrophages. Further analysis indicated that the A137R protein negatively regulated the cGAS-STING-mediated IFN-ß signaling pathway through targeting TANK-binding kinase 1 (TBK1) for autophagy-mediated lysosomal degradation. This study not only facilitates the understanding of ASFV immunoevasion strategies, but also provides new clues to the development of live attenuated ASF vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Autofagia , Interferón beta , Proteínas Serina-Treonina Quinasas , Proteínas Virales , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Animales , Interferón beta/metabolismo , Lisosomas/metabolismo , Macrófagos Alveolares/virología , Proteínas de la Membrana , Nucleotidiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Porcinos , Proteínas Virales/genética , Virulencia
13.
BMC Gastroenterol ; 23(1): 161, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208605

RESUMEN

INTRODUCTION: Chronic erosive gastritis (CEG) is closely related to gastric cancer, which requires early diagnosis and intervention. The invasiveness and discomfort of electronic gastroscope have limited its application in the large-scale screening of CEG. Therefore, a simple and noninvasive screening method is needed in the clinic. OBJECTIVES: The aim of this study is to screen potential biomarkers that can identify diseases from the saliva samples of CEG patients using metabolomics. METHODS: Saliva samples from 64 CEG patients and 30 healthy volunteers were collected, and metabolomic analysis was performed using UHPLC-Q-TOF/MS in the positive and negative ion modes. Statistical analysis was performed using both univariate (Student's t-test) and multivariate (orthogonal partial least squares discriminant analysis) tests. Receiver operating characteristic (ROC) analysis was conducted to determine significant predictors in the saliva of CEG patients. RESULTS: By comparing the saliva samples from CEG patients and healthy volunteers, 45 differentially expressed metabolites were identified, of which 37 were up-regulated and 8 were down-regulated. These differential metabolites were related to amino acid, lipid, phenylalanine metabolism, protein digestion and absorption, and mTOR signaling pathway. In the ROC analysis, the AUC values of 7 metabolites were greater than 0.8, among which the AUC values of 1,2-dioleoyl-sn-glycoro-3-phosphodylcholine and 1-stearoyl-2-oleoyl-sn-glycoro-3-phospholine (SOPC) were greater than 0.9. CONCLUSIONS: In summary, a total of 45 metabolites were identified in the saliva of CEG patients. Among them, 1,2-dioleoyl-sn-glycoro-3-phosphorylcholine and 1-stearoyl-2-oleoyl-sn-glycoro-3-phosphorine (SOPC) might have potential clinical application value.


Asunto(s)
Gastritis , Metaboloma , Humanos , Metabolómica/métodos , Biomarcadores/metabolismo , Aminoácidos , Gastritis/diagnóstico
14.
Exp Lung Res ; 49(1): 205-219, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38044666

RESUMEN

Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1ß, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-ß1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-ß1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1ß, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-ß1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-ß1/Smad2/3 pathway, thereby improving BLM-induced PF.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , FN-kappa B , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/efectos adversos , Vimentina , Factor 2 Relacionado con NF-E2 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Cadherinas , Superóxido Dismutasa
15.
BMC Nephrol ; 24(1): 293, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794407

RESUMEN

BACKGROUND: Parathyroid carcinoma and parathyromatosis are very rare diseases in patients on hemodialysis. Its pathogenesis, clinical features, preoperative diagnosis, and surgery are challenging. We describe a rare case of recurrent hyperparathyroidism due to synchronous parathyroid carcinoma and parathyromatosis. CASE PRESENTATION: A 46-year-old Chinese woman was diagnosed with end-stage renal disease and received regular hemodialysis. Four years later, she experienced discomfort due to itching and was diagnosed with drug-resistant secondary hyperparathyroidism. Parathyroidectomy was performed, and her parathyroid hormone (PTH) levels were reduced. The pathology also revealed that the four nodules were parathyroid nodular hyperplasia without evidence of malignancy. Five years after surgery, the right subcutaneous nodule and left inferior nodule were detected by multiple imaging modalities, and the nodules were accompanied by recurrence itching and elevation of PHT. A complete resection of two nodules was performed, and the patient was diagnosed with parathyroid carcinoma and parathyromatosis. At 8 months postsurgery, her PHT and serum calcium levels were stable, and there were no signs of recurrence. CONCLUSIONS: This is a rare case of synchronous parathyroid carcinoma and parathyromatosis in a patient with secondary hyperparathyroidism after parathyroidectomy. We suggest meticulous handling of parathyroid hyperplasia to avoid rupture and spillage during surgery, and precise pro-operation location by multiple imaging modalities is crucial for successful parathyroidectomy.


Asunto(s)
Hiperparatiroidismo Primario , Hiperparatiroidismo Secundario , Neoplasias de las Paratiroides , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de las Paratiroides/complicaciones , Neoplasias de las Paratiroides/diagnóstico por imagen , Neoplasias de las Paratiroides/cirugía , Hiperplasia/patología , Glándulas Paratiroides/diagnóstico por imagen , Glándulas Paratiroides/cirugía , Glándulas Paratiroides/patología , Hiperparatiroidismo Primario/complicaciones , Hiperparatiroidismo Primario/cirugía , Hiperparatiroidismo Secundario/complicaciones , Hiperparatiroidismo Secundario/diagnóstico por imagen , Paratiroidectomía/efectos adversos , Diálisis Renal/efectos adversos , Prurito , Recurrencia , Hormona Paratiroidea
16.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982656

RESUMEN

Groat protein content (GPC) is a key quality trait attribute in oat. Understanding the variation of GPC in oat germplasms and identifying genomic regions associated with GPC are essential for improving this trait. In this study, the GPC of 174 diverse oat accessions was evaluated in three field trials. The results showed a wide variation in GPC, ranging from 6.97% to 22.24% in this panel. Hulless oats displayed a significantly higher GPC compared to hulled oats across all environments. A GWAS analysis was performed based on 38,313 high-quality SNPs, which detected 27 non-redundant QTLs with 41 SNPs significantly associated with GPC. Two QTLs on chromosome 6C (QTL16) and 4D (QTL11) were consistently detected in multiple environments, with QTL16 being the most significant and explaining the highest proportion of the phenotypical variation in all tested environments except in CZ20. Haplotype analysis showed that the favorable haplotypes for GPC are more prevalent in hulless oats. These findings provide a foundation for future efforts to incorporate favorable alleles into new cultivars through introgression, fine mapping, and cloning of promising QTLs.


Asunto(s)
Avena , Estudio de Asociación del Genoma Completo , Avena/genética , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
17.
Eur Radiol ; 32(10): 7146-7154, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35639147

RESUMEN

OBJECTIVES: To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) version 2017 in a population with non-alcoholic steatohepatitis (NASH). METHODS: Between January 2013 and December 2020, consecutive patients diagnosed with NASH with untreated liver nodules were enrolled in this retrospective study. A prospective evaluation was performed between January 2021 and August 2021 as a validation set. Diagnostic performance was assessed. RESULTS: We included 217 nodules in 211 patients (mean age, 49.7 ± 21.7 years; male, 156) in the retrospective study. The positive predictive value (PPV) of CEUS LR-5 in the diagnosis of hepatocellular carcinoma (HCC) was 70.8% (56/79). In total, 28 of 217 (12.9%) nodules were classified as LR-M, of which 12 showed arterial phase hyper-enhancement, early washout, and absence of a punched-out appearance within 5 min; 10 of the 12 (83%) were HCC. When these nodules were reclassified as LR-5, the specificity of LR-M as a predictor of non-HCC malignancy increased from 91.0 (181/199) to 96.5% (192/199) (p = .023). Despite the reclassification, LR-5 specificity and PPV remained high (80.6% and 72.5%, respectively). Following reclassification, LR-M specificity increased from 90.0 (45/50) to 100% (50/50) (p = .022) in the validation set. CONCLUSION: CEUS LI-RADS category LR-5 is effective in predicting the presence of HCC. In NASH patients, diagnostic performance can be further improved by reclassifying LR-M nodules with arterial phase hyper-enhancement, early washout, and punched-out appearance as LR-5. KEY POINTS: • The LI-RADS classification of CEUS has a high application value for differentiation of HCC in NASH patients. • When LR-M nodules with arterial phase hyperenhancement and early washout but not punched-out appearance at < 5 min are reclassified as LR-5; the modification of LI-RADS has a better performance. • The PPV of modified LR-5 in the non-cirrhotic group was better than that of LR-5. The PPV of modified CEUS LR-5 in the non-cirrhotic group was comparable to that in the cirrhotic group (p both = 0.065).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Adulto , Anciano , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste/farmacología , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Estudios Retrospectivos , Sensibilidad y Especificidad
18.
World J Microbiol Biotechnol ; 38(4): 57, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35174424

RESUMEN

The past decade has witnessed the rapid progress in development of synthetic biology, and advances in construction of yeast cell factories open vast opportunities for green and sustainable production of chemicals. Focusing on the progress in yeast engineering for production of plant natural products in the last 5 years, this review introduces different yeast chassis used for cell factory construction, including Saccharomyces cerevisiae, Yarrowia lipolytica and Komagataella phaffii, together with the emerging genome editing tools. The metabolic regulation strategies developed for yeast engineering are highlighted, such as subcellular pathway localization dynamic regulation, and transporter engineering. C1-based chemical bioproduction by engineered yeast is also covered. Finally, the existing challenges and future prospects in creating efficient yeast cell factories are summarized.


Asunto(s)
Saccharomyces cerevisiae , Yarrowia , Edición Génica , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética , Yarrowia/genética , Yarrowia/metabolismo
19.
Metab Eng ; 67: 19-28, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34077803

RESUMEN

The market-expanding lutein is currently mainly supplied by plant extraction, with microbial fermentation using engineered cell factory emerging as a promising substitution. During construction of lutein-producing yeast, α-carotene formation through asymmetric ε- and ß-cyclization of lycopene was found as the main limiting step, attributed to intra-pathway competition of the cyclases for lycopene, forming ß-carotene instead. To solve this problem, temperature-responsive expression of ß-cyclase was coupled to constitutive expression of ε-cyclase for flux redirection to α-carotene by allowing ε-cyclization to occur first. Meanwhile, the ε-cyclase was engineered and re-localized to the plasma membrane for further flux reinforcement towards α-carotene. Finally, pathway extension with proper combination of carotenoid hydroxylases enabled lutein (438 µg/g dry cells) biosynthesis in S. cerevisiae. The success of heterologous lutein biosynthesis in yeast suggested temporospatial pathway control as a potential strategy in solving intra-pathway competitions, and may also be applicable for promoting the biosynthesis of other natural products.


Asunto(s)
Liasas Intramoleculares , Luteína , Licopeno , Saccharomyces cerevisiae/genética , beta Caroteno
20.
J Med Virol ; 93(11): 6383-6387, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33448453

RESUMEN

The CRF01_AE and CRF07_BC clades dominate the human immunodeficiency virus (HIV) epidemics in China. Both clades have been identified in the men who have sex with men (MSM) population in Guangdong province, raising a serious concern of possible complex recombination events ahead. Here, we report the first case of CRF01_AE/CRF07_BC recombinant sampled from a MSM patient in southern China. The genomic structure of this case is a mosaic with some regions resembling the CRF01_AE and CRF07_BC clades. Our phylogenetic analyses show that the two parental lineages of this recombinant virus were mainly found in the MSM population. This case has a different genomic composition compared with other recombinants descended from the same parental clades CRF01_AE and CRF07_BC. Our finding suggests that the MSM populations have become a hotspot for expanding viral diversity through the viral recombination mechanism. Therefore, further epidemiologic surveillance and monitoring should be conducted within the MSM populations to help advance our knowledge of viral transmission mechanisms. Additionally, these measures will serve to enhance the control and prevention of HIV/acquired immunodeficiency syndrome in China.


Asunto(s)
Genómica , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Homosexualidad Masculina , Adulto , China , Genoma Viral , VIH-1/clasificación , Humanos , Masculino , Filogenia , ARN Viral/genética , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA