RESUMEN
Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the ß1 subunit at 4.0 Å resolution. The immunoglobulin domain of ß1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.
Asunto(s)
Electrophorus/metabolismo , Proteínas de Peces/química , Canales de Sodio Activados por Voltaje/química , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Proteínas de Peces/metabolismo , Proteínas de Peces/ultraestructura , Modelos Moleculares , Dominios Proteicos , Alineación de Secuencia , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/ultraestructuraRESUMEN
Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection.
Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Glicoproteínas/química , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestructura , Modelos Moleculares , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Transporte Vesicular , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructuraRESUMEN
Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.
Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/genética , Línea Celular , Citocinas , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Lectinas Tipo C/química , Proteínas de la Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Unión Proteica , Conformación Proteica , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-ActividadRESUMEN
Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.
Asunto(s)
Complejo CD3 , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T , Humanos , Complejo CD3/química , Complejo CD3/inmunología , Complejo CD3/metabolismo , Complejo CD3/ultraestructura , Colesterol/metabolismo , Colesterol/química , Microscopía por Crioelectrón , Ligandos , Activación de Linfocitos/inmunología , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/ultraestructura , Linfocitos T/química , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción de Señal , Membrana Celular/química , Membrana Celular/metabolismoRESUMEN
Regulation of the elongation phase of transcription by RNA polymerase II (Pol II) is utilized extensively to generate the pattern of mRNAs needed to specify cell types and to respond to environmental changes. After Pol II initiates, negative elongation factors cause it to pause in a promoter proximal position. These polymerases are poised to respond to the positive transcription elongation factor P-TEFb, and then enter productive elongation only under the appropriate set of signals to generate full-length properly processed mRNAs. Recent global analyses of Pol II and elongation factors, mechanisms that regulate P-TEFb involving the 7SK small nuclear ribonucleoprotein (snRNP), factors that control both the negative and positive elongation properties of Pol II, and the mRNA processing events that are coupled with elongation are discussed.
Asunto(s)
ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Eucariontes/metabolismo , Regulación de la Expresión Génica , Humanos , ARN Polimerasa II/química , Factores de TranscripciónRESUMEN
Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.
Asunto(s)
Compuestos Epoxi/química , Macrólidos/química , Fosfoproteínas/química , Factores de Empalme de ARN/química , Empalme del ARN/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Microscopía por Crioelectrón , Modelos Moleculares , Mutación , Fosfoproteínas/aislamiento & purificación , Precursores del ARN/metabolismo , Factores de Empalme de ARN/aislamiento & purificación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , TransactivadoresRESUMEN
Vicia sativa ssp. amphicarpa is a unique forage crop capable of simultaneously producing fruits above and below ground, representing a typical amphicarpic plant. In this study, we sequenced and assembled seven pseudo-chromosomes of the genome of V. sativa ssp. amphicarpa (n = 7) yielding a genome size of 1.59 Gb, with a total annotation of 48 932 protein-coding genes. Long terminal repeat (LTR) elements constituted 62.28% of the genome, significantly contributing to the expansion of genome size. Phylogenetic analysis revealed that the divergence between V. sativa ssp. amphicarpa and V. sativa was around 0.88 million years ago (MYA). Comparative transcriptomic and metabolomic analysis of aerial and subterranean pod shells showed biosynthesis of terpenoids in the subterranean pod shells indicating a correlation between the antimicrobial activity of subterranean pod shells and the biosynthesis of terpenoids. Furthermore, functional validation indicates that overexpression of VsTPS5 and VsTPS16 enhances terpenoid biosynthesis for antibacterial activity. Metabolomic analysis suggests the involvement of terpenoids in the antimicrobial properties of subterranean pod shells. Deciphering the genome of V. sativa ssp. amphicarpa elucidated the molecular mechanisms behind the antimicrobial properties of subterranean fruits in amphicarpic plants, providing valuable insights for the study of amphicarpic plant biology.
RESUMEN
Ferroptosis, a form of regulated cell death process, play an important role in myocardial ischemiaâreperfusion (I/R) injury. Glycyrrhizin (GL), a natural glycoconjugate triterpene, has the property to improve growth rate, immune regulation, antioxidant, anti-inflammatory. However, whether GL can attenuate myocardial I/R injury by modulating ferroptosis or other mechanisms are still unclear. In this study, SD rats underwent in vivo myocardial ischemia/reperfusion (I/R) surgery, while H9C2 cells were subjected to the hypoxia/reoxygenation (H/R) model for in vitro experiments. In addition, TAK-242, a TLR4-specific antagonist, and GL were also used to evaluate the effect and mechanisms of GL on the cardiac function and expression of ferroptosis-related gene and protein in vivo and vitro. The results show that GL decreased not only the expression of the inflammation-related factors (HMGB1, TNF-α, IL-6, IL-18 and IL-1ß), but also reduced the number of TUNEL-positive cardiomyocytes, and mitigated pathological alterations in I/R injury. In addition, GL decreased the levels of MDA, promoted antioxidant capacity such as GSH, CAT, Cu/Zn-SOD, Mn-SOD, and SOD in vivo and vitro. More importantly, GL and TAK-242 regulate ferroptosis-related protein and gene expression in I/R and H/R model. Surprisingly, GL may ameliorate cardiomyocyte ferroptosis and ultimately improves cardiac function induced by H/R via the HMGB1-TLR4-GPX4 axis. Therefore, we have highlighted a novel mechanism by which GL regulates inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway to prevent myocardial I/R injury. GL appears to be a potentially applicable drug for the treatment of myocardial I/R injury.
Asunto(s)
Ferroptosis , Proteína HMGB1 , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Sulfonamidas , Ratas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Ácido Glicirrínico/farmacología , Receptor Toll-Like 4/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína HMGB1/metabolismo , Ratas Sprague-Dawley , Apoptosis , Estrés Oxidativo , Daño por Reperfusión/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Superóxido Dismutasa/metabolismoRESUMEN
The L-type amino acid transporter 1 (LAT1; also known as SLC7A5) catalyses the cross-membrane flux of large neutral amino acids in a sodium- and pH-independent manner1-3. LAT1, an antiporter of the amino acid-polyamine-organocation superfamily, also catalyses the permeation of thyroid hormones, pharmaceutical drugs, and hormone precursors such as L-3,4-dihydroxyphenylalanine across membranes2-6. Overexpression of LAT1 has been observed in a wide range of tumour cells, and it is thus a potential target for anti-cancer drugs7-11. LAT1 forms a heteromeric amino acid transporter complex with 4F2 cell-surface antigen heavy chain (4F2hc; also known as SLC3A2)-a type II membrane glycoprotein that is essential for the stability of LAT1 and for its localization to the plasma membrane8,9. Despite extensive cell-based characterization of the LAT1-4F2hc complex and structural determination of its homologues in bacteria, the interactions between LAT1 and 4F2hc and the working mechanism of the complex remain largely unknown12-19. Here we report the cryo-electron microscopy structures of human LAT1-4F2hc alone and in complex with the inhibitor 2-amino-2-norbornanecarboxylic acid at resolutions of 3.3 Å and 3.5 Å, respectively. LAT1 exhibits an inward open conformation. Besides a disulfide bond association, LAT1 also interacts extensively with 4F2hc on the extracellular side, within the membrane, and on the intracellular side. Biochemical analysis reveals that 4F2hc is essential for the transport activity of the complex. Together, our characterizations shed light on the architecture of the LAT1-4F2hc complex, and provide insights into its function and the mechanisms through which it might be associated with disease.
Asunto(s)
Microscopía por Crioelectrón , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Cadena Pesada de la Proteína-1 Reguladora de Fusión/ultraestructura , Transportador de Aminoácidos Neutros Grandes 1/química , Transportador de Aminoácidos Neutros Grandes 1/ultraestructura , Aminoácidos/metabolismo , Sitios de Unión , Transporte Biológico , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Disulfuros/química , Disulfuros/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/antagonistas & inhibidores , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Modelos Moleculares , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Norbornanos/química , Norbornanos/farmacología , Unión Proteica , Conformación ProteicaRESUMEN
Aberrant cleavage of Notch by γ-secretase leads to several types of cancer, but how γ-secretase recognizes its substrate remains unknown. Here we report the cryo-electron microscopy structure of human γ-secretase in complex with a Notch fragment at a resolution of 2.7 Å. The transmembrane helix of Notch is surrounded by three transmembrane domains of PS1, and the carboxyl-terminal ß-strand of the Notch fragment forms a ß-sheet with two substrate-induced ß-strands of PS1 on the intracellular side. Formation of the hybrid ß-sheet is essential for substrate cleavage, which occurs at the carboxyl-terminal end of the Notch transmembrane helix. PS1 undergoes pronounced conformational rearrangement upon substrate binding. These features reveal the structural basis of Notch recognition and have implications for the recruitment of the amyloid precursor protein by γ-secretase.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/ultraestructura , Microscopía por Crioelectrón , Receptores Notch/metabolismo , Receptores Notch/ultraestructura , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Receptores Notch/química , Especificidad por SustratoRESUMEN
Doxorubicin (DOX) is an effective chemotherapeutic drug, but its use can lead to cardiomyopathy, which is the leading cause of mortality among cancer patients. Macrophages play a role in DOX-induced cardiomyopathy (DCM), but the mechanisms undlerlying this relationship remain unclear. This study aimed to investigate how IKKα regulates macrophage activation and contributes to DCM in a mouse model. Specifically, the role of macrophage IKKα was evaluated in macrophage-specific IKKα knockout mice that received DOX injections. The findings revealed increased expression of IKKα in heart tissues after DOX administration. In mice lacking macrophage IKKα, myocardial injury, ventricular remodeling, inflammation, and proinflammatory macrophage activation worsened in response to DOX administration. Bone marrow transplant studies confirmed that IKKα deficiency exacerbated cardiac dysfunction. Macrophage IKKα knockout also led to mitochondrial damage and metabolic dysfunction in macrophages, thereby resulting in increased cardiomyocyte injury and oxidative stress. Single-cell sequencing analysis revealed that IKKα directly binds to STAT3, leading to the activation of STAT3 phosphorylation at S727. Interestingly, the inhibition of STAT3-S727 phosphorylation suppressed both DCM and cardiomyocyte injury. In conclusion, the IKKα-STAT3-S727 signaling pathway was found to play a crucial role in DOX-induced cardiomyopathy. Targeting this pathway could be a promising therapeutic strategy for treating DOX-related heart failure.
Asunto(s)
Cardiomiopatías , Doxorrubicina , Quinasa I-kappa B , Macrófagos , Ratones Noqueados , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Doxorrubicina/efectos adversos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética , Ratones , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Transducción de Señal/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Activación de Macrófagos/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
AIMS: Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS: A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS: A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION: The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.
Asunto(s)
Histonas , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/uso terapéutico , Línea Celular Tumoral , Transducción de Señal , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proliferación Celular , Regulación Neoplásica de la Expresión GénicaRESUMEN
Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.
Asunto(s)
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Pronóstico , Línea Celular Tumoral , Survivin/genética , Survivin/metabolismo , Proliferación Celular , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular , Ratones , Apoptosis , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismoRESUMEN
The impact of stress on the formation and expression of memory is well studied, especially on the contributions of stress hormones. But how stress affects brain circuitry dynamically to modulate memory is far less understood. Here, we used male C57BL6/J mice in an auditory fear conditioning as a model system to examine this question and focused on the impact of stress on dorsomedial prefrontal cortex (dmPFC) neurons which play an important role in probabilistic fear memory. We found that paraventricular thalamus (PVT) neurons are robustly activated by acute restraining stress. Elevated PVT activity during probabilistic fear memory expression increases spiking in the dmPFC somatostatin neurons which in turn suppresses spiking of dmPFC parvalbumin (PV) neurons, and reverts the usual low fear responses associated with probabilistic fear memory to high fear. This dynamic and reversible modulation allows the original memory to be preserved and modulated during memory expression. In contrast, elevated PVT activity during fear conditioning impairs synaptic modifications in the dmPFC PV-neurons and abolishes the formation of probabilistic fear memory. Thus, PVT functions as a stress sensor to modulate the formation and expression of aversive memory by tuning inhibitory functions in the prefrontal circuitry.SIGNIFICANCE STATEMENT The impact of stress on cognitive functions, such as memory and executive functions, are well documented especially on the impact by stress hormone. However, the contributions of brain circuitry are far less understood. Here, we show that a circuitry-based mechanism can dynamically modulate memory formation and expression, namely, higher stress-induced activity in paraventricular thalamus (PVT) impairs the formation and expression of probabilistic fear memory by elevating the activity of somatostatin-neurons to suppress spiking in dorsomedial prefrontal parvalbumin (PV) neurons. This stress impact on memory via dynamic tuning of prefrontal inhibition preserves the formed memory but enables a dynamic expression of memory. These findings have implications for better stress coping strategies as well as treatment options including better drug targets/mechanisms.
Asunto(s)
Parvalbúminas , Tálamo , Ratones , Animales , Masculino , Tálamo/fisiología , Afecto , Miedo/fisiología , Corteza Prefrontal/fisiología , SomatostatinaRESUMEN
BACKGROUND: Jasmonate ZIM-domain (JAZ) proteins, which act as negative regulators in the jasmonic acid (JA) signalling pathway, have significant implications for plant development and response to abiotic stress. RESULTS: Through a comprehensive genome-wide analysis, a total of 20 members of the JAZ gene family specific to alfalfa were identified in its genome. Phylogenetic analysis divided these 20 MsJAZ genes into five subgroups. Gene structure analysis, protein motif analysis, and 3D protein structure analysis revealed that alfalfa JAZ genes in the same evolutionary branch share similar exonâintron, motif, and 3D structure compositions. Eight segmental duplication events were identified among these 20 MsJAZ genes through collinearity analysis. Among the 32 chromosomes of the autotetraploid cultivated alfalfa, there were 20 MsJAZ genes distributed on 17 chromosomes. Extensive stress-related cis-acting elements were detected in the upstream sequences of MsJAZ genes, suggesting that their response to stress has an underlying function. Furthermore, the expression levels of MsJAZ genes were examined across various tissues and under the influence of salt stress conditions, revealing tissue-specific expression and regulation by salt stress. Through RTâqPCR experiments, it was discovered that the relative expression levels of these six MsJAZ genes increased under salt stress. CONCLUSIONS: In summary, our study represents the first comprehensive identification and analysis of the JAZ gene family in alfalfa. These results provide important information for exploring the mechanism of JAZ genes in alfalfa salt tolerance and identifying candidate genes for improving the salt tolerance of autotetraploid cultivated alfalfa via genetic engineering in the future.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Familia de Multigenes , Filogenia , Proteínas de Plantas , Tetraploidía , Medicago sativa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Ciclopentanos/metabolismo , Genoma de Planta , Oxilipinas/farmacología , Perfilación de la Expresión GénicaRESUMEN
Increasing evidence highlights that fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement shows important therapeutic value for patients with intrahepatic cholangiocarcinoma (ICC). This study aims to explore the association of FGFR2 status with the prognosis and immune cell infiltration profiles of patients with ICC. A total of 226 ICC tissue samples from patients who received surgery at the Department of Liver Surgery at Zhongshan Hospital, Fudan University, were collected retrospectively and assigned to a primary cohort (nâ =â 152) and validation cohort (nâ =â 74) group. Fluorescence in situ hybridization was performed to determine FGFR2 status. Multiplex immunofluorescence (mIF) staining and immunohistochemistry were performed to identify immune cells. Thirty-two (14.2%) ICC tissues presented with FGFR2 fusion/rearrangement. FGFR2 fusion/rearrangement was associated with low levels of carcinoembryonic antigen (CEA, Pâ =â .026) and gamma glutamyl transferase (γ-GGT, Pâ =â .003), low TNM (Pâ =â .012), CNLC (Pâ =â .008) staging as well as low tumor cell differentiation (Pâ =â .016). Multivariate COX regression analyses revealed that FGFR2 fusion/rearrangement was an independent protective factor for both overall survival (OS) and relapse-free survival in patients with ICC. Furthermore, correlation analysis revealed that an FGFR2 fusion/rearrangement was associated with low levels of Tregs and N2 neutrophils and high levels of N1 neutrophils infiltrating into tumors but not with CD8+ T-cell or macrophage tumor infiltration. FGFR2 fusion/rearrangement may exert a profound impact on the prognosis of ICC patients and reprogram the tumor microenvironment to be an immune-activated state. FGFR2 status may be used for ICC prognostic stratification and as an immunotherapeutic target in patients with ICC.
RESUMEN
BACKGROUND & AIMS: The therapeutic effect of immune checkpoint inhibitors (ICIs) is poor in hepatocellular carcinoma (HCC) and varies greatly among individuals. Schlafen (SLFN) family members have important functions in immunity and oncology, but their roles in cancer immunobiology remain unclear. We aimed to investigate the role of the SLFN family in immune responses against HCC. METHODS: Transcriptome analysis was performed in human HCC tissues with or without response to ICIs. A humanized orthotopic HCC mouse model and a co-culture system were constructed, and cytometry by time-of-flight technology was used to explore the function and mechanism of SLFN11 in the immune context of HCC. RESULTS: SLFN11 was significantly up-regulated in tumors that responded to ICIs. Tumor-specific SLFN11 deficiency increased the infiltration of immunosuppressive macrophages and aggravated HCC progression. HCC cells with SLFN11 knockdown promoted macrophage migration and M2-like polarization in a C-C motif chemokine ligand 2-dependent manner, which in turn elevated their own PD-L1 expression by activating the nuclear factor-κB pathway. Mechanistically, SLFN11 suppressed the Notch pathway and C-C motif chemokine ligand 2 transcription by binding competitively with tripartite motif containing 21 to the RNA recognition motif 2 domain of RBM10, thereby inhibiting tripartite motif containing 21-mediated RBM10 degradation to stabilize RBM10 and promote NUMB exon 9 skipping. Pharmacologic antagonism of C-C motif chemokine receptor 2 potentiated the antitumor effect of anti-PD-1 in humanized mice bearing SLFN11 knockdown tumors. ICIs were more effective in patients with HCC with high serum SLFN11 levels. CONCLUSIONS: SLFN11 serves as a critical regulator of microenvironmental immune properties and an effective predictive biomarker of ICIs response in HCC. Blockade of C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 signaling sensitized SLFN11low HCC patients to ICI treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ligandos , Macrófagos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral , Quimiocina CCL2 , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismoRESUMEN
Children with epilepsy are particularly vulnerable to anxiety disorders, where these disorders are frequently underdiagnosed and untreated. Despite the high prevalence of anxiety in epilepsy, the underlying neurobiological mechanisms are not fully understood. The medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) are key brain regions implicated in the genesis and modulation of anxiety, and their interactions play a crucial role in emotional processing including anxiety. We utilized a pilocarpine-induced epilepsy model in young mice (7 weeks old) to assess anxiety-like behaviors using the open field test (OFT), light/dark box, and elevated plus maze (EPM). Local field potential (LFP) recordings were conducted to examine theta power and coherence between the mPFC and vHPC. LFP recordings revealed significantly altered theta power variation in both the mPFC and vHPC during exposure to anxiogenic contexts, suggesting the involvement of these regions in anxiety in the young epileptic mice. Notably, theta-frequency synchrony between the mPFC and vHPC was not significantly altered in the young epileptic mice, indicating that altered theta power rather than inter-regional synchrony may underlie anxiety behaviors in young epileptic mice. Furthermore, we demonstrated that chemogenetic inhibition of excitatory neurons in the mPFC and vHPC reduced anxiety levels in young epileptic mice. Altogether, our findings highlight the critical contributions of mPFC and vHPC to the pathogenesis of comorbid anxiety in epilepsy. These findings underscore the potential therapeutic significance of modulating the activity in these two regions as means to alleviate anxiety in a youth epilepsy population.
Asunto(s)
Ansiedad , Epilepsia , Hipocampo , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiopatología , Ansiedad/fisiopatología , Hipocampo/fisiopatología , Epilepsia/fisiopatología , Ratones , Masculino , Ratones Endogámicos C57BL , Ritmo Teta/fisiología , Pilocarpina , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: The efficacy of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC) is poor and great heterogeneity among individuals. Chemokines are highly correlated with tumor immune response. Here, we aimed to identify an effective chemokine for predicting the efficacy of immunotherapy in HCC. METHODS: Chemokine C-C motif ligand 21 (CCL21) was screened by transcriptomic analysis in tumor tissues from HCC patients with different responses to ICIs. The least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive nomogram. Neutrophils in vitro and HCC subcutaneous tumor model in vivo were applied to explore the role of CCL21 on the tumor microenvironment (TME) of HCC. RESULTS: Transcriptome analysis showed that CCL21 level was much higher in HCC patients with response to immunotherapy. The predictive nomogram was constructed and validated as a classifier. CCL21 could inhibit N2 neutrophil polarization by suppressing the activation of nuclear factor kappa B (NF-κB) pathway. In addition, CCL21 enhanced the therapeutic efficacy of ICIs. CONCLUSION: CCL21 may serve as a predictive biomarker for immunotherapy response in HCC patients. High levels of CCL21 in TME inhibit immunosuppressive polarization of neutrophils. CCL21 in combination with ICIs may offer a novel therapeutic strategy for HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Quimiocina CCL21 , Neutrófilos , Neoplasias Hepáticas/terapia , Inmunoterapia , Microambiente TumoralRESUMEN
BACKGROUND: Sleep and physical activity (PA) are thought to be interconnected with the development of rheumatoid arthritis (RA). However, the precise nature and extent of these relationships have yet to be fully quantified. This study aimed to quantify the longitudinal effects of sleep behaviors, PA, and genetic susceptibility on the incidence of RA and to estimate the combined effects and interactions among these exposures. METHODS: A total of 363,211 adults were derived from a large European cohort. We incorporated five sleep behaviors (sleep duration, insomnia, snoring, chronotype, and daytime sleepiness) to generate sleep patterns, which were defined based on healthy sleep scores. Multivariate-adjusted Cox proportional hazard models were conducted to assess the individual and combined associations of sleep patterns, PA, and genetic susceptibility with the risk of RA occurrence. Multiplicative and additive interactions were estimated by Pinteraction and relative excess risk due to interaction (RERI) between each of the two exposures. RESULTS: During a follow-up of 12.5 years, 4262 RA cases were ascertained. A healthy sleep pattern was associated with a decreased risk of RA in a dose-response manner, with an adjusted hazard ratio (HR) of 0.79 (95% confidence interval [CI] = 0.75-0.84), independent of traditional risk factors and genetic predisposition. Under the restricted cubic splines model, a non-linear association was detected for PA and RA risk. Participants in the intermediate quintile 3 showed the lowest risk for developing RA, with a HR 95% CI of 0.84 (0.76-0.92). Moreover, there was an additive interaction effect of intermediate sleep pattern and PA, with a 0.45 (95% CI = 0.02-0.87) RERI of developing RA. Additionally, individuals at high genetic risk had the greatest 10-year absolute risk reduction (10.58 per 1000 person-years) when adopting both favorable behaviors. CONCLUSIONS: A healthy sleep pattern and moderate PA were associated with a reduced risk of developing RA, which can offset the deleterious effects of predisposing genetic components. Implementing these modifiable lifestyle factors into public health practices is beneficial for RA prevention.